
An exploration of future patterns of the contributions to

OpenStreetMap and development of a Contribution

Index

Abstract

OpenStreetMap (OSM) represents  one of  the  most  well-known examples  of  a

collaborative mapping project. Major research efforts have so far dealt with data

quality analysis but the modality of OSM’s evolution across space and time has

been  barely  noted.  This  study  aims  to  analyze  spatio-temporal  patterns  of

contributions  in  OSM  by  proposing  a  contribution  index (CI)  in  order  to

investigate the dynamism of OSM. The CI is based on a per cell analysis of the

node quantity,  interactivity,  semantics,  and  attractivity  (the  ability  to  attract

contributors).  Additionally  this  research  explores  whether  OSM  has  been

constantly attracting new users and contributions or if OSM has experienced a

decline in its ability to attract continued contributions. Using the Stuttgart region

of Germany as a case study the empirical findings of the CI over time confirm

that since 2007, OSM has been constantly attracting new users, who create new

features, edit the existing spatial objects, and enrich them with attributes. This

rate  has  been  dramatically  growing  since  2011.  The  utilization  of  a  Cellular

Automata-Markov (CA-Markov) model provides evidence that by the end of 2016

and 2020, the rise of CI will spread out over the study area and only a few cells

without OSM features will remain. 
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1. Introduction

Due  to  the  interest,  motivation,  and  efforts  of  interested  volunteers,

OpenStreetMap  (OSM)  has  become an  alternative  source  of  geodata  in  both

online and offline applications (Mondzech & Sester,  2011;  Neis  et  al.,  2013).

While OSM received only minor attention in the first few years after its launch it

now receives a substantial amount of contributions from across the world. 20

million  nodes  were  provided  by  100,000 users  until  2008,  rising  to  over  2.5

billion  nodes  provided  by  almost  1.7  million  users  by  August  2014.  This

revolutionary data-gathering process continues to rise due to the rapid and wide

penetration of smartphones, GPS-enabled devices, and the general awareness of

citizen science projects among the population (Georgiadou et al., 2013; Mooney

et al., 2013). 

The entire  mapping process  in  OSM is  structured in  a democratic  manner in

which anyone can: (a) sign up and join; (b) create/edit/delete spatial objects; (c)

access the entire dataset; and, finally, (d) retrieve the entire dataset history free

of charge so that every action can be retraced (Ramm et al., 2010). Additionally,

OSM  represents  a  rising  network  of  volunteers  shaping  a  community  which

intends to correct the inaccurate or erroneous contributions of others, and thus

improve the entire data quality of OSM in a systematic way (Mooney & Corcoran,

2012b; Jokar Arsanjani et al., 2014). In doing so, the OSM community is actively

managing feedback from participants to enhance the performance of the OSM

database,  the  respective  image  libraries,  editing  tools,  and  other  software
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functionalities.  To  guarantee  data  quality,  active  members  of  the  community

closely observe and report destructive and harmful activities through the wiki

pages as well as online discussion lists (Ramm et al., 2010).

The OSM community has been intensively monitoring data contributions in order

to help guide the efforts of all volunteers in the right direction (Goodchild, 2007;

Corcoran et al., 2013; Jokar Arsanjani et al., 2014). The immense benefit of such

crowdsourced  projects  like  OSM can  be  considered  from two  complementing

views.  First,  from the  end-users’  perspective,  the  free  availability  of  geodata

which are not restricted through data privacy regulations is essential. Resource

intensive cumbersome data acquisition and/or product ordering processes are

substantially reduced which, in turn, improves overall access to the data. More

importantly, traditional geodata are often not very up-to-date and therefore data

uncertainty concerns arise (Pourabdollah et al., 2013). Finally, dealing with cross-

national studies, researchers are faced with language difficulties, varying object

definitions,  semantic  interoperability,  internal  infrastructure  organization,  and

different data handling processes, among others. Second, from a data provider’s

perspective, both commercial and non-profit enterprises have to deal with the

costs and time required for data collection and attaching metadata to spatial

entities regardless of whether they are extracted from high-resolution images or

in-field  surveying  elaborated  with  local  knowledge  of  objects  (Haklay  et  al.,

2010).  However,  due  to  the  availability  of  voluntarily  provided  geodata  the

situation has changed radically for both parties. OSM provides large amounts of

simply accessible geodata at a high level of confidence in its data quality whilst

being  provided  at  low  financial  and  time  costs  (Haklay,  2010;  Hagenauer  &

Helbich,  2012,  Jokar  Arsanjani  et  al.,  2015).  Despite  some volunteers’  minor

knowledge of mapping and data collection, the gathered information from them
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comprises new spatial  objects and attributes that may never have existed in

traditional databases, as empirically proven by Haklay  et al., (2010), Neis and

Zipf (2012),  and Neis  et al.,  (2013),  among other studies. The importance of

collecting VGI in developing countries is particularly important. As seen in the

response to Haiti’s earthquake and the Philippines’ Typhoon (Zook et al., 2010;

Yates & Paquette 2011; Roche et al., 2011) timely up-to-date and geographically

complete data coverage is available very quickly. 

Although considerable research has been carried out on the topic of OSM data

quality  issues  (Haklay  &  Weber,  2008;  Haklay,  2010;  Girres  &  Touya,  2010  ;

Helbich  et  al.,  2012;  Barron  et  al.,  2013;  Jokar  Arsanjani  et  al.,  2013a),  less

attention (Neis  et al., 2013; Corcoran  et al., 2013; Jokar Arsanjani  et al., 2014)

has  been  paid  to  the  spatio-temporal  evolution  of  OSM.  This  is  of  great

importance because if the degree of evolution in a specific area is high it is more

likely  to  receive  more  reliable  information.  This  is  because  more  users  are

involved in the mapping process and, therefore, increase the control mechanism

in the sense of Linus’ Law (Haklay et al., 2010; Hardy et al., 2012) which exist in

volunteered  geographic  information  (VGI)  data  collection.  Linus’  Law expects

that  the  more  edits  contributed by mappers  on  OSM features  the larger  the

increase  in  the  data  quality.  Additionally,  it  is  vital  for  the  existing  OSM

community to know in which direction OSM is headed. Is it failing to maintain

people’s interest in contributing or is it continuing to attract more contributors

and contributions leading to a richer and more accurate dataset. 

The evolution of  OSM in space and time is  highly relevant  as it  can provide

knowledge of how OSM might emerge in the future. It allows estimations to be

made about the future data quality for certain areas which is of interest to OSM-

10

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

11
12



dependent  applications  (e.g.,  OpenRouteService,  OSM-3D,  OpenMapSurfer)

which this may impact. These estimations can obscure insights into how OSM, as

a dynamic human-based system, functions and where and when OSM attracts

people to contribute and which spatial features attract people’s attention. A few

investigations on monitoring the spatio-temporal evolution of OSM network have

been  carried  out.  For  example,  while  Neis  et  al.  (2012;  2013)  consider  the

amount of nodes, ways, and relations to measure the development of OSM in a

simplistic descriptive manner, Corcoran et al. (2013) propose two concepts i.e.,

exploration and  densification for distinguishing between the types of on-going

activities in OSM. In contrast to Neis  et al. (2012; 2013), Jokar Arsanjani  et al.

(2014)  project  the geometry of  contributions into a cellular  grid  and apply  a

cellular automata approach to monitor the spatiotemporal evolutionary patterns

of  OSM  in  a  case-study  area  in  Germany.  A  more  practical  and  effective

approach, which considers other criteria in addition to geometry and quantity of

the contributions to OSM, is urgently required to allow for better quantitative and

qualitative indications of activities in OSM to be determined. 

In  the  current  research,  following  Jokar  Arsanjani  et  al.  (2014),  collaborative

contribution  to  a  project  such  as  OSM  is  considered  as  a  spatio-temporally

explicit  continuous and dynamic process.  Thus,  the OSM contributors  are the

actors,  who are interactively contributing their  information to the community.

Based  on  the  identified  research  gaps,  the  main  objective  of  this  paper  is

therefore to develop a contribution index (CI) for exploring OSM developments so

that instead of the abovementioned approaches, an index is used to monitor the

patterns of contributions. Additionally, this index is coupled with a  CA-Markov

approach in order to predict future OSM states over a representative study area.

More precisely, in order to leverage the understanding of the spatio-temporal
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evolution of OSM, future states of the CI are monitored to predict upcoming OSM

contributions until 2020 in space and time. The following research questions will

be addressed:

• Which parameters besides the quantity of contributions do we need to take

into consideration in order to design a CI? 

• What does the spatio-temporal evolutionary pattern of the CI in the selected 

study area actually look like?  

• How well does the CA-Markov model perform in predicting the future forms 

of OSM contributions?

•In  which  areas  are  more  contributions  received?  Is  there  any  spatial

correspondence between the CI and land cover characteristics? 

The remainder of the paper is structured as follows. Section 2 introduces the

materials, Section 3 explains the methods used. Next, Section 4 discusses the

empirical results and finally, Section 5 highlights major conclusions and outlines

recommendations for future research. 

2. Materials 

2.1 Study area and data

The metropolitan area of Stuttgart, the capital of the Baden-Wuerttemberg state

of Germany, and its surrounding areas are chosen as the study area (see Figure

1). The reasons for choosing this area are twofold: firstly, the Stuttgart region has

been a dynamic area in receiving a large record of contributions according to the
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OSMatrix (Roick  et al., 2011); secondly, this area consists of a variety of land

cover types i.e., artificial surfaces, agricultural areas, and forests. 

The data used in this investigation are the OSM features extracted from the OSM

planet file in July 2013. The OSM planet file represents every node that has been

hitherto  contributed  and shared  in  OSM.  It  must  be  noted  that  these  nodes

represent the configuring nodes of every point, polyline, and polygon feature.

The  extracted  dataset  contains  a  variety  of  tags  including  the  attributes

“osmtimestamp”, “osmversion”, “osmuser”, “osmuid”, and “osmid” of objects.

Furthermore,  the CORINE land  cover  map of  the  study area provided by the

European Environment Agency serves as a second data set,  representing the

latest update of land cover types prepared in 2006 at a 100 m spatial resolution

(European  Environment  Agency,  2013).  Land  cover  features  permit  us  to

compute the associations with the CI (e.g., urban areas contain more points of

interest and objects rather than agricultural areas).

Figure 1: The geographical extent of the study site and corresponding land cover

3. Methods 

As outlined in Figure 2, the workflow consists of two parts. While the first part

introduces  the  CI,  the  second  part  is  comprised  of  the  CA-Markov  model  to

predict future OSM states.

Figure 2: Schematic representation of the workflow
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Subsequent  analysis  is  based  on  the  premise  that  the  whole  collaborative

contributing  process  in  OSM  possesses  the  properties  of  a  spatio-temporal

dynamic phenomenon as it started in time and retains its dynamism across time

and  space,  i.e.,  it  spreads  out  across  space  and  over  time.  This  process

presumably  has  emerged  since  2004  and  ever  since  has  evolved  spatio-

temporally.  For  instance,  once  an  object  is  created/edited/deleted,  one

contribution is made by a user and it is more likely that: (a) he/she comes back

and  continues  his/her  contribution  and  the  phenomenon  spreads  across  the

network;  (b)  a  new  contributor  gets  involved  and  starts  completing  the

contribution  of  the  previous  contributor(s)  by  creating/editing/deleting  the

adjacent  objects;  or  finally,  (c)  the  chances  of  receiving  contributions  from

nearby cells are higher than from ones farther apart,  because  the process of

contributing is continuous in time and space. Evidently, contributions are given

at  different  rates  in  each  area,  so  the  rate  of  contributions  depends  on  the

quantity of existing objects and number of involved users. This is a function of

the resident population apart from global mapping calls for humanitarian aids as

seen in Haiti and Philippines. Since the degree of dynamism of this phenomenon

differs over time and location the collaborative mapping process is considered as

a  space-time  dependent  dynamic  phenomenon.  This  phenomenon  can  be

modeled by means of a CA-Markov model. For the application of this model, the

shared nodes as contributions must be transferred to a grid representation to

obtain  a better  abstraction of  the data.  Additionally,  the aggregation to cells

reduces the data size considerably.  The attributes of cells were combined and

several  classes for each variable were defined. Accordingly, the subsequently

introduced CI is defined to have a better translation of contributions in terms of
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quantity, given attributes, number of involved users in mapping, and how many

times an object has been edited.

3.1 OSM Data Abstraction Using Cellular Grids

In  order  to  use  a  CA-Markov  approach,  the  shared  contributions  must  be

transferred to a grid representation to have an appropriate abstraction of the

data.  Initially, a quantitative analysis of the amount of contributions is done to

determine: (a) how and where the collaborative contributing has emerged and

evolved; (b) the rate at which this phenomenon has disseminated; and (c) to

investigate how land cover types play a role in receiving more contributed cells.

Subsequently,  the data are transferred to a grid representation with a spatial

resolution of 100 m. This resolution, which is compatible with the CORINE land

cover map, is selected to keep the computational tasks feasible while ensuring

that  the  morphological  pattern  of  features  are  retained.  For  the  aggregation

process a location-based join analysis is applied to transfer the attributes of OSM

nodes to the cellular grid. Such representations are prepared for six timestamps

from 2007 until 2012 (indicating the contribution by the end of each year) with 1-

year sequences. 

3.2 The Development of a Contribution Index 

While previous investigations only measured the degree of activities in OSM by

simply  counting  the  number  of  nodes,  roads,  users,  relations,  and  attributes

separately (e.g., Neis  et al., 2013), this study developed a CI which holistically

quantifies the activities in OSM. The CI is based on the assumption  that the

amount of contributions per cell i is a function f of some existing measures such
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as the total number of given nodes (TNN), the mean number of the attributes

(MNA), the number of contributing users (NCU), and the mean version number of

nodes  (MVN).  Accordingly,  four  variables  (i.e.,  “quantity”,  “interactivity”,

“semantic”, and “attractivity” (the ability to attract contributors)) are derived to

categorize the contributions into categories. While quantity counts the number of

nodes  given  in  each  cell,  interactivity  averages  “osmversion” per  cell  which

determines how many times a node has been edited.  Semantic indicates how

well the nodes within each cell are attributed, i.e., how many nodes are given

attributes per individual cell on average. Attractivity is based on the number of

users that have edited the nodes within each cell. 

CIi = ƒ (nodes_counti , osmversioni , number of attributesi , number of osmusersi)

It  is assumed that the degree of contributing within a cell  is higher if  certain

conditions are met such as: (a) contributions are given semantic information i.e.,

the nodes are given attributes, so if the mean number of attributes per cell is

100%, every feature possesses at  least  an attribute.  Cells  with values of  0%

contain no attributes for the contained features, therefore contributions, which

are  not  given  any  attributes  to  describe  them,  lack  of  sufficient  semantic

description; (b) high quantity of contributions i.e., the number of nodes per cell

identifies how densely the objects represented; (c) high attractivity per each cell

i.e., number of “osmusers”  attracted per cell determines that how many users

have been contributing in each cell, so the more users are involved, the more

reliable the contributions within a cell  are likely to be; and (d)  likewise, high

interactivity within each cell i.e., “osmversion” indicates how many times each

28

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

29
30



individual  node has been edited,  so  higher  “osmversion” numbers  show that

frequent activities have taken place in each particular cell. 

In  order  to  calculate  the  CI  on  the  basis  of  the  aforementioned variables,  a

characterization  of  the  map patterns  are  required.  A  widely  used  statistic  to

detect locations of high and low values, among others, is the local G*-statistic

(Getis & Ord, 1995). In accordance to Getis and Ord (1995), it is referred to a

hot/cold spot as cells with high/low values which are surrounded by cells with

high/low  values,  respectively.  In  addition  to  hot  and  cold  spots,  two  other

categories are considered that include cells placed between cold and hot spots

and also the cells  that  have received zero contributions in the four following

categories: 

 A dead cell  (DC)  is  a  cell  that  no contribution is  given to;  therefore  all

variables have no value. 

 A barely contributed cell (BCC) is a cell that falls into the category of cold

spots,  which  means  it  contains  the  lowest  bands  of  each  variable  i.e.,

minimum number of nodes with low values of interactivity, semantic, and

attractivity.

 A fairly contributed cell (FCC) is a cell that falls neither into a cold nor hot

spot category.  This means that it  contains a moderate amount of nodes

(less than 100 nodes) with average values of interactivity, semantic, and

attractivity. 

 A highly contributed cell (HCC) is a cell that is highlighted as a hot spot and

contains the highest values for each variable, i.e., above average number of

nodes (above 100 nodes) with high values of interactivity, semantic, and

attractivity. 
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3.3 The Cellular Automata-Markov approach 

Finally, the cell-based CI is projected to future years through a CA-Markov model

representing a frequently employed predictive modeling technique (e.g., Batty

1999; Jokar  et al., 2011; Spicer  et al.,  2012).  It  benefits from a multi-criteria

evaluation function which combines cellular automata (CA) and Markov Chain

models  (Eastman  2012).  While  a  Markov  chain  model  quantifies  transition

probabilities of multiple classes of thematic maps, the CA model allocates the

predicted quantity of  fluctuations over the space for a certain period of  time

through the probabilistic measures. Since the Markov chain model itself does not

generate spatial outputs, the model must be combined with a spatially explicit

approach  (Peterson  et  al.,  2009;  Guan  et  al.,  2011).  Due  to  the  conceptual

simplicity  of  the  CA,  it  has  been  utilized  for  modeling  a  variety  of  dynamic

phenomena, including land-use/land-cover changes (e.g., Mitsova  et al., 2011),

fire  spread  (e.g.,  Stambaugh  &  Guyette,  2008),  disease  dissemination  (e.g.,

González et al., 2013), and social changes and dynamics (e.g., Dabbaghian et al.,

2011).

The advantages of both models are integrated into a single and robust modeling

technique  called  the  CA-Markov  model  by  quantifying  the  probabilities  of

phenomenon dynamism via the Markov chain model and allocating the estimated

changes through CA to predict the future evolution (Zhou et al., 2012). The CA-

Markov model is founded on an initial distribution of the dynamic phenomenon

and a transition matrix, assuming that past driving forces will also operate in the

future (Mondal & Southworth, 2010). Several empirical studies have confirmed

the power of CA-Markov models (Kamusoko  et al., 2009; Jokar Arsanjani  et al.,
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2013c).  Both  aspects  make  CA-Markov  modeling  suitable  for  simulating  the

future  evolutions  of  OSM  contributions  assuming  no  change  in  the  form  of

intervention  so  that  the  contribution  rate  and  number  of  involved  users  will

continue to grow at the same rate as it has to date. 

4. Results and discussions 

4.1 Spatio-temporal Mapping of OSM contributions 

Descriptive mapping permits us to visualize the location and number of nodes

over time. As shown in Figure 3, the early contributions were delivered in 2007

and gradually began to grow out and spread over the whole area until the end of

2012. Spatially overlaying these maps with the CORINE land cover data reveals

that the early contributions were received mainly in artificial surfaces (54%). This

means that areas with a high number of nodes delineate the artificial surfaces.

Agricultural  areas  rank  second  for  receiving  contributions  (35%)  followed  by

forest and semi natural areas (12%). Hot spots on the contribution maps of 2011

and  2012  roughly  delineate  the  developed  areas.  From  these  hot  spots

residential areas (urban and rural) and road networks are easily detectable. 

Figure 3: Spatio-temporal pattern of OSM contributions from 2007-2012

Moreover, visual  analysis of Figure 3 in combination with land cover overlays

reveal that the density of contributions is also increasing. This causes cells with

higher  number  of  nodes  delineate  residential  areas  such  as  urban  and  rural
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areas. Similarly, Crandall  et al. (2009) and Li  et al. (2013) remark that spatial

patterns  of  Tweets  from Twitter  as  well  as  Flickr  photos’  primarily  delineate

administrative boundaries of the United States and major roads.nterestingly, the

number of involved users is also increasing so these trends indicate that more

users will likely become involved (see Table 1) Interestingly the number of users involved

is also increasing. These trends indicate that more users are likely to become involved in the future

(see Table 1). The mean number of attributes identifies how many nodes are given

attributes and they can identify objects. This measure also shows an increasing

trend of additional attributes related to the contributed objects. The mean OSM

version number shows how many times on average a node has been edited. As

noted by Mooney and Corcoran (2014), a higher number of osmversion describes

that the object has been modified more than once and therefore the uncertainty

on the location and attribute of the object decreases. 

Table 1: Descriptive statistics of the contributions and contributors from 2005–

2012

Figure 4: Regression results of selected temporal OSM trends 

Using univariate regression, Figure 4 relates selected OSM characteristics (e.g.,

the number of nodes) to the yearly timestamps. The coefficients of determination

(R²s) show a fairly good fit, in particular the variables “number of contributing

users”  as well  as  “number of  contributed cells”  achieve  R²s of  93 and 95%,

respectively. In combination with Table 1 and Figure 4, the following conclusions

can be drawn: 
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 Number of nodes: Although there were few nodes until 2008, the number

has  been  constantly  increasing.  The  regression  depicts  a  sharply

increasing  rate  of  receiving  contributions  and  its  trend  has  been

exponentially increasing from 2010 onwards.

 Number  of  contributed  cells:  Supported  by  the  significant  regression

parameters, the cellular abstraction of contributions also reveals that the

rate of receiving contributions in both forms – nodes and cells – has been

increasing. 

 Analysis of attributes (mean and standard deviation) also proves that over

time, objects receive more attributes than before. Although this dropped

sharply  in  2011,  thereafter  it  started to  increase.  This  means  that  the

contributions in 2011 had a reduced number of attributes relative to the

other years and this could be due to a new wave of users that did not add

attributes to their contributions. 

 Version of contributions: the mean version of contributions increased from

1 (only edited by one user) in 2007 to almost 2 in 2012. This means that

on average the objects were edited either by 2 users or within 2 editing

sessions by a single user. 

 Figure  4  (bottom)  also  displays  an  increasing  rate  of  involved  users

involved  in  the  mapping.  The  relatively  high  R2 of  approximately  95%

demonstrates that  despite  a slow rate  of  gaining users  the number of

involved users  is  constantly  rising indicating that  OSM will  continue to

grow for the foreseeable future. Furthermore, along with the increase in

number  of  users,  the  rate  of  nodes  per  person  has  been  constantly

increasing. Over time number of nodes, number of users and their share in

mapping  has  been  increasing,  i.e.,  the  users  are  mapping  more  than
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before. This might be interpreted as the more users map the more skilled

they become; however this assumption must be practically tested and is

beyond the scope of this paper.

 A close  observation of  the  contributing  users  between 2010 and 2012

shows that those 884 users from 2011 continued their contributions along

with  the  284  new  users  in  2012.  Similarly,  the  622  users  of  2010

continued their contributions along with the 262 new users in 2011. 

To sum up, the statistical analysis indicates a promising outlook in terms of OSM

receiving further contributions. In other words, OSM is becoming more popular

amongst people and it is very likely to continue its success into the future.

4.2 Contribution Index Analysis

In  order  to  translate  each  category  of  the  CI  into  the  four  indicators  (i.e.,

quantity,  interactivity,  semantic,  and  attractivity),  the  fluctuations  of  each

variable  per  each CI  category is  calculated through a zonal  statistic.  Table 2

depicts the variations for each variable per CI category. The mentioned indicators

and thresholds can be used as a rough explanation for calculation of CI for other

areas.  

Table 2: Quantification of OSM contributions into four indicators

Figure 5: Patterns of CI from 2007 to 2012
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The resulting CI maps are shown in Figure 5 displaying that the majority of cells

were  either  dead  or  barely  contributed  cells.  Since  2009,  fairly  and  highly

contributed cells appeared and then began to spread out over the study area. A

major change to the cells in the study area is evident from 2010. Between 2011

and  2012,  a  large  number  of  dead  cell  were  converted  to  fairly  and  highly

contributed cells so that only a small number of dead cells remain. This could

possibly be the aftermath of mapping parties’ calls that were sent out in 2011

and  2012  (see  http://wiki.openstreetmap.org/wiki/Stuttgart/Stammtisch#).

Likewise,  these  findings  are  supported  by  Figure  6  which  indicates  that  the

number  of  dead  cells  has  been  dramatically  decreasing  in  favor  of  other

categories,  whilst  fairly  and  highly  contributed  cells  have  taken  bigger

proportions since 2011.

 

Figure 6: Development trend of CI over time in terms of number of cells in each

CI category 

4.3 CA-Markov: implementation, validation and prediction

In accordance with Figure 2, to predict future CI patterns the CA-Markov model is

set  up.  To  determine  the  most  appropriate  transition  rules,  neighborhood

definition, and kernel size as well as to evaluate the model’s performance, the

model is applied using the past data for the years 2010, 2011, and 2012 in an

iterative manner until the associated transition rules resulted in highly correlated

outputs compared to the actual reality represented through the latest available

timestamp.  The CI  maps of  2010 and 2011 are imported into the CA-Markov

49

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

50
51

http://wiki.openstreetmap.org/wiki/Stuttgart/Stammtisch


model in order to simulate one timestamp after that, 2012. The actual CI map of

2012 is used to evaluate the performance of the CA-Markov model using the

Kappa  statistic.  While  several  modeling  parameters  were  tested,  the  most

optimal match was achieved at iteration number of 42 using a 3×3 kernel size

and a  von Neumann neighborhood definition which  yielded an overall  68.3%

Kappa  index  of  agreement.  This  indicates  a  substantial  level  of  agreement

between  the  simulated  map  and  actual  map  according  to  Landis  and  Koch

(1997).  Figure 7 displays the resultant predicted map of 2012 as well  as the

actual map of 2012 for a better visual comparison.

Figure 7: The actual (left) and the predicted map (right) of the CI for the year

2012 by CA-Markov model 

Finally, the characteristics of the best calibrated model in terms of kernel size,

neighborhood function, and number of iterations are employed to simulate the

upcoming OSM contributions for the years 2016 and 2020. Figure 8 illustrates the

spatial pattern of the predicted CI maps. The predicted maps of CI in 2016 and

2020 disclose that the fairly and highly contributed classes with 35% of areal

coverage will distinctly take over the dead cells and barely contributed cells with

75% and 90% coverage, respectively which cover artificial surfaces as well as

forest and agricultural areas. The remaining barely contributed areas will cover

partially the forest areas on the south-west part of the study area. This could be

either because this land use type is not interesting enough to receive enough

contribution  or  there are  not  many objects  in  these cells  requiring mapping.

Moreover,  since OSM nodes are taken as footprints of  contributions,  only the
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edges of farming lands (i.e., features represented as polygons) are considered.

The areas covered by polygons are not considered. 

Figure 8: Predicted maps of CI for 2016 (left) and 2020 (right) 

It should be mentioned that the resultant prediction patterns are based on the

temporal  growth  of  OSM  and  no  potential  driving  factor  is  considered.

Considering additional factors will most likely result in both different outputs and

prediction patterns. Such a prediction approach permits researchers to gain an

overall  impression on the possible future patterns of  OSM dissemination.  The

patterns of predicted maps show a converged form which is due to essence of

CA-Markov model as noted by Eastman (2012). 

5. Conclusions

Multiple objectives were considered in this research to (i) evaluate the trend of

collaborative contributions to the OSM project over time and space on the basis

of  a  grid  representation within  a  sample study area,  (ii)  to  develop  a CI  for

indicating several aspects of contributions to OSM such as quantity, attractivity

(how many users are active in a cell), semantic, and interactivity, (iii) predict the

future  status  of  contributions  based on  the CI  in  order  to  gain  some insight

regarding which direction the OSM project is heading in the future. The greater

urban area of Stuttgart, Germany, which contains both urban and rural areas,
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was selected as a case-study. In order to develop a CI, in addition to number of

nodes per cell, other variables such as average “osmversion”, average number of

users  and  number  of  attributes  within  each  cell  were  considered.  The

combination of these four variables as well as applying G*-statistics has allowed

us to define four different categories of CI. These four categories are named as

follows: a) dead cells in which no nodes exist; b) barely contributed cells in which

the number of nodes is relatively low (2-10 nodes) and the contributions have

been edited a few times and shared by a few users with minimum attributes; c)

fairly contributed cells are those which contain up to 100 nodes contributed by a

number of users and edited a number of times; while d) highly contributed cells

are those which contain the most number of nodes (above 100 nodes) and are

edited frequently amongst a high number of users.

The projection of CI in a spatio-temporal framework allows us to study the past

contribution trends and also to simulate the future OSM contribution patterns of

the CI through a CA-Markov model. The results reveal that the rate at which OSM

is  receiving  contributions  from  users  has  been  constantly  increasing  and  is

continuing to grow. Furthermore, the number of users and the number of given

attributes have also been growing. This includes an increase in the number of

contributions. The CI maps for historic timestamps also confirm our claim that

these cells are being more actively contributed to. The simulated maps of 2016

and  2020  in  addition  to  the  qualitative  measures  of  the  CI  indicate  that  a

considerable  amount  of  cells  (up  to  90%)  will  turn  to  fairly-  and  highly-

contributed  by  these  times.  This  could  provide  us  with  better  data  quality

measures by minimizing the “long tail” effect. In other words contributions will

be edited by a larger number of OSM users and shall subsequently benefit from

the strength of the collaborative mapping efforts of the OSM community. 
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Currently there is a lack of empirical studies which investigate the characteristics

of future contributions to OSM. In this regard the findings of our study certainly

enhance the literature on OSM in a number of ways. Firstly,  as shown in the

results  section,  increasing  numbers  of  people  have  been drawn  gradually  to

OSM. Within the first three years of the launch of OSM very few contributions

were provided. However since then an exponential  rate of contributions have

been  received.  Secondly,  a  spatial  and  temporal  dependency  between  the

contributions’  characteristics  (e.g.,  object  type,  quantity,  number  of  involved

users,  version  number)  and  physical  characteristics  exist.  This  has  been

demonstrated by considering the CORINE land cover map. In general, artificial

surfaces are mapped earlier and in greater frequency than agricultural areas and

forest/semi-natural areas. There are a number of reasons for this including: (a)

the objects in such land-types are not always evenly distributed across regions;

(b) less people are interactively involved with these feature types; (c) these land

types change very slowly over a short period of time; and (d) many contributors

might not know very much about these objects as they are not public places and

often  only  the  routes  through them are  mapped by  users.  The  findings  and

results  of  the  2016  and  2020  simulation  maps  reveal  that  more  users  will

contribute by creating/editing more objects containing an increasing number of

attributes. It has been shown that these objects will then be revised by more

users resulting in very few cells remaining unmapped or barely contributed. A

valuable research finding from this work for OSM communities and OSM end-

users is that in the next few years there will be many more contributions to OSM.

Many more users will  become involved and their contributions will have more

attributes which will be revised and edited by a greater number of users. 
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Although our  empirical  findings are  extracted from a specific case study this

research has demonstrated that the characteristics of contributions are related

to  socio-economic  and physical  factors.  It  is  of  great  research importance to

investigate their relationship to how OSM is disseminated.  Other issues including

how  bulk  import  of  official  data  integrate  with  OSM  data  will  allow  for  the

development of a more extensive contribution index as part of our future work. It

must be noted that the individuals, as mappers, have substantial influence over

most  OSM contributions.  As  OSM and similar  projects  are  growing and being

disseminated remarkably quickly further studies on understanding the behavior

of these individuals in collaborative projects are required. These studies will need

to  investigate  technological  developments  which  make  these  projects  more

attractive and user-friendly. Therefore, as individuals are the main actors in such

phenomenon,  individuals-based  modeling  techniques  such  as  agent-based

modeling  might  be  an  alternative  technique  to  simulate  user  contributions.

Furthermore,  considering  contributions  based  on  which  object  they  represent

e.g., buildings, roads, etc. may be beneficial to study the spatiotemporal patterns

of OSM contributions in a more effective manner. 
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