
1 Introduction 

Beside the works that focus solely on crowdsourcing and the 

analysis of the corresponding data quality, many researchers 

have highlighted the potential of crowdsourcing to support 

automated information extraction and thus analysed how 

crowdsourcing and machine learning can be combined. This 

nexus will be the focus of the following. 

One of the first large scale crowdsourcing approaches to 

support image classification tasks was the online game 

Peekaboom (von Ahn, Liu and Blum, 2006). Through the 

online game users helped to annotate information about the 

type of object that is present in an image, where each object is 

located, and how much of the image is necessary to recognize 

it. The data derived function as training samples for a computer 

vision algorithm.  

In the field of earth observation Gueguen et al. (2017) present 

a system which was developed at Digital Globe for village 

boundary detection at 50-meter resolution. The system uses 

machine learning for identifying potential villages from very 

high-resolution satellite imagery and validates the generated 

polygons using a crowdsourcing classification. Chen and Zipf 

(2017) use data generated by MapSwipe volunteers to classify 

chunks of satellite imagery. Their study demonstrates that 

volunteered geographic information can be successfully 

incorporated for building detection for humanitarian mapping 

in rural African areas. OpenStreetMap (OSM) data has 

attracted the interest of several researchers as well, since the 

database contains a myriad of training samples for image 

interpretation and computer vision algorithms. Keller et al. 

(2016) generated a training sample from OSM to detect 

crosswalks on satellite imagery. Hagenauer and Helbich (2012) 

use a machine learning approach to model unmapped 

residential areas in OSM. Their approach uses OSM data for 

training purposes. The Terrapattern team (Levin et al., 2016) 

provides a visual search tool for satellite imagery. Their 

approach utilizes a deep convolutional neural network using 

areas where satellite images have been labelled in OSM. 

However, only few work has been done towards utilizing 

machine learning techniques to enhance the crowdsourced 

datasets intrinsically. It is still not fully understood how 

automated classifiers could help to aggregate crowdsourced 

classifications in respect to user agreement, user characteristics 

and spatial characteristics. Since aggregation of single 

classifications has a great influence on overall data quality, 

more elaborated techniques incorporating the intrinsic context 

factors are much-needed. This work will therefore focus on the 

following research question: 

 

RQ: To what degree can automated classifiers considering 

intrinsic context factors (user agreement, user characteristics 

and spatial characteristics) enhance data quality of aggregated 

crowdsourced classification? 

 

The research question identified will be addressed in a case 

study including four MapSwipe projects in Laos. The following 

sections of this work will further describe the methods applied 

and datasets used.  
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Abstract 

Among semi-automated methods and pre-processed data products, crowdsourcing is another tool which can help to collect information on 

human settlements and complement existing data, yet it’s accuracy is debated. Whereas the potential of crowdsourced datasets for training of 

machine learning algorithms has been explored recently, only few work has been done towards utilizing machine learning techniques to 

enhance the crowdsourcing workflow itself. In this research we investigated a novel approach that incorporates logistic regression to aggregate 

crowdsourced classification on human settlements from the MapSwipe app. For a case study containing 941,589 mapping tasks, we analysed 

to what degree such an approach can improve data quality utilizing intrinsic context factors such as user agreement, user characteristics and 

spatial characteristics of the results. The results have shown that a logistic regression based aggregation of crowdsourced classifications 

produced significantly higher quality data than common approaches that use soft majority agreement. The findings pronounce that the 

integration of machine learning techniques into existing crowdsourcing workflows can become a key point for the future development of 

crowdsourcing applications. However, regarding the limited geographic scope of this research, further validation of the automated 

classification and its transferability need to be addressed in future investigations. 
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2 Datasets 

2.1 MapSwipe Dataset 

This work focuses on crowdsourced data produced by 

volunteers using the MapSwipe app. A detailed perspective is 

chosen for a study region containing four projects in south west 

Laos with the following project IDs: 6807, 6794, 6930, 7064 

(Figure 1). These projects are part of the Malaria Elimination 

Campaign organized by the Clinton Health Access Initiative 

and supported by the Humanitarian OpenStreetMap Team 

(HOT). 

The MapSwipe crowdsourcing workflow is designed 

following an approach already presented by Albuquerque et al. 

(2016). Four concepts are important in the following: projects, 

groups, tasks and results. A more elaborated description of 

these concepts can be found in Herfort (2017). 

Results contain information on the user classifications. 

However, only “Yes”, “Maybe” and “Bad Imagery” 

classifications are stored as results. Whenever users indicate 

“No building” by just swiping to the next set of tasks, no data 

entry is created. Therefore, “No Building” classifications can 

only be modelled retrospectively. Initially, for user A all groups 

are selected, where this user submitted a result. For these 

groups all intersecting tasks are chosen in the second step. 

Finally, these tasks and the corresponding results are joined. 

All tasks where no classification result is obtained, will be 

marked as “No Building”. This way of processing the data 

bears one limitation. Groups where user A classified all tasks 

as “No Building” cannot be considered, since they are not 

stored as results in the MapSwipe database. In total, 3,275,380 

results by 1,534 users corresponding to 941,589 tasks are 

considered in this study. 

 

Figure 1: Case Study MapSwipe Projects in Laos 

 

 

2.2 OpenStreetMap Reference Dataset 

The OSM reference dataset covers the extent of the selected 

MapSwipe projects and contains 324,152 individual buildings. 

The data was obtained from bbbike’s planet.osm extracts in 

ESRI shapefile format. 

To a great extent the OSM data was captured by HOT 

volunteers. The mapping efforts have been organised using the 

HOT Tasking Manager tool (Humanitarian OpenStreetMap 

Team, 2017). The area of interest corresponds to the following 

Tasking Manager project IDs: 3358, 3359, 3362, 3364, 3383, 

3391, 3392, 3393, 3399 and 3400. All projects have been 

completely mapped and validated in the Tasking Manager. 

Thus, a first quality assurance was already applied. Since the 

Tasking Manager projects rely on aggregated and processed 

MapSwipe data, only built up areas that have been identified by 

the MapSwipe volunteers are considered for the detailed 

mapping in OSM. Due to this fact, this dataset may be more 

suited to assess the precision of the MapSwipe dataset towards 

detecting buildings rather than to assess its completeness and 

sensitivity. The OSM building data is intersected with the 

geometry of the MapSwipe tasks. For each MapSwipe task it is 

analysed whether the task contains at least one building. 

 

 

3 Methods 

A logistic regression model was utilized to assess how well 

tasks containing buildings (binary response) can be predicted. 

The model incorporates agreement characteristics (Scott’s Pi, 

proportion of building classifications (building index), 

proportion of no building classifications (no building index)) as 

predictors. Furthermore, spatial characteristics (kernel density 

of no building classifications, kernel density of building 

classifications and kernel density of bad image classifications) 

were considered. For each task several different users with 

varying user characteristics contributed data. Therefore, the 

individual user characteristics were aggregated into single 

variables per task. In the study, user characteristics of each task 

were defined as the average user characteristics of all individual 

contributions of the same class (“no building”, “building”, “bad 

image”).  For example, the average overall accuracy, no 

building precision and no building sensitivity were computed 

for each task using all no building classifications. Likewise, 

user characteristics were generated from building and bad 

image classifications. In the logistic regression model “no 

building average overall accuracy” (average of the overall 

accuracy for all users that classified as “no building” for this 

task), “building average building precision” (average of the 

building precision for all users that classified as “building” for 

this task) and “bad image average bad image precision” 

(average of the bad image precision for all users that classified 

as “bad image” for this task) were utilized. Missing values were 

imputed using the overall mean of each variable. A more 

elaborated description of these intrinsic indicators can be found 

in Herfort (2017). In the pre-processing variables were tested 

for independence and multicollinearity using a correlation 

matrix and by inspecting variance inflation factors (VIFs) 

(O’Brien, 2007). 
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In the second phase the tasks of the MapSwipe dataset were 

split up into training and testing samples. The fraction of the 

training sample was set to 0.3 which corresponds to circa 

280,000 training samples. The samples were chosen randomly. 

Accordingly, about 660,000 tasks (70 %) of the dataset were 

used for testing. 

The performance of the logit-based aggregation was 

investigated in respect to overall accuracy, building precision, 

building sensitivity and building f1 score, which is the 

harmonic mean of building sensitivity and building precision. 

The data obtained from OSM functioned as a reference. We 

compared the results to a naïve aggregation method based on 

soft majority agreement. This method generates a classification 

from the several results for each task that have been submitted 

by different users by choosing the class that is present most 

often (e.g. when three out of five users classify as “no 

building”, “no building” will be the aggregated class). If there 

are two classes with the same frequency, we classify as 

“building”. 

 

 

4 Results 

In the first step, a logistic regression model was applied to 

test the impact of individual parameters. Initially, 15 different 

parameters describing agreement, user characteristics and 

spatial characteristics have been considered for the logistic 

regression analysis. After building the model and checking 

variables for multicollinearity and investigating variance 

inflation factors (VIFs) seven variables have been selected for 

the analysis. The correlation matrix plot reveals that for the 

chosen predictors no critical correlation between variables was 

observed (Figure 2). This was confirmed by the small VIFs 

close to 1.0 (Figure 3). 

 

Figure 2: Correlation Matrix for Logistic Regression Input 

Variables 

 
 

Figure 3: Variance Inflation Factors for Logistic Regression 

Input Variables 

 
The results for the whole reference dataset containing 

941,589 observations are presented in Table 1. The logistic 

regression model performed was statistically significant with 

χ2(6) = 940,640 and p < 0.005. The model explained 71.5 % of 

the variability in the crowdsourcing performance (Nagelkerke 

pseudo R2). Increases in the building index and average 

building precision for building classifications were associated 

with a strong and significant increased probability of presence 

of buildings within the MapSwipe task. Less pronounced but 

still significant was the effect of building classification density. 

On the contrary, increases in the average no building average 

accuracy, average bad image precision, no building 

classification density and bad image classification density were 

associated with a significantly decreased likelihood of presence 

of buildings within the MapSwipe task. 

 

Table 1: Results of the Logistic Regression Analysis 
 Coeff. StdEr Sign. Odds 

Building Index 78.735 0.027 <0.005 2626.8337 

Average Accuracy 

(No Building 

Results) 

-

84.139 0.076 <0.005 0.0002 

Average Building 

Precision 

(Building Results) 62.469 0.051 <0.005 516.406 

Average Bad 

Image Precision 

(Bad Image 

Results) 

-

14.723 0.059 <0.005 0.2294 

No Building Class 

Density 

-

0.0148 0.001 <0.005 0.9853 

Building Class 

Density 0.0919 0.001 <0.005 1.0962 

Bad Image Class 

Density 

-

0.2360 0.005 <0.005 0.7897 

 

Given the unbalanced distribution of building tasks in the 

dataset, it was no surprise that the logit-based aggregation 

method classified most tasks as “no building” (see Table 2). 

About 90 % of all tasks were assigned to this category. The 

same was observed for the soft majority aggregation (Table 3). 

The high proportion of correct no building classifications on 

the overall number of tasks was the main reason for the very 

high accuracy values obtained by both classifiers. 
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Table 2: Confusion Matrix for Logit Classifier 
  Logit Classifier 

  No Bui Bui 

Ref 
No Bui 588,483 1,514 

Bui 4,662 64,454 

 

 

Table 3: Confusion Matrix for Soft Majority Aggregation 
  Soft Majority Aggregation 

  No Bui Bui 

Ref 
No Bui 584,735 5,262 

Bui 14,943 54,173 

 

Using soft majority aggregation an accuracy of 96.7 % was 

reached, for the logit-based aggregation method an even higher 

value greater than 99 % was observed (Table 4). When looking 

at the building classifications the soft majority aggregation 

showed a considerable higher number of false positive 

classifications in comparison to the logit classifier. This was 

also reflected in the building precision scores (soft majority: 

91.1 %, logit: 97.7 %). 

The results for building precision and building sensitivity 

showed that logit-based aggregation outperforms soft majority 

aggregation in both directions and generated data with a better 

quality. This was expressed by the high value for f1 score. For 

soft majority aggregation, 84.3 % were obtained, whereas the 

logit derived a value of 95.4 %. 

 

Table 4: Performance of Logit Classifier and Soft Majority 

Aggregation 
 Soft Majority 

Agreement 

Logit Classifier 

Overall Accuracy 0.9693 0.9906 

Building Sensitivity 0.7838 0.9325 

Building Precision 0.9115 0.9770 

Building F1 Score 0.8428 0.9543 

 

 

5 Discussion and Conclusion 

Machine learning based aggregation methods show potential 

to generate a high-quality settlement layer from crowdsourced 

MapSwipe data. The logistic regression model proved that the 

intrinsic characteristics of the dataset could explain the 

probability of correct building classifications. Nevertheless, the 

validity of the results of the logistic regression model need to 

be further evaluated towards a bias introduced by the 

imputation of missing values. Several authors (e.g. Donders et 

al. (2006), Greenland and Finkle (1995)) point out that simple 

techniques for handling missing data such as overall mean 

imputation used in this study can produce biased results. Future 

research should therefore consider more sophisticated 

replacement techniques for missing values such as multiple 

imputation. 

Characteristics of the satellite imagery were not considered 

in this study. However, Chen and Zipf (2017) show recent 

advances of computer vision approaches for building detection 

from satellite imagery using neural networks. The potential of 

image analysis based on deconvolutional neural networks for 

human settlement mapping is also explored by Zhang et al. 

(2016). Including the characteristics of the satellite imagery 

could open further potential to improve the performance of the 

machine learning models, crowdsourcing workflow and 

resulting data quality. 

The lack of reference data of sufficient quality limited the 

findings of this study. Since the reference dataset used in this 

study was derived from OSM, the data quality might vary given 

the large size of the examined area. The quality of OSM data 

has been investigated by many authors and spatial variations in 

data quality are well described (Ballatore and Zipf, 2015; Fonte 

et al., 2015). 

Although the OSM reference dataset was validated through 

the HOT mapping workflow, it cannot be guaranteed that all 

buildings are mapped, especially because MapSwipe data was 

already used to design the mapping projects. This can have 

implications regarding the obtained building sensitivity of both 

classifiers and needs to be evaluated further. 

The logit-based aggregation outperformed the naïve 

aggregation method significantly regarding building precision 

and building sensitivity. However, the results describe the 

performance only for four selected MapSwipe projects. For the 

projects in Laos satellite imagery of very good quality was 

available, hence the quality of MapSwipe data in other parts of 

the world might be reduced. This will be also influenced by the 

experience of users involved. Given the global distribution of 

MapSwipe projects further validation of the automated 

classification and its transferability is needed. 

The integration of machine learning methods into the 

aggregation of individual classifications has shown great 

potential to improve data quality. MapSwipe and other 

crowdsourcing applications should therefore build upon these 

initial findings. Thus, an integration of the explored machine 

learning techniques into the crowdsourcing workflow becomes 

a key point for the future development of crowdsourcing 

applications. This is not limited to the logistic regression 

analysis applied here, other methods such as support vector 

machines, regression trees should be tested in future 

investigations. Furthermore, also other crowdsourcing projects 

besides MapSwipe show the potential to incorporate machine 

learning techniques (e.g. for validating land use and land cover 

datasets). 

Intelligent crowdsourcing approaches can dynamically 

derive data quality indicators to improve the task allocation 

process. For instance, for tasks reaching a high credibility no 

further classification should be obtained, whereas uncertain 

tasks should be repeated or validation should be prioritized. 

This could reduce the amount of required crowdsourced 

classifications while maintaining high quality. The setting 

bears great potential for features where fully automated 

techniques still fail to produce reasonable data quality. Slum 

mapping and slum type classification from satellite imagery 

might offer suitable challenges (Kuffer, Pfeffer and Sliuzas, 

2016). 
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