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Reduction of speckle in digital holography by
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We present a digital signal processing technique that reduces the speckle content in reconstructed digital ho-
lograms. The method is based on sequential sampling of the discrete Fourier transform of the reconstructed
image field. Speckle reduction is achieved at the expense of a reduced intensity and resolution, but this trade-
off is shown to be greatly superior to that imposed by the traditional mean and median filtering techniques. In
particular, we show that the speckle can be reduced by half with no loss of resolution (according to standard
definitions of both metrics). © 2007 Optical Society of America
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. INTRODUCTION
peckle occurs when coherent light is diffused by an opti-
ally rough surface.1–5 It degrades the quality of the ren-
ered images and makes the accurate viewing of small de-
ails very difficult. The speckle problem is always present
n holography since it uses coherent light. There have
een some recent contributions to the reduction of speckle
n digital hologram (DH) reconstructions.6,7 These meth-
ds use diffusers to partially reduce the coherence of the
llumination and thus achieve a reduction in speckle. An-
ther approach put forward for the removal of speckle
as based on the maximum-likelihood technique and
sed a general model for image reflectivity.8

Dainty and Welford9 optically reduced speckle in image
lane hologram reconstructions by rotating a circular ap-
rture in the Fourier plane of the image. Hariharan and
egedus10 extended the method by superimposing the ex-
osures from bandpassed filtered images of a diffuse ob-
ect. By interpreting our DH as the complex wave field at

particular intermediate plane in the coherent imaging
1084-7529/07/061617-6/$15.00 © 2
peckle removal system, we can apply the discrete analog
f this process to DHs. Furthermore, this digital signal
rocessing (DSP) technique, which we call discrete Fou-
ier filtering (DFF), offers a number of considerable ad-
antages both to its optical counterpart and to other ex-
sting DSP methods. These advantages are discussed
fter the analysis is presented.
The optical setup [in Fig. 1(a)], upon which our tech-

ique is modeled, is that used in Refs. 9 and 10 except
hat we include the position of our hologram plane. The
avefront emanating from the diffuse object propagates

hrough the 4f system in which an aperture is placed in
he Fourier plane. The aperture is moved between each of
everal exposures, and the intensities in the image plane
re integrated over the exposures. This leads to a speckle-
educed image plane signal. We capture our inline
resnel DHs11–13 using phase-shift interferometry.14 The
ffect of capturing the DH introduces an extra aperture
etween the object and the first lens, namely, the record-
ng CCD sensor. We assume for simplicity that the effect
007 Optical Society of America
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f this is only to band limit the object wave field. We then
igitally implement the rest of the setup in the paraxial
egime to a high degree of accuracy.

. ANALYSIS
he following analysis is based on previous work done by
owenthal and Arsenault15 and Hariharan and
egedus,10 and for convenience follows their notation. A
lane, f�r�, immediately in front of a diffuse nonuniform
bject, which is illuminated by a coherent beam can be ex-
ressed as the product of two terms,

f�ṙ� = t�r�d�r�, �1�

here d�r� is a uniform diffuser, t�r� is a transparency
hat modulates the diffuser, and r is a vector �x ,y� in the
lane in front of the object. The image plane amplitude
�r� is defined as g�r�= f�r�*h�r�, where h�r� is the ampli-
ude impulse response of the imaging system and * de-
otes a convolution. It will be shown that the average
ower spectrum of the image intensity is related to the
utocorrelation of the image intensity.16 We will also show
hat the power spectrum of the image intensity can be
pilt into two terms. The first being the power spectrum of
he image itself, and the second being the power spectrum
f the speckle, which we want to reduce. The autocorrela-
ion of f�r� can be written15

Rff�r1,r2� = �f�r1�f*�r2�� = �t�r1�d�r1�t*�r2�d*�r2��, �2�

here �f�r1�f*�r2�� is an expectation, which is defined as
X�=�−�

� xPx�x�dx, where Px�x� is the probability density
unction for X having a value of x. Since t is not a random
unction, it can be extracted from the expectation, as in

ig. 1. (Color online) (a) Coherent optical imaging system with
moving filter in the Fourier plane. The hologram plane denotes

he location that our DH would occupy in such a system. (b) Sche-
atic of the DFF technique, which is the discrete analog of the

ptical technique in (a), starting from the hologram plane. DLCT,
iscrete linear canonical transform; IDFT, inverse discrete Fou-
ier transform.
Rff�r1,r2� = t�r1�t*�r2��d�r1�d*�r2�� = t�r1�t*�r2�Rdd�r1,r2�.

�3�

�r� is considered to be stationary and Gaussian with zero
ean and its autocorrelation may be approximated by a

elta function,

Rdd�r1,r2� = �d�r1�d*�r2�� = ��r1 − r2�. �4�

If j exposures are made with a shift of the aperture be-
ween them, the resultant intensity I�r� at any point in
he image is the sum of the intensities at this point due to
he individual j exposures,

I�r� = �
j

Ij�r�, �5�

here Ij�r�= �gj�r��2, where gj�r�= f�r��hj�r�, and where
j�r� the impulse response of the system for the jth posi-
ion of the aperture in the Fourier plane. Due to the lin-
arity of convolution, the autocorrelation RII�r1 ,r2� of the
mage intensity can be written as

RII�r1,r2� = �
m,n

RImIn
�r1,r2�, = �

m,n
��gm�r1��2�gn�r2��2�,

�6�

here the summation is taken over all values of m and n,
nd each term is the result of an expectation.
For two complex, Gaussian variables X1 and X2, with

ero mean, the expectation ��X1�2 �X2�2� is given by a theo-
em of Reed17 to be

��X1�2�X2�2� = ��X1�2���X2�2� + ��X1X2
*��2. �7�

s we are dealing with expectations, the autocorrelation
f the image intensity can be rewritten as

RII�r1,r2� = �
m,n

��gm�r1��2���gn�r2��2� + �
m,n

��gm
* �r1�gn�r2���2,

= �
m,n

�Im�r1���In�r2�� + �
m,n

�Rgmgn
�r1,r2��2. �8�

he average power spectrum of the image intensity is
�u ,u�, where ��u1 ,u2� is the double Fourier transform

FT) of the autocorrelation of the image intensity,15

��u1,u2� = F�RII�r1,r2�	,

= F
�
m,n

�Im�r1���In�r2��� + F
�
m,n

�Rgmgn
�r1,r2��2� ,

�9�

here F is the double FT operator, defined by
owenthal and Arsenault15 as F�RII�r1 ,r2�	
�−�

� �−�
� RII�r1 ,r2�e−i2��u1·r1−u2·r�dr1dr2. In the second part

f Eq. (9), the first term, which we denote �1�u1 ,u2� rep-
esents the power spectrum of the image, and the second
erm, �2�u1 ,u2�, represents the power spectrum of the
peckle.

It has also been shown by Lowenthal and Arsenault15

hat the average intensity �I�r�� in the image of a coher-
ntly illuminated diffuse object is given by the relation
I�r��= �t�r��2� �h�r��2. This result means that �1�u1 ,u2�
an be given by
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�1�u1,u2� = �
m,n

�T�u1� � T*�− u1��Hm�u1� � Hm
* �− u1� � �T

��− u2� � T*�u2��Hn�− u2� � Hn
*�u2�, �10�

here T�u� is the FT of t�r�, and H�u� is the FT of h�r�.
e now evaluate the other term �2�u1 ,u2� that gives the

ower spectrum of the speckle.10 For two linear systems
ith input f�r�, impulse responses hm�r�, hn�r� and out-
uts gm�r�, gn�r�, the cross correlation of the outputs can
e written in terms of the cross-correlation of the inputs.
sing this result and the right-hand side of Eq. (9), we
ave15

�2�u1,u2� = �
m,n

F��Rff�r1,r2��r1
hm�r1��r2

hn
*�r2��2	,

�11�

here the subscripts r1 and r2 mean that the convolution
peration is carried out on the variables r1 and r2, respec-
ively, the other variable being treated as a constant, and
ff�r1 ,r2� is the autocorrelation function of the object am-
litude f�r�.
Now, �2�u1 ,u2�, which is the power spectrum of the

peckle, can be written as

�2�u1,u2� = �
m,n

���u1,u2�Hm�u1�Hn
*�− u2� � ��*�− u1,− u2�

�Hm
* �− u1�Hn�u2�, �12�

here ��u1 ,u2� is the double FT of Rff�r1 ,r2�.
Finally, if Eq. (12) is rewritten with u replacing u1 and

2 to obtain the average power spectrum of the speckle,
�u1 ,u2� becomes the average power spectrum of the ob-

ect amplitude, which has been shown to be a constant
nd is equal to the total power in the signal.15 The power
pectrum of the speckle is rewritten as

�2�u,u� = �Rtt�0��2�
m,n

�Hm�u�Hn
*�u� � �Hm

* �− u�Hn�− u�.

�13�

rom this equation, Lowenthal and Arsenault15 have
hown that the manner in which the speckle spatial fre-
uencies are distributed does not depend on the signal
�r�, but only on the coherent transfer function of the sys-
em. Only the total signal power �Rtt�0��2 effects the power
pectrum of the speckle. Using this result and modeling
ur system’s aperture as a 2D rect function. Eq. (13) be-
omes

�2�u,u� = �Rtt�0��2 �
mx,my,nx,ny

��rect�ux − mx�ux

wx
,
uy − my�uy

wy
�

�rect�ux − nx�ux

wx
,
uy − ny�uy

wy
�� * �rect

��ux − mx�ux

− wx
,
uy − my�uy

− wy
�

�rect�ux − nx�ux

− wx
,
uy − ny�uy

− wy
�� , �14�

here u=uxx̂+uyŷ, and �ux, �uy is the displacement of
he aperture between two exposures in the x and y direc-
ions, respectively. wx is the width of the rect function in
he x direction and wy is the width of the rect function in
he y direction. This reduces to

�2�u,u� = �Ru�0��2 �
mx,my,nx,ny

�1 −
�ux − �ux�m + n��

wx − �ux�m − n� �
��1 −

�uy − �uy�m + n��

wy − �uy�m − n� � . �15�

f wx−�ux �m−n � �0 or wy−�uy �m−n � �0 then the entire
xpression goes to 0. In the limiting case of �ux=0 and
uy=0, the power spectrum of the speckle is at its maxi-
um, being the same as the power spectrum of the

peckle given by a single aperture. When �ux	wx and
uy	wy, so that the two positions of the aperture do not
verlap, the power spectrum of the speckle is reduced to
alf the value of the limiting case.10 However, the power
pectrum of the image does not follow this trend. It fol-
ows that for n exposures, the power spectrum of the
peckle is 1/n times that obtained using a single expo-
ure. For maximum efficiency, we have set �ux=wx and
uy=wy. Since we are limited by the finite extent of the
T of our DH, we are limited in the number of indepen-
ent exposures. It should be noted that the smaller the
xposure, the greater the loss in resolution in the recon-
tructed image. However, using basic Fourier theory, one
ay deduce that the bandwidth of the reconstruction in-

ensity is twice the extent of the rect function. For a more
horough analysis of the optical system, please refer to
owenthal and Arsenault15 and Hariharan and
egedus.10

Figure 1(b) shows the DFF technique for reducing
peckle. The first step is to numerically compute the
ropagation from the discrete hologram plane to the dis-
rete Fourier planed. This can be achieved efficiently in
ne step using a single discrete linear canonical trans-
orm. A number of methods to efficiently implement this
ransform are outlined by Hennelly and Sheridan.18 The
ourier plane data are filtered and then inverse discrete
ourier transformed to the image plane where its inten-
ity is stored. This is repeated n times and the resulting n
ntensities are summed.

. METRICS
peckle index19,20 was chosen as the metric to evaluate
he reduction in speckle achievable using the DFF tech-
ique. It is calculated as the ratio of standard deviation to
he mean in a homogeneous area. In this experiment, the
omogeneous area chosen was a section on the chest of a
tormtrooper object (see Fig. 3 below). The original recon-
truction has a speckle index of 1.02, and by minimizing
his we reduce the speckle content. This speckle reduction
s offset by a loss in resolution, which was calculated us-
ng a resolution chart. The chart [see Fig. 2(a)] used is

odeled on the U.S. Air Force (USAF) 1951 three-bar re-
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olving power test chart. It is 2048�2048 pixels in size
matching the resolution of the DH). The smallest details
n the chart [see Fig. 2(b)] start at just a single pixel in
idth. We define the resolution level as

R = 1/X, �16�

here X is the width of the smallest bars on the resolu-
ion chart that can be resolved. A filtering technique for
iven parameters (i.e., aperture size for the DFF tech-
ique and neighborhood size for median and mean filter-

ng) is said to cause no loss in resolution if the smallest
hree bars (both vertical and horizontal) can be resolved.
he technique is thus classified as being at resolution

evel 1
1 . It follows that if the smallest three bars cannot be

esolved, but the next smallest can, then a technique for
iven parameters is classified as being at level 1

2 . Figure
(c) shows a zoomed in section (115�115 pixels in size) of
he resolution chart after application of the DFF tech-
ique with an aperture size of 512�512, and Fig. 2(d)
hows the same zoomed in section of the resolution chart

ig. 2. Nonfiltered version of the USAF 1951, three-bar resolv-
ng power test chart (2048�2048 pixels in size), (b) zoomed in
15�115 pixel region of the chart showing the smallest details
n the chart, (c) zoomed in results of applying on (a) the DFF
echnique with aperture width of 512, (d) zoomed in result of ap-
lying on (a) a median filter with a neighborhood size of 3�3,
nd (e) zoomed in result of applying on (a) a mean filter with a
eighborhood size of 3�3.
fter application of the median filtering technique with a
eighborhood size of 3�3. For the parameters given, both
f these techniques are said to result in a resolution level
f 1

2 .

. RESULTS AND DISCUSSION
igure 3 shows the results of the DFF technique applied

o a DH of a stormtrooper object. In Fig. 3(a), the original
econstruction is shown. It is 2048�2048 pixels in size,
nd has a speckle index of 1.02. The application of the dis-
rete Fourier filter to a reconstruction of this DH is shown
n Fig. 3(b). The aperture, h�r�, has a width of 256 pixels
n size. This results in a speckle index of 0.2 and a reso-
ution level of 1

4 . It is clear that the technique has suc-
eeded in reducing the speckle content.

A graph of the results of applying the DFF technique,
edian filtering, and mean filtering to a reconstruction of
DH of the stormtrooper figure is shown in Fig. 4. It

hows that the speckle index can be reduced by nearly
alf with no loss in resolution using the DFF technique.
n comparison, using either the median or mean filters to
chieve a similar reduction in speckle index, will result in
drop to a resolution level of 1

2 . At each resolution level,
he discrete Fourier filter consistently has a lower speckle
ndex than either the median or the mean filters.

ig. 3. (a) Shows the original reconstruction and (b) shows the
esult of applying the DFF technique.

ig. 4. Graph showing the results of DFF technique (points are
abeled with the aperture size used), and the median and the

ean filters (points are labeled with the neighborhood sizes
sed).
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Simple convolution-based noise reduction techniques,
ore appropriate for additive noise sources, are routinely

pplied to reconstructions of digital holograms of 3D ob-
ects due to their simplicity, and due to the lack of an ap-
ropriate alternative. When the reconstructions are to be
sed as the basis for scientific, industrial, or medical de-
isions (as opposed to simply being visually appealing) it
s often not appropriate to employ a complicated noise re-
uction technique whose manipulation of the data cannot
e analyzed easily. Where noise reduction techniques
ave been reported in the literature, those routinely ap-
lied to the reconstructions of digital holograms of 3D ob-
ects are mean filtering,21–27 Gaussian filtering,28 median
ltering,11,26,27,29,30 subsampling,29,31 and superposition of
ifferent reconstructions.6,23

The DFF technique offers a number of significant ad-
antages over its optical counterpart. First, no additional
ptical preprocessing or postprocessing is necessary in the
apture of DHs. Second, the technique has the advantage
f being able to efficiently compute discrete Fourier trans-
ormations without the need for a bulk optical system.
he well-known fast FT may be used to implement our
echnique within the order of N log2 N steps where N is
he number of pixels in the DH. Third, the technique al-
ows for the use of arbitrary filters that would be difficult
o fabricate or represent on a spatial light modulator. In
uture work, we will look at creating more specialized fil-
ers (including complex valued ones) in an effort to im-
rove on the results given here. The DFF technique also
as an advantage over some existing DSP
echniques,6,7,23 in that it only requires a single DH. This
mplies that the method can be applied to all existing DHs
aptured previously.

. CONCLUSION
DSP technique that reduces the speckle content in re-

onstructed DHs has been presented. It was shown that
he speckle index can be reduced by half with no loss of
esolution, and further reductions in speckle can be
chieved with some loss in resolution. Furthermore, the
FF technique was shown to be superior to the mean and
edian filters in terms of speckle reduction and loss of

esolution. It is important to note that almost any level of
peckle reduction can be achieved, but this always needs
o be offset against the resulting loss in resolution. We
lso showed that the technique offers a number of signifi-
ant advantages over the optical imaging technique upon
hich it was modeled, and some existing DSP techniques.
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