1. (a) Expand the languages defined by the following expressions. Note, e denotes the empty word, \cdot denotes concatenation, \emptyset denotes the empty set, and 2^{L} denotes the power set of L.
 i. $\emptyset \cup \{aa, ab\}$
 ii. $\{e\}^*$
 iii. \emptyset^*
 iv. $\emptyset \cdot \{a, b, c\}$
 v. 2^L, where the language $L = \{e, ab\}$
 vi. the regular expression $(\emptyset \cup e)1$
 (b) Prove that the regular languages are closed under concatenation.
 (c) Can you enumerate the set of all words over a finite alphabet? Prove your answer.
 (d) Explain the following properties of languages: acceptable, decidable, recursively enumerable, and recursive. Give an example in each case.

2. Define a language that is recursively-enumerable and nonrecursive. Prove that your language has both properties. Full marks will be awarded for an unambiguous definition and a detailed proof.
3. (a) For each of the following languages, prove that it is regular or prove that it is not regular. [13 marks]
 i. \(\{ w : w \in \{a, b\}^*, w \text{ is the empty word or contains the substring } aab \} \)
 ii. \(\{ w w : w \in \{a, b\}^* \} \)
 iii. \(\{ uv : u, v \in \{a, b\}^*, u \text{ is not equal to } v \} \)

(b) Prove that the set of regular languages is a proper subset of the set of the context-free languages. The only theorems you may use (if you wish to) are those you have proved from part (a) of this question and the following:
 - a language is regular iff it is accepted by a finite automaton
 - a language is context-free iff it is accepted by a pushdown automaton. [12 marks]

4. (a) Define any decision problem relating to finite automata. State whether this problem would be decidable or not by a Turing machine. Prove your answer for full marks. [8 marks]

(b) What does a reduction \(A \leq B \) between two problems \(A \) and \(B \) establish about the relative computability of \(A \) and \(B \)? What does a polynomial reduction establish about the relative computational complexity of \(A \) and \(B \)? [2 marks]

(c) Use a reduction to prove the undecidability of the \textsc{Varinequality} problem. \textsc{Varinequality} is defined as follows. Given a computer program \(P \) that takes no input, and two integer variables \(A \) and \(B \) declared in \(P \), will the value in \(B \) ever exceed the value in \(A \) during the execution of \(P \)? [7 marks]

(d) Use a reduction to prove the \(\mathcal{NP} \)-completeness of the \textsc{Hittingset} problem. You may assume that \textsc{Hittingset} is in \(\mathcal{NP} \), and that 3-SAT is \(\mathcal{NP} \)-complete. \textsc{Hittingset} is defined as follows. Given a system \(\{A_1, \ldots, A_m\} \) of finite sets and a natural number \(k \), does any set with no more than \(k \) elements exist that intersects every \(A_i \)? [8 marks]