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Spread-space spread-spectrum technique for
secure multiplexing
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A novel technique for multiplexing complex images is proposed in which each image may be demultiplexed
only if a set of random encryption keys is known. The technique utilizes the ability of the double random
phase encoding method to spread a signals’ energy in both the space and the spatial frequency domains in a
controlled manner. To multiplex, images are independently encrypted with different phase keys and then
superimposed by recording sequentially on the same material. Each image is extracted by using the par-
ticular key associated with it. During decryption the energy from the other images is further spread, making
it possible to minimize its effects by using suitable filters. Wigner analysis is applied to the technique, and
numerical results are presented. © 2007 Optical Society of America
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A number of methods have been recently proposed in
the literature for the encryption of 2D information
using linear optical systems.1–3 In particular, the
double random phase encoding (DRPE) system1 has
received much attention. In this Letter we outline
how such a system, with a slight adjustment, may be
used for securely multiplexing and demultiplexing
data for holographic data storage and threshold secu-
rity. Holographic data storage4,5 offers terabyte ca-
pacity with high transfer rates. Recently optical en-
cryption systems have been applied during the mul-
tiplexing process6–8 to improve the performance of
these systems. The DRPE method has been applied
with angular multiplexing,6–9 and it has been ob-
served that it offers an improved performance over
traditional angular multiplexing in terms of storage
capacity8 and angular selectivity.9 This improvement
is attributed to the suppression of cross talk between
adjacent images. While the original binary data is re-
covered with the correct random phase key, the over-
lapping reconstructed images from neighboring or-
ders remain white-noise-like images because an
incorrect random phase key has been used. In this
Letter we both qualify and quantity these effects
based on a discussion of energy spreading in phase
space using the Wigner distribution function (WDF).

Various multiplexing schemes exist in holographic
data storage including spatial, angular, spherical ref-
erence shift and speckle reference multiplexing.
There are also various multiplexing schemes using
phase keys in the reference beam.10–14 All of these

methods can be analyzed by using the WDF-based
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approach introduced here. Our results demonstrate
that the DRPE may be used not only to improve upon
existing angular multiplexing schemes but also as a
multiplexing scheme in and of itself.

The standard DRPE method is well known. An in-
put image wave field passes through a random dif-
fuser (D1), an optical Fourier transform (OFT), a sec-
ond diffuser (D2), and finally a second OFT. If the
diffusers may be described as two statistically inde-
pendent random phase functions, then the encrypted
image may be described as a white process. Decryp-
tion involves passing the encrypted wave field back
through the encryption system in which D2 is re-
placed by its conjugate D2* and D1 is simply re-
moved. The effect of D2 is canceled, and D1* is not
employed, since we are interested only in the inten-
sity of the decrypted signal. Our multiplexing scheme
comprises a DPRE and a recording material. A num-
ber of images are encoded and recorded sequentially
on the same material by using the same reference
beam but different diffusers. The effects of the diffus-
ers on the spatial extent of an input signal and its
spatial frequency extent as it evolves through these
systems are well known.15 The WDF allows us to el-
egantly explain these effects for the purposes of this
paper. The WDF of a 1D signal u�x� is given as

��u�x���x,kx� =� u�x −
�

2�u*�x +
�

2�e−i2�kx�d�, �1�

where x denotes the spatial coordinate and kx de-

notes spatial frequency. In the case of a 2D signal the
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WDF is four dimensional. Much of our analysis is
limited to the 1D case, the extension to 2D being
trivial. The WDF has many properties, only a few of
which are critical in the present context. The first
property is that of localization; in many practical
problems it we assume that a signal is bounded
within some finite region in the spatial and spatial
frequency domains. The spatial extent, W, and fre-
quency extent, B, are the minimum values such that

u�x� � 0, 	x	 � W, � u�x�e−i2�kxxdx � 0, 	kx	 � B.

�2�

The second property relates to Parseval’s theorem;
the total energy of the signal, E, is

E =� ��u�x���x,kx�dxdkx. �3�

Applying Eqs. (2) and (3), the average energy density
of the signal in phase space is given by E /WB. The
third property of interest is the product theorem of
the WDF. When two signals are multiplied in space,
their WDFs are convolved along the kx axis:

��u�x�v�x���x,kx� =���u�x���x,kx − k����v�x���x,kx�dk�.

�4�

From Eqs. (2) and (4), the signal u�x�h�x� will have a
spatial width equal to the overlapping spatial distri-
butions of the individual signals. Furthermore, the
resulting spatial frequency distribution will have a
bandwidth equal to the sum of the bandwidths of the
product signals, Bu+Bh. The final property of interest
is the relationship of the WDF to the Fourier trans-
form (FT). If a FT is applied to a signal, the corre-
sponding WDF rotates by � /2 rad: ��u�x���x ,kx�
→��u�x���−kx ,x�. In the case of an OFT with focal
length f and wavelength �, we have the following re-
lationship: ��u�x���x ,kx�→��u�x���−
�fkx ,x /
�f�. If
Eq. (2) holds, then the output OFT bandwidth is
B
�f; i.e., the OFT does not simply rotate the WDF
but also stretches it.

Turning to the DRPE system, and with the aid of
Fig. 1 and Table 1, we describe the evolution of a sig-
nal’s spatial and spatial frequency distributions as it
propagates through the system. The input signal has
the Wigner volume chart shown in Fig. 1(i), where
the signal is depicted having a width and bandwidth
as defined in Table 1. The average energy density can
be calculated at any plane as E/(Width x) (Width kx).
If our image signal has been coded for efficient stor-
age, then it will seem random in nature, and we may
assume that it fully occupies the volume shown in
Fig. 1(i). D1 and D2 are assumed to be lossless and
are designed to have the well-specified widths and
bandwidths15 listed in Table 1. When the signal
passes through D1, the product signal has an in-
creased bandwidth, but the total energy must remain
the same. Therefore the average energy density is re-

duced by a factor proportional to the spread. The re-
sulting Wigner volume chart is shown in Fig. 1(ii),
and the relevant values are given in Table 1. The first
FT rotates the chart by � /2 rad, see Fig. 1(iii), and
the resultant signal passes through D2. The spatial
frequency domain is again stretched (we note that
this is actually the spatial domain of the input sig-
nal), and, since the total energy again remains the
same, the average energy density in phase space is
further reduced; see Fig. 1(iv). The final FT rotates
the chart once again as shown in Fig. 1(v). This 1D
signal, with known extents in x and kx, is now cap-
tured. We see that it is important to match WINx

and
WD1x

and also 
�f�BINx
+BD1x

� and WD1x
. Correct de-

cryption of the signal follows a very similar pattern,
in the exact reverse. Figures 1(ii)–1(v) in reverse or-
der describe the evolution of a correctly decrypted
signal. D2* now acts to despread the signal in the
space domain, while D1* is not needed, since de-
spreading in the frequency domain does not affect the
intensity of a decrypted signal.

Multiplexing is implemented by using a standard
DRPE encryption system with different keys for each
input image. Our demultiplexing system is shown in
Fig. 2, made up of a standard DRPE decryption sys-
tem except that we also use D1* to despread in kx. We
also apply apertures in the decryption plane and its
Fourier plane to remove all the energy of incorrectly
decrypted signals except that part that lies inside the
low-pass regions in the four dimensions. Figures 1(i)–
1(v) in reverse describe the total evolution of demul-
tiplexing. When decryption is performed by using an

Table 1. Quantifying the Spreading

Stage Width x Width kx

D1 WD1x BD1x

D2 WD2x BD2x

Input WINx BINx

After D1 WINx BINx+BD1x
After 1st FT 
�f�BINx+BD1x� WINx�
�f
After D2 
�f�BINx+BD1x� WINx�
�f +BD2x

After 2nd FT WINk+
�fBD2x BINx+BD1x

Incorrectly
decrypted WINk+2
�fBD2x BINx+2BD1x

Fig. 1. Wigner volumes at different planes in the multi-
plexing and demultiplexing process. En, energy density.
incorrect set of diffusers, the signal will not be de-
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spread in x and kx but rather will be even further
spread in these domains, and the average energy
density will be further reduced. In Fig. 1(iv) we show
Wigner volume charts of a correctly and incorrectly
decrypted signal. The extents of an incorrectly de-
crypted signal are given in Table 1.

A 2D encrypted signal will also have extents in y
and ky that may be determined by replacing the sub-
script x with y in Table 1. For 2D signals, the average
energy density at any plane is given by

E/�Width x��Width y��Width kx��Width ky�. �5�

We consider the case where we encrypt multiple im-
ages, each with different diffusers, and add the en-
crypted images together. To demultiplex we decrypt
using the correct phase keys. The incorrectly de-
crypted signals will have been spread out in x, y, kx,
and ky, and their average energy densities will be
given by Eq. (5) and Table 1. The number of images
that can be multiplexed together and recovered with
and without loss is proportional to the phase space
signal spreading. The total energy of each incorrectly
decrypted signal present in the final output image
Wigner volume is determined by multiplying the av-
erage energy density, �, by the volume of interest,
giving ��BINx

WINx
BINy

WINy
�. Thus the average energy

present due to incorrect decryption is given by
��BINx

BINy
�. From this latter value the average error

energy per bit can be determined.
Furthermore, each individual encryption is more

robust than the traditional DPRE, since decryption
requires knowledge of both the phase keys and filters

Fig. 2. Decryption–demultiplexing scheme.

Fig. 3. Images before and after we multiplex and
demultiplex.
used to despread and decrypt. If N signals are multi-
plexed together, to decode one we can expect an aver-
age error per bit of AVEIN�N−1���BINx

BINy
� where

AVEIN represents the average energy of an input sig-
nal. Taking the latter value and the dynamic range of
the input signals into account, one may determine
the sufficient parameters for the diffusers (BD1 and
BD1) such that each image may be recovered with
minimal error. We also note that a further limit is im-
posed on the number of images by the dynamic range
of the recording medium. We believe that this limit
may also be represented efficiently by using Wigner
analysis, but that is beyond the scope of this Letter.
In Fig. 3 we show the results of a simulation to mul-
tiplex and demultiplex three 128�128 binary im-
ages. This case is clearly not optimal, since the input
images have not been coded to evenly distribute the
energy in the frequency domain. We chose BINx
=BD1x

, WINx
=
�fBD2x

, BINy
=BD1y

, WINy
=
�fBD2y

so
that the encrypted image had twice the width and
bandwidth of the input, and therefore an incorrectly
decrypted image had three times the width and
bandwidth of the input. Thresholding was not ap-
plied to the results shown in Fig. 3. After threshold-
ing the bit error rate for this case is 	1%. The per-
formance of the technique is currently being
investigated for large numbers of inputs and differ-
ent spreads. We acknowledge that a practical imple-
mentation will differ from the ideal simulation, and
we are also pursuing experimental validation. Simi-
lar analyses may be applied to optimize the perfor-
mance of architectures outlined in Refs. 6–14.

We acknowledge the support of the Irish Research
Council for Science Engineering and Technology. B.
Hennelly’s e-mail address is bryanh@cs.nuim.ie.

References

1. P. Refregier and B. Javidi, Opt. Lett. 20, 767 (1995).
2. B. Hennelly and J. T. Sheridan, Opt. Lett. 28, 269

(2003).
3. B. M. Hennelly and J. T. Sheridan, Optik (Stuttgart)

114, 251 (2003).
4. H. J. Caulfield, D. Psaltis, and G. Sincerbox,

Holographic Data Storage (Springer-Verlag, 2000).
5. L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc.

IEEE 92, 1231 (2004).
6. B. Javidi, G. Zhang, and J. Li, Appl. Opt. 36, 1054

(1997).
7. O. Matoba and B. Javidi, Appl. Opt. 38, 7288 (1999).
8. X. Tan, O. Matoba, T. Shimura, and K. Kuroda, Appl.

Opt. 40, 4721 (2001).
9. W. C. Su and C. H. Lin, Appl. Opt. 43, 2298 (2004).

10. T. F. Krile, R. J. Marks II, J. F. Walkup, and M. O.
Hagler, Appl. Opt. 16, 3131 (1977).

11. E. L. Kral, J. F. Walkup, and M. O. Hagler, Appl. Opt.
21, 1281 (1982).

12. J. F. Heanue, M. C. Bashaw, and L. Hesselink, Appl.
Opt. 34, 6021 (1995).

13. O. Matoba, Y. Yokohama, M. Miura, K. Nitta, and T.
Yoshimura, Appl. Opt. 45, 3270 (2006).

14. G. Situ and J. J. Zhang, J. Opt. A, Pure Appl. Opt. 8,
391 (2006).

15. T. Nomura, E. Nitanai, T. Numata, and B. Javidi, Opt.

Eng. 45, 1 (2006).


