
Stack versus LinkedList mplementations
– static versus dynamic memory allocation

• Array-based implementation of a data structure such
as a list or stack
� restricts the number of items in the data structure.
� is the array size is sufficient (can you predict in

advance the number of items needed).
� would you waste storage if the structure remains only

partially full.
� could resize the array with new – may still overspecify

the size with many unused spaces.

• Reference-based implementation:
� allocate the memory dynamically with new only as

much storage as is needed.
� However, the order of the items in the data structure

can affect the outcome.
• In an array the position of the next item is implicit (i+1). In a

linked list must use a reference – the primary difference
between the two implementations

• so the array does not have to store implicit information thus
requiring less memory. Array-based implementation also
provides direct access (position 4 is item 3) so access time is
constant.

• With linked list must traverse with next pointer – access for
the ith node depends on i.

Stack versus LinkedList mplementations
– static versus dynamic memory allocation

• A list implementation with an array (the ADT list)
requires the shifting of elements when you insert or
delete from the list – say delete item 20 (i-1 shifts).

• No such shifts with a linked list reference-based
implementation. Add and remove require the same
effort – depends on the time to find the item.

Stack versus LinkedList mplementations
– static versus dynamic memory allocation

