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Abstract—We discuss a projection system for real world three-
dimensional objects using spatial light modulators (SLM). An algo-
rithm to encode the digital holograms of real world objects on to an
SLM is presented. We present results from experiments to project
holograms of real world holograms using a nematic liquid crystal
SLM. We discuss the case when the pixel sizes of the charge-cou-
pled device (CCD) and SLM used for recording the hologram and
projection are different.

Index Terms—Holography, liquid crystal displays, spatial light
modulators, three-dimensional (3D) displays.

I. INTRODUCTION

DIGITAL holographic techniques to capture, process and
display three-dimensional (3D) information broadly falls

into three categories: 1) recording of optical wavefront as digital
hologram and numerically reconstructing the field [1]–[5]; 2)
digital synthesis of holograms and optical reconstruction using
liquid crystal devices (LCDs) [6]–[9]; and 3) recording of op-
tical wavefronts as digital holograms and optical reconstruction
using LCDs [10]–[12]. The techniques in the third category are
of most interest for 3D TV applications as they can capture,
process, and display real world 3D information. Of the two main
digital holographic techniques to record 3D information, in-line
holography has lower sampling requirements as compared to
off-axis holography but needs more than one data frame to ex-
tract wavefront information [1]. The optical reconstruction may
be performed by displaying the optical wavefront using a spatial
light modulator (SLM) and the fidelity depends to a large extent
on how accurately this can be done.
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Fig. 1. Schematic of the projection system: BE, beam expander; BS, beam
splitter; M, mirror; WP, wave plate; LP, linear polarizer; OBJ, object.

Real SLMs can represent only a limited set of complex
values. A number of techniques have been proposed to map a
fully complex valued signal onto an SLM that is not fully com-
plex (that can represent only a limited set of complex values)
[13]–[17]. A technique to extend the complex modulation
range of an SLM pixel with limited modulation states using
a combination of linear polarizers and waveplates at the input
and output side of the SLM was proposed recently [18].

In this paper, we extend the method proposed in [18] to en-
code a complex image onto an SLM with limited modulation
states. We use this method to demonstrate a projection system
for real world objects. We also discuss the factors which affect
the optical reconstruction. We present some experimental re-
sults obtained using the projection system. We also discuss the
factors that affect the optical reconstruction. We present some
experimental results obtained using the projection system.

II. PROJECTION OF REAL WORLD 3D OBJECTS

The optical system used for projection of real world 3D ob-
jects is shown in Fig. 1. The system consists of a holographic
setup to record the digital hologram of the 3D object and a pro-
jection system using a SLM. A Mach-Zehnder interferometer is
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used to record the digital holograms. The object to be recorded is
placed in one arm (object arm). The other arm (reference arm)
contains either a half-wave and or a quarter-wave plate to in-
troduce phase shifts corresponding to , and rads.
The phase of complex wavefront at the CCD plane can be
calculated from the corresponding four intensity images [2]. The
estimated wavefront in the CCD plane must then be encoded to
values which an SLM can display. The configuration of polar-
ization elements (linear polarizer and waveplate) at the input
and output of the SLM in addition to the voltage, which drives
an SLM pixel, determines the complex modulation achieved
by the SLM given by

(1)

where

is the Jones vector representation of a polarization state with
azimuth and angle . and are the orientation of the
linear polarizers at the input and output side of the SLM. and

are the retardance of the waveplates at the input and output
side of the SLM. All the angles are specified with respect to the
reference laboratory axis chosen to be the axis aligned along the
molecular axis at the input face of the SLM. is defined to
be the Jones matrix of an SLM [18] pixel written as a function
of the applied voltage ‘ ’ given by

(2)

where is the twist angle and is the phase shift due to the
birefringence of LCD molecules. The parameters and and
are functions of applied voltage to the LCD pixel.

The discrete form of (1) may be rewritten as:

(3)

The set of points corresponding to a given pair of po-
larization states and at the input and output of the SLM
constitute an operating curve. Each point in this set corresponds
to a distinct value of Jones matrix . The desired operating
curve determines the choice of configuration of polarization el-
ements at the input and output of the SLM. The choice of the
optimum operating curve depends on two factors: 1) the fully
complex signal to be mapped and 2) the performance metric of
interest. To select the optimum operating curve first, the com-
plex valued image H is mapped to all possible operating curves.
This is done by encoding each value of the H to an SLM modu-
lation state that is the closest in Euclidean sense (chosen to min-
imize the Euclidean distance). Each so obtained image is
used to evaluate a performance metric. The image that optimizes
the performance metric is chosen as the encoded image and the
corresponding operating curve determines the configurations of
the polarization elements at the input and output of the SLM.

The two performance criteria of interest in the reconstruction
of holograms are: 1) the error between the reconstructions of the
original and encoded holograms and 2) the diffraction efficiency

of the reconstructed holograms. The two performance metrics of
interest in this case are defined following [20], [21] as

1) the Amplitude Error (AE), , between the reconstruc-
tion of and the reconstruction of H is quantified
using the Amplitude Error given by

(4)

where

where is the reconstruction of H and is the re-
construction of . ROI denotes the spatial “region of
interest”;

2) the Diffraction Efficiency as given by

(5)

where and .
The two criteria and are antagonistic [20], [21]

and the optimal-tradeoff between these two are obtained by min-
imizing a cost function, , formed using a linear combina-
tion of the two criteria [19]–[21]

(6)

In (7), ‘ ’ is a parameter which permits the weighting of the two
criteria to be adjusted. To chose a desired tradeoff between the
two criteria an Optimal Characteristic Curve (OCC) [20]–[22]
is plotted. The OCC represents one criterion as a function of the
other so that the cost function, in (6), is minimized. In our case,
the Amplitude Error is drawn as a function of the inverse
diffraction efficiency obtained for values of that
minimize (6) for different values of . Thus the OCC
permits us to choose the value of to achieve the desired trade-
off, which leads to the best set of values for the amplitude error
and the diffraction efficiency.

If the complex conjugate of the wavefront retrieved at the
CCD plane is displayed on the SLM, and illuminated by co-
herent light of the same wavelength as that used for recording,
a real image is formed at the same distance from the SLM as
the recording distance from the object to the CCD camera. This
is true only if the CCD pixel size is the same as the SLM pixel
size. The reconstruction distance of the hologram is different to
the recording distance if either the pixel size of the SLM used
for displaying the hologram is different to the CCD pixel size
used to record the hologram, and/or the wavelength used for re-
construction is different to that used for recording. If the ratio of
the pixel size of the SLM to that of the CCD is ‘ ’ (assuming
square pixel in the CCD as well as in the SLM as is true in
the present case), then the reconstruction distance ‘d’ of a holo-
gram recorded at a distance ‘z’ is given by ,
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where is the recording wavelength and is the reconstruc-
tion wavelength (see Appendix II). Furthermore, there is a mag-
nification by a factor ‘ ’. To achieve reconstruction at shorter
distances, the SLM was placed at the front focal plane of a lens
of focal length ‘ ’. The reconstruction of the object wavefront is
then obtained at a distance , with a
magnification factor of (see Appendix II).
A quadratic output phase factor is introduced by the optical
system, which is not significant if only the intensity of the re-
constructed wavefront is of interest.

III. EXPERIMENTS

Our digital holograms are recorded using the optical setup
(shown in Fig. 1) based on a Mach–Zehnder interferometer ar-
chitecture in an in-line configuration. A spatially filtered lin-
early polarized helium–neon ( nm) laser beam is
split into object and reference beams, both of which are spa-
tially filtered and collimated. The first beam illuminates the 3D
object placed at a distance from a 10-b 2032 2048 pixel CCD
camera. The reference beam passes through either half-wave
and/or quarter-wave plates. Through permutation of the fast and
slow axes of the plates we can achieve phase shifts of ,
and radians. The reference beam combines with the light
diffracted from the object and forms an interference pattern in
the plane of the camera. At each of the four phase shifts we
record an interferogram. Using these four intensity images, the
complex-valued camera-plane wavefront can be numerically ex-
tracted using phase-shift interferometric techniques [2]–[6].

To determine the Jones matrix of the SLM a Mach–Zehnder
interferometer is used [23], [24]. The SLM is placed in one arm
of a Mach–Zehnder interferometer. A split pattern with regions
consisting of two gray levels—the gray level at which the Jones
Matrix has to be estimated and a reference zero gray level - is
displayed on the SLM [23], [24]. The parameters , and are
estimated by measuring the shift in fringes formed due to inter-
ference of the light passing through the two regions displaying
different gray levels (which are a function of the applied voltage
‘ ’). A plot of the parameters , and characterized for the
transmission SLM (Holoeye Model LC2002), for 15 sets of gray
level values is shown in Fig. 2.

The in-line holograms of two objects: 1) ‘PINS’—two pins
located at distances of 288 and 316 mm away from the capturing
CCD and 2) ‘TOY’—A block toy at a distance 367 mm from the
CCD were recorded using phase shifting interferometric tech-
nique. The wavelength used for recording the holograms was
633 nm and the CCD pixel size was 7.4 m with 2032 2048
pixels.

The amplitude and the phase of the complex valued wavefront
retrieved at the recording plane is shown in Figs. 3(a)–(b) and
6(a)–(b). The histograms of the amplitude (normalized to 1) and
phase values of the PINS are shown in Fig. 3(c)–(d) and that of
TOY in Fig. 6(c)–(d). For the amplitude hologram the bin size
was chosen as 0.1 and for the phase histogram the bin size was
chosen as . For the TOY hologram 79% of the total values
fall between 0 and 0.1 and 77% of the phase values fall between

and . The corresponding values for PINS hologram
are 81% and 76%.

Fig. 2. Characterization of parameters �;  , and � of SLM (HOLOEYE
LC2002). The contrast and brightness settings used were 255 and 100,
respectively.

In each case, 512 512 center pixels of the complex valued
hologram are mapped to the SLM modulation states. In per-
forming the mapping we considered 48 distinct polarization
states at the input and output of the SLM. The azimuth angles

and retardance (angle) values

were examined.
The operating point was chosen to give both a low amplitude

error as well as good diffraction efficiency (0.016 and 0.48, re-
spectively, for PINS and 0.26 and 0.44, respectively, for TOY).
The OCC for the hologram PINS is shown in Fig. 4. The input
and output polarization states and corresponding to
the chosen operating point are and

for PINS and
and for TOY. As can be seen the
optimal configuration of polarization elements are quite similar
for the two holograms. This might be due to the fact that almost
80% of the values in both the holograms are the same.

The configuration of polarization elements, (linear polarizer
and waveplate with retardance ), to realize these polarization
states are calculated using the relations [18]

(7)

For a quarter waveplate , the configuration of polar-
ization elements at the input and output of SLM to generate and
detect these polarization states are and

for PINS, and
and . The complex values of the hologram
were mapped to one of the SLM modulation states using the al-
gorithm given in Appendix I.

The mapped holograms of dimension 512 512 pixels were
displayed on the SLM (Holoeye Model LC2002, 832 624
pixels, pixel size 32 m 32 m). The reconstruction of the
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Fig. 3. (a) Amplitude and (b) phase of hologram PINS. (c) Histogram of amplitude and (d) phase of hologram PINS.

Fig. 4. OCC plot showing the tradeoff between Diffraction Efficiency and Am-
plitude Error as � varies between 0 and 1 for the PINS hologram. The chosen
vale of � for the reconstructions in Fig. 5 is circled.

holograms displayed on the SLM was done using the wave-
length nm. The reconstruction distance is different to

that used for recording the holograms as the pixel size of the
SLM used for reconstruction is different (4.32 times bigger)
to the pixel size of CCD used for recording the hologram. The
reconstruction wavelength is alo different from the recording
one. An analysis to account for the above two factors is given
in Appendix II. Following the notation given in Appendix II,

and the reconstruction distance is thus .
For the holograms recorded at distances mm and
316 mm, the reconstruction distance would, therefore, be
6.4 and 7 m, respectively and both are magnified by the factor
of . The reconstruction distances can be brought
closer by using a convex lens. The numerical reconstruction
of the PINS hologram at distances and mm
are shown in Fig. 5(a)–(b). The corresponding numerical re-
constructions using the holograms mapped onto the SLM is
shown in Fig. 5(c)–(d). Using a lens of focallength 160 mm,
the reconstructions of the hologram PINS obtained at distances

cm and cm from the lens, are shown in
Fig. 5(e)–(f). Fig. 7(a)–(b) shows the numerical reconstructions
of the hologram TOY and the hologram mapped to the SLM
modulating states. Fig. 7(c) shows the encoded hologram
which was displayed on the SLM and Fig. 7(d) shows the
reconstructions at distances cm from a lens of focal
length 200 mm. All the above numerical reconstructions were
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Fig. 5. (a) Numerical reconstruction of the hologram PINS at d = 188 mm
and (b) d = 188 mm. (c) Numerical reconstruction of the hologram displayed
on SLM at d = 188 mm and (d) d = 188 mm. (e) Optical reconstruction at
d = 16:68 cm, and (f) d = 16:77 cm.

carried out using the 512 512 hologram pixels used for
optical reconstructions. The numerical reconstructions does not
take into account the optical system noises and the effects due
to SLM fill factor.

From Figs. 5(c)–(d) and 7(b), a deterioration in quality is
observed when the holograms encoded onto an SLM with 15
modulation states are numerically reconstructed as compared to
those with fully complex-valued hologram. A further deterio-
ration in quality is observed in the experimentally obtained op-
tical reconstructions in Figs. 5(e)–(f) and 7(d) as compared to
the numerical reconstructions. The difference in quality of the
reconstructions of TOY hologram and PINS hologram is mainly
due to the difference in the nature of objects used to record the
holograms, PINS being more reflective than TOY.

In this paper, the metrics used to quantify the quality of recon-
struction are amplitude error and diffraction efficiency. A low
amplitude error and high diffraction efficiency is desired. The
factors which affects the reconstruction quality can be attributed

to the quality of holograms used for reconstruction and the SLM
used. The factors that depend on SLM include the modulation
states that constitute the chosen operating curve, the number of
distinct modulation states available and the range of modulation
states. The quality of holograms used also affects the reconstruc-
tions. A factor that affects the quality of hologram is the nature
of objects used to record the holograms. This is reflected in the
difference in quality of the reconstructions of TOY hologram
and PINS hologram, mainly due to the difference in the nature
of objects used to record the holograms, PINS being more re-
flective than TOY.

The holograms used in this paper were recorded with light
reflected off the optically rough surfaces of real world objects
resulting in speckles in the reconstruction. The speckles can be
reduced using various digital post-processing techniques [11].
The holograms had some amount of residual conjugate term that
also contributed to the deterioration in quality.

IV. CONCLUSION

We discuss a projection system for real world 3D objects. The
digital holograms of the 3D objects are recorded using an in-line
phase shifting holographic setup. The complex object wavefront
at the CCD camera plane, retrieved from the recorded holo-
grams, is encoded to the modulation states of an SLM obtained
by characterizing the Jones matrix associated with an SLM as a
function of applied voltage. The modulation states of an SLM
also depend on the configuration of polarization elements used
in conjunction with the SLM. For a given set of holograms a
method to find the mapped holograms as well as the configura-
tion of polarization elements is described. We have presented
some experimental results illustrating reconstruction and dis-
cussed some of the factors that can affect the optical reconstruc-
tion of the holograms. We analyze the case when the pixel sizes
of the CCD and SLM used for recording the hologram and pro-
jection are different.

APPENDIX

ALGORITHM TO ENCODE FULLY COMPLEX-VALUED

SIGNAL ONTO AN SLM

Step 1: Choose the input and output polarization states
and from the discrete set,

.
Step 2: Calculate the SLM modulation states

for the chosen polarization states.
Step 3: Calculate

, where
is the th pixel of the hologram. Assign

, where is the value
of which minimizes .
is the estimated hologram corresponding to the
polarization states and .Repeat Step 3 for all
the hologram pixels.

Step 4: Obtain the reconstruction of the estimated
hologram .

Step 5: Calculate the Amplitude Error, , and the
Diffraction Efficiency, , using (4) and (5).
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Fig. 6. (a) Amplitude and (b) phase of hologram TOY. (c) Histogram of the amplitude and (d) phase of hologram TOY.

Fig. 7. (a) Numerical reconstruction of the hologram TOY at d = 367 mm.
(b) Numerical reconstruction of the hologram displayed on SLM at d = 367

mm. (c) Encoded image displayed on SLM. (d) Optical reconstruction at 19.5
cm from a lens of focal length 20 cm.

Repeat Steps 1 to 5 for all the
input-output polarization states

.

Step 6: Calculate the cost function from (6),
for ranging from 0 to 1 for all the
input-output polarization states

.
Step 7: Find for a given value of . Let

and be the values corre-
sponding to . Plot the OCC of

as a function of for ranging
from 0 to 1. Choose the operating point in the OCC

for , the value that
achieves the desired trade-off, i.e., is
sufficiently low and is sufficiently high.
The input and output polarization states and
corresponding to the chosen operating point deter-
mines the configuration of polarization elements at
the input and output to the SLM.

APPENDIX

Consider a digital holographic recording setup as shown
in Fig. 1. Let the distance between the object and the CCD
recording plane be ‘ ’. Let the recording wavelength be ‘ ’.
Consider the case in which the reconstruction is performed by
propagating the complex conjugate of the object wavefront by
a distance ‘ ’. Let ‘ ’ be the reconstruction wavelength, and
‘ ’ the ratio of the SLM pixel size to CCD pixel size. Using the
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ABCD formalism [25], the wavefront from the object plane to
reconstruction plane is seen to have undergone a transformation
in the phase space as given by

(2-1)

where

(2-2)

Setting , for reconstruction plane to correspond to
imaging geometry we have,

(2-3)

For the case, where the reconstruction geometry is as shown in
Fig. 1, where the SLM is at the front focal plane of the lens of
focal length ‘f’ and the reconstruction plane is at a distance ‘d’
behind the lens, it can be shown that

(2-4)

Thus
; and .

For the reconstruction plane to correspond to an imaging
plane,

and (2-5)
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