
A clarification on Turing’s test and its implications for machine intelligence
Phil Maguire (pmaguire@cs.nuim.ie)
Philippe Moser (pmoser@cs.nuim.ie)

Department of Computer Science
National University of Ireland, Maynooth

Rebecca Maguire (rebecca.maguire@ncirl.ie)
School of Business, National College of Ireland

IFSC, Dublin 1, Ireland

Abstract

Turing’s (1950) article on the Turing test is often interpreted as
supporting the behaviouristic view that human intelligence can
be represented in terms of input/output functions, and thus em-
ulated by a machine. We show that the properties of functions
are not decidable in practice by the behaviour they exhibit, a
result, we argue, of which Turing was likely aware. Given that
the concept of a function is strictly a Platonic ideal, the ques-
tion of whether or not the mind is a program is a pointless one,
because it has no demonstrable implications. Instead, the in-
teresting question is what intelligence means in practice. We
suggest that Turing was introducing the novel idea that intel-
ligence can be reliably evidenced in practice by finite interac-
tions. In other words, although intelligence is not decidable in
practice, it is testable in practice. We explore the connections
between Turing’s idea of testability and subsequent develop-
ments in computational complexity theory.

Keywords: Turing test, functionalism, mathematical objec-
tion, artificial intelligence, Chinese room argument, P versus
NP.

Introduction
The Turing test (Turing, 1950) is often interpreted as sug-
gesting that the mind can be viewed as a program, and that
intelligence can, in effect, be emulated by a machine. For
example, Hodges (2013) states that a “fair characterisation”
of the implicit assumptions in Turing’s paper is the idea that
all physical action is, in effect, computable. He also states
that Turing’s underlying argument was that “the organisation
of the brain must be realisable as a finite discrete-state ma-
chine.” Penrose (1994) presents Turing’s argument as that of
viewing “physical action in general - which would include
the action of a human brain - to be always reducible to some
kind of Turing-machine action.” Such views imply that Tur-
ing would have supported the philosophy of functionalism,
the idea that the mind can be viewed as a function delivering
a particular mapping between input and output.

We will show that, in fact, the properties of functions can-
not be decided in practice by the behaviour they exhibit.
Hence, the observation that all physical actions are com-
putable is a useless one. Physical action is finite, meaning
that any such action will always have the potential of hav-
ing been produced by trivial mechanical means. This arti-
cle could, in principle, have been written by chance by an
algorithm selecting random characters. It’s possible. Al-
ternatively, you could chat for an hour with somebody over
video link and only later find out that what you thought was

a live link was nothing more than a historical recording be-
ing played back. The scenario is unlikely, yet it remains a
possible explanation for any observation of finite behaviour.
According to Aaronson (2006): “In principle, we can always
simulate a person by building a huge lookup table, which en-
codes the person’s responses to every question that could ever
be asked...So there’s always some computational simulation
of a human being”. The observation that “physical action
is always reducible to some kind of Turing-machine action”
(Hodges, 2013) is therefore a misleadingly simplistic charac-
terisation of Turing’s (1950) work.

We suggest that Turing’s idea was not about machines em-
ulating intelligence, but about the possibility of intelligence
being evidenced in practice. His point was that, although in-
telligence is a Platonic ideal (i.e. cannot be decided in prac-
tice), it is somehow manifested in finite objects, meaning that
finite tests can detect it with high confidence. Hodges (2009)
succinctly expresses this alternative idea: “operations which
are in fact the workings of predictable Turing machines could
nevertheless appear to the human observer as having the char-
acteristics of genuine intelligence and creativity”.

The first argument we will make is that, as regards the
mind-program debate, Turing supported the mathematical ob-
jection and held the intuitive view that the mind could not be
a program.

The second argument we will make is that Turing (1950)
was pointing out that the mind-program debate concerns Pla-
tonic ideals and hence is not relevant in practice. At the same
time he was also conjecturing that although intelligence is not
decidable in practice, it is somehow testable in practice.

Turing and the mathematical objection
Lucas (1961) and Penrose (1994) have argued that Gödel’s
first incompleteness theorem shows that the human mind can-
not be a program. Lucas makes the observation that, given
any formal system which claims to emulate the mind, its
Gödel sentence can be produced mechanically by a Turing
machine. People can ’see’ that this sentence is true, but the
system cannot, meaning that there is at least one thing humans
can do that formal systems cannot. Penrose (1994) develops
this argument using Turing’s theorem, arguing that no pro-
gram can fully account for the set of all humanly accessible
methods for ascertaining mathematical truth. These ideas fall
into the category of argument which Turing (1950) charac-

318



terises as “the mathematical objection”:
“There are a number of results of mathematical logic which

can be used to show that there are limitations to the powers of
discrete-state machines...The short answer to this argument
is that although it is established that there are limitations to
the powers of any particular machine, it has only been stated,
without any sort of proof, that no such limitations apply to the
human intellect.”

One requirement for Lucas’s argument to succeed is that
human minds are consistent, the explicit assertion of which
would seem to be ruled out by Gödel’s second incompleteness
theorem. Lucas (1976) responds by suggesting that “we must
assume our own consistency, if thought is to be possible at
all...” From this perspective, consistency is not something to
be established, but rather the starting point for understanding.

Another assumption in Penrose’s (1994) use of Turing’s
theorem is that Church and Turing’s conception of effective
method (i.e. computation) is genuinely universal. This as-
sumption, known as the Church-Turing thesis, does not ap-
pear to be something that can be proved in the traditional
sense. Nevertheless, Church considered his description of
computation as a definition, and even Turing was convinced
of its veracity. According to Turing (1954): “The statement
is...one which one does not attempt to prove. Propaganda is
more appropriate to it than proof, for its status is something
between a theorem and a definition.”

As one of the founders of the discipline of computer sci-
ence, Turing was in a good position to evaluate the mind-
program debate. Although he notes in 1950 that assertions
of the mind’s superiority are “without any sort of proof”, ad-
herence to the mathematical objection is a consistent theme
of his writings. In his 1938 PhD thesis, carried out under the
supervision of Church, Turing makes clear that the mind has
an intuitive power for performing uncomputable steps beyond
the scope of a Turing machine:

“Mathematical reasoning may be regarded rather schemat-
ically as the exercise of a combination of two faculties, which
we may call intuition and ingenuity. The activity of the intu-
ition consists in making spontaneous judgments which are not
the result of conscious trains of reasoning...In consequence
of the impossibility of finding a formal logic which wholly
eliminates the necessity of using intuition, we naturally turn
to non-constructive systems of logic with which not all the
steps in a proof are mechanical, some being intuitive.”

After the Second World War, Turing’s view on the role of
intuition in reasoning appears unchanged. In a 1948 report to
the National Physical Laboratory, Turing again clarifies that
mathematicians’ ability to decide the truth of certain theo-
rems appears to transcend the methods available to any Tur-
ing machine:

“Recently the theorem of Gödel and related results...have
shown that if one tries to use machines for such purposes as
determining the truth or falsity of mathematical theorems and
one is not willing to tolerate an occasional wrong result, then
any given machine will in some cases be unable to give an an-

swer at all. On the other hand the human intelligence seems
to be able to find methods of ever-increasing power for deal-
ing with such problems, ‘transcending’ the methods available
to machines”.

In his last article published before his death in 1954, Tur-
ing again emphasises the role of intuition beyond effective
method. He argues that Gödel’s theorem shows that ‘common
sense’ is needed in interpreting axioms, something a Turing
machine can never demonstrate:

“The results which have been described in this article are
mainly of a negative character, setting certain bounds to what
we can hope to achieve purely by reasoning. These and some
other results of mathematical logic may be regarded as go-
ing some way towards a demonstration, within mathematics
itself, of the inadequacy of ‘reason’ unsupported by common
sense.”

Separating the Platonic and the practical
Turing’s writings reveal him to be a consistent proponent of
the mathematical objection. Nevertheless, it was not some-
thing he ever attempted to prove. Instead, in 1950 he made
a surprising statement: “I do not think too much importance
should be attached to it”.

As we will show, the question of whether the mind is a
program is unrelated to the question of whether physical ma-
chines can demonstrate intelligent behaviour. A problem with
the associated philosophical debate is that it confuses Platonic
ideals, such as ‘function’ and ‘program’, with concepts that
can be manifested in practice through finite means, such as
mechanical machines. For example, Searle (1980) seeks to
address a question concerning Platonic ideals (is the mind
a program?) via a thought experiment involving a practical
mechanism (his Chinese room argument).

To be clear, when Turing (1936) refers to a ‘machine’, he
is referring to a Turing machine, or program, not a physical
machine. His idea of a rule-following automaton represents
what a human following instructions would be able to achieve
using pen and paper. Turing machines cannot be built in prac-
tice. For a start, they require an infinitely long read/write
tape. They also require infinite mechanical precision, with
the head being able to move up and down the tape in perpe-
tuity without its position slipping. All of the ‘computers’ that
we encounter in everyday life are merely physical finite state
machines which are projections of a Platonic ideal. Accord-
ingly, when we use the word ‘machine’ in this article, we are
referring to a finite physical machine which can be realised in
practice. The Platonic concept of a rule-following automaton
we refer to as a ‘Turing machine’ or ‘program’.

In his 1950 article, Turing is referring, not to Turing ma-
chines, but to finite physical machines. He is wondering
about the practical implications of the Platonic theory of com-
putation. For example, can the mathematical objection be
demonstrated to have any observable practical implications?

Below, we provide a modification of the use theorem (see
Oddifreddi, 1992) to show that no finite set of interactions
is sufficient for checking the behaviour of a black-box sys-

319



tem: properties of functions cannot be decided in practice.
No matter how many questions we are allowed to ask, it is
not possible to deduce that the black-box system is capable
of solving a given problem. As stated informally by Block
(1981), “two systems could be exactly alike in their actual
and potential behaviour, and in their behavioural dispositions
and capacities and counterfactual behavioural properties...yet
there could be a difference in the information processing that
mediates their stimuli and responses that determines that one
is not at all intelligent while the other is fully intelligent”.

More formally, let O be an observer, A a set of strings, and
f : Σ∗→ {0,1} be a Boolean function. O can adaptively ask
finitely many queries f (x) =? (O has access to A), after which
O decides whether f computes the set A, i.e. f (x) = A(x)
for every x. The following standard argument shows every
observer is wrong on some function.

Formal argument For any observer O, and any set A, there
is a function f : Σ∗→{0,1} such that O is wrong on f .

Proof. Let O be as above, A be a set. If O rejects all functions
(i.e. thinks all functions do not compute A) then O is wrong
on f , where f (x) = A(x) for every x. So let g be accepted
by O. O queries g on finitely many strings x1,x2, . . . ,xn. On
all the strings x1,x2, . . . ,xn, g is equal to A, otherwise O is
wrong about g. Choose y different from x1,x2, . . . ,xn, and
construct f : Σ∗→{0,1}, by letting g(x) = f (x) for all x 6= y,
and f (y) = 1−A(y). f does not compute A, because f is
different from A on input y. Because f equals g on inputs
x1,x2, . . . ,xn (the ones queried by O), O will make the same
decision about f than about g, i.e. O decides that f can com-
pute A. By construction of f , O is wrong.

In summary, not only is a Turing-style test not capable
of deciding intelligence, a finite sequence of input/output is
not even sufficient for deciding the program that computed
it. Accordingly, we can see that, while Searle’s (1980) Chi-
nese room argument presents a valid observation of the limi-
tations of Turing-style tests for deciding the origins of strings,
it cannot possibly say anything about the mind-program de-
bate. The separation, or lack of, between minds and programs
has no practical implications that could be exposed by a Chi-
nese room scenario.

Because our argument uses a similar diagonal proof to Tur-
ing’s (1936) theorem, it seems likely that he was aware of the
general idea. If the properties of functions cannot be decided
in practice, it is clear that the relevant real-world question is
not about establishing once and for all whether the mind is a
program, but about what intelligence means in practice. This
is the issue that, we believe, Turing (1950) was addressing.

Intelligence in practice
Searle (1980) makes the case that the automaton in the Chi-
nese room, which intuitively appears to have no understand-
ing, would “pass the Turing test”, thus supposedly refuting

the idea that the test can decide if a system is intelligent. We
suggest that this is a straw man argument. Turing never made
any statements about the ‘passing’ of his test, or about its ca-
pacity to reliably decide the emulation of human understand-
ing.

Turing seeks merely to establish the possibility of “satis-
factory performance” at the imitation game over a finite pe-
riod; not perfect performance, nor the idea that satisfactory
performance is a reliable indicator of subsequent perfect per-
formance. He never goes beyond claims for the finite simula-
tion of intelligence: “My contention is that machines can be
constructed which will simulate the behaviour of the human
mind very closely” (Turing, 1951).

One source of misunderstanding is that Searle and Turing
use different meanings for the word ‘thinking’. For Searle, a
machine can be described as thinking when it is capable of
emulating human performance. For Turing, a machine can be
described as thinking when it successfully simulates a finite
set of human performance. While Searle treats ‘thinking’ as
a Platonic ideal, Turing identifies that, in practice, there can
be nothing to thinking beyond acting indistinguishably from
the way a thinker acts.

Dismissing the mathematical objection
Whereas Turing’s 1936 article established the Platonic con-
cept of computation, his 1950 paper investigates the practical
implications of this concept. There are two components to his
conjecture. The first is that the mathematical objection (i.e.
a possible separation between programs and minds) has no
implications in the finite, physical world. The second is that
intelligence does have certain practical implications, which
are somehow testable.

Dealing with the first component, Turing (1948) notes that
the mathematical objection based on Gödel’s theorem rests
on a proviso that the Turing machine is not allowed to make
mistakes. However, “the condition that the machine must
not make mistakes...is not a requirement for intelligence”.
In other words, Turing is pointing out that, although physi-
cal machines cannot emulate intelligence, they can, when en-
gineered with sufficient precision, simulate it to any desired
level. At the limit, mistakes are inevitable, but in practice
those mistakes can be pushed back as far as one wants. Tur-
ing (1947), in his earliest surviving remarks concerning AI,
points out that this would allow machines to play very good
chess:

“This...raises the question ‘Can a machine play chess?’ It
could fairly easily be made to play a rather bad game. It
would be bad because chess requires intelligence. We stated...
that the machine should be treated as entirely without intel-
ligence. There are indications however that it is possible to
make the machine display intelligence at the risk of its mak-
ing occasional serious mistakes. By following up this as-
pect the machine could probably be made to play very good
chess.”

Rather than dismissing the mathematical objection, Turing
(1950) conjectures that it does not result in practical limita-

320



tions: in the physical world there will always be some ma-
chine which is up to the job of simulating intelligence to a re-
quired level. The mathematical objection is a Platonic rather
than practical one:

“There would be no question of triumphing simultaneously
over all machines. In short, then, there might be men cleverer
than any given machine, but then again there might be other
machines cleverer again, and so on.”

At first blush, this withdrawal of the mathematical objec-
tion appears to eliminate the possibility of evidencing intelli-
gence in practice. For instance, if stupid machines can simu-
late any finite set of behaviour, and pass any test, then it can
be argued that behaviour alone is never sufficient for estab-
lishing intelligence. Nothing we can do in the real world, no
behaviour we can perform, can offer conclusive evidence of
non-trivial origin. Could it be that intelligence is useless?

This is exactly the attitude adopted by Professor Jefferson
in his 1949 Lister Oration, whom Turing (1950) cites: “Not
until a machine can write a sonnet or compose a concerto
because of thoughts and emotions felt, and not by the chance
fall of symbols, could we agree that machine equals brain -
that is, not only write it but know that it had written it.”

Here, Jefferson is arguing that finite behaviour alone is
not sufficient for establishing intelligence. Instead, we must
‘know’ what strings mean and ‘feel’ emotions. Because such
properties can never be represented symbolically, there is no
possibility of any system, human or otherwise, evidencing its
intelligence in practice. But this doesn’t seem right. Intu-
itively, our intelligence is something useful. It lets us achieve
things in the real world that less intelligent systems cannot.
The big question is whether there is there any reliable test
that can somehow validate this intuition regarding the practi-
cal utility of intelligence.

What Turing (1950) is pointing out is that, although intelli-
gence can never be emulated in practice, it must somehow be
possible to evidence it in practice with high confidence. For
example, it seems feasible that a finite signal beamed from a
distant solar system could convince us that it harbours intelli-
gent life. Granted, we could never be absolutely 100% sure,
but it seems plausible that there exist signals that could lead
us to be very, very confident.

Indeed, all the communication we have ever had with
other human beings can be summarized as a finite string of
symbols. If intelligence could not be evidenced in practice
through finite interactions, it would preclude humans from
identifying each other as intelligent, reducing us to solipsists.
According to Aaronson (2006), “people regularly do decide
that other people have minds after interacting with them for
just a few minutes...there must be a relatively small integer n
such that by exchanging at most n bits, you can be reasonably
sure that someone has a mind”.

It seems that in order for the concept of intelligence to be
meaningful, there must be some practical means of identify-
ing and engaging with intelligent systems in the real world.
Having realised this, Turing (1950) remarks “I am sure that

Professor Jefferson does not wish to adopt the extreme and
solipsist point of view. Probably he would be quite willing to
accept the imitation game as a test.”

Testing for intelligence
Some have interpreted Turing (1950) as suggesting that infi-
nite testing is required to establish intelligence, spread over
an infinite space of time (e.g. Harnad, 1992). But, again,
this conceptualisation of intelligence as being infinitely dis-
tant holds no value, because it never delivers practical results.
Instead, Turing is saying something far more significant. He
is saying that, although intelligence is not something that can
be decided, it is something that can be reliably tested.

Let us consider the question of “what is a test”? A test is
of finite duration. Applying it to an object yields results that
enable inferences to be drawn about that object. Somehow,
the results hold significance for other aspects of the object,
beyond those which have been directly tested. One could say
that the test succeeds in succinctly ‘characterising’ the object
through a finite set of responses.

For example, students are asked to sit tests to reveal how
much they know about a particular subject. Because of the
short duration, it is not possible to ask them every question
that could possibly be asked. Instead, questions are chosen
cleverly so that responses can be relied on to draw inferences
about students’ ability to answer all the other potential ques-
tions which haven’t been asked.

Of course, a particular student might get lucky on a test.
They might fortuitously have learned off the answers to the
exact questions which came up, but no others. Thus, as we
have already shown, a test can never decide whether a student
understands a subject. What a cleverly crafted test can do is
offer a very high level of confidence that the student would
have answered other questions correctly.

What are the properties of a good test that would lead us to
have such confidence? In short, a good test is one for which
there is no easy strategy for passing it, other than full mastery
of the subject. For a start, there should be no way for the stu-
dent to get a copy of the test in advance, or predict what will
be on it so that they can just learn off the relevant responses.
In addition, the test should be well diversified, bringing to-
gether material from many different areas of the subject. For
instance, the answers should draw on different aspects of un-
derstanding and not betray a simple pattern which allow them
to all be derived using the same technique. Furthermore, to
be as hard to compute as possible, successive answers should
be integrated with each other, rather than addressing totally
separate chunks of knowledge.

The next question is whether testing for a property can con-
tinue to yield dividends in terms of raising confidence closer
to certainty. For example, it seems intuitive that a short two-
hour test can provide a clear picture of a student’s ability in a
subject. But what if we extended the length of the test to three
hours? Can a test be designed such that it continues to build
confidence continually higher? Is it conceivable that there are
some properties, such as intelligence, that would support con-

321



tinuous testing of this nature to any level of confidence? Such
a mechanism could ‘bridge’ the gap between the Platonic and
physical worlds and render the concept of intelligence mean-
ingful in practice. We propose that this is the fundamental
premise underlying Turing’s (1950) conjecture.

Opening the door for machine intelligence
An important implication of Turing’s testability is that it
paves the way for machines to display intelligent behaviour.
Tests are finite. The ability to pass hard tests can therefore
be encoded in finite machines, which are themselves hard to
construct and hard to understand, yet still feasible in practice.

In a BBC radio debate in 1952, Turing connects the idea of
‘thinking’ with this capacity to do things which are reliably
difficult. Even when the mechanics of a machine are exposed,
it can still retain the ability to do ‘interesting things’, which
are not rendered trivial by the overt mechanisation. In other
words, explicitly finite objects can still pass hard tests:

“As soon as one can see the cause and effect working them-
selves out in the brain, one regards it as not being thinking,
but a sort of unimaginative donkey-work. From this point of
view one might be tempted to define thinking as consisting of
‘those mental processes that we don’t understand’. If this is
right then to make a thinking machine is to make one which
does interesting things without our really understanding quite
how it is done.”

When Jefferson confuses this concept of hardness with the
difficulty of identifying the implementation, Turing immedi-
ately corrects him:

“No, that isn’t at all what I mean. We know the wiring
of our machine, but it already happens there in a limited sort
of way. Sometimes a computing machine does do something
rather weird that we hadn’t expected. In principle one could
have predicted it, but in practice it’s usually too much trouble.
Obviously if one were to predict everything a computer was
going to do one might just as well do without it.”

What Turing (1952) is getting across is that finite objects
can have a form whose mechanical implications are in prin-
ciple predictable, but in practice are hard to anticipate. We
know exactly what the program is, we can see its structure,
yet its relationship with potential input is a complex one.
Even when the validity of a machine’s responses can be eas-
ily verified, and we can see it computing the answers, the
reason the machine works can still be hard to fathom, other
than doing the calculations oneself. This property is what, for
Turing, constitutes ‘thinking’.

What this implies is that hard tests may actually be hard to
find. When we put forward what appears to be a challenging
test for AI, such as chess, we cannot know for sure how hard
it is. As soon as a machine succeeds in defeating the test, the
associated limitations become apparent. At that point we go
back to the drawing board to develop a harder test. Yet the
process never ends. In the same way that it is not possible to
decide intelligence, it is not possible to decide the reliability
of a test for intelligence. Tests must themselves be tested.

This explains why Turing (1950) was upbeat on the immi-
nent prospect of artificial intelligence. No matter what elab-
orate tests we conceive of, there will always be feasible ma-
chines that succeed in passing them: “...there might be men
cleverer than any given machine, but then again there might
be other machines cleverer again, and so on.” The surpris-
ing success of IBM’s Deep Blue over chess champion Gary
Kasparov in 1997 can be seen as a vindication of Turing’s
principle of unending testability. According to Turing, no
matter how we shift the goalposts for intelligence tests in the
future, we will never be able to rule out the possibility of
machine success. The intuition that intelligence must some-
where trump machine will remain simply that: an intuition.

Computational complexity theory
In 1956 Gödel wrote a letter to the dying von Neumann,
echoing Turing’s remarks on a potential gap between the
Platonic theory of computation and its practical implica-
tions. In the letter Gödel identified a finite analogue of
the Entscheidungsproblem which Turing (1936) originally
addressed by demonstrating the existence of uncomputable
problems. Gödel realised that, although this uncomputability
must kick in at the Platonic limit, it did not necessarily ap-
ply in practice for deciding the existence of solutions of finite
length. This would present the possibility of using an algo-
rithm to quickly decide if a given mathematical statement had
a proof of feasible length. He explained to von Neumann that
this “would have consequences of the greatest importance”
because “the mental work of a mathematician...could be com-
pletely replaced by a machine”.

These novel ideas that Turing and Gödel struggled to ex-
press have since developed into a field known as compu-
tational complexity theory. This discipline now provides a
framework that can be used to formally define concepts such
as ‘smart questions’ and ‘high confidence’, which are integral
to the Turing test. Smart questions are, for example, those that
involve solving instances of an NP-hard problem (e.g. com-
puting a Hamiltonian path or a subset-sum solution).

In 1950 Turing didn’t have the formal tools needed to ex-
press these ideas, he was relying on his intuition. What is
interesting is that many of the key questions in computational
complexity theory, such as that raised by Gödel in 1956, con-
tinue to lie unresolved. For example, it not yet known if there
are problems whose solutions can be easily verified, yet are
hard to compute. Do smart questions really exist? Can hard
tests be created that engender high confidence from finite re-
sponses? This is known as the P versus NP problem, which
remains the biggest unsolved problem in computer science to-
day. While computational complexity theory has succeeded
in formalising the key components in Turing’s conjecture,
which concern the interaction between the Platonic and prac-
tical domains, it has not yet succeeded in answering the diffi-
cult questions that ensue. Aaronson (2006) eloquently sums
up the impasse: “All ye who would claim the intractability of
finite problems: that way lieth the P versus NP beast, from

322



whose 2n jaws no mortal hath yet escaped”.

Conclusion
Interpretations of Turing’s (1950) work have focused strongly
on the idea of running the test. The article has often been
interpreted either as being supportive of functionalism (e.g.
Searle, 1980), or of advocating a trite, deeply flawed test for
evaluating the intelligence of artificial systems through the
process of imitation (e.g. French, 2012).

In this article we have argued that Turing (1950) was nei-
ther claiming that the mind is a program, nor providing a
heuristic for evaluating the progress of AI resting on human
psychology. Instead, Turing was making the observation that
although the mathematical objection collapses in practice, it
is somehow possible for intelligence to be evidenced with
high confidence through finite interactions.

Philosophers such as Searle (1980) have confused Turing’s
definition of ‘thinking’ with the emulation of intelligence. We
have shown that the question of whether the mind is a pro-
gram is not one that has implications in the real world. Any
finite set of behaviour could have been produced by a triv-
ial process that simply outputs the behaviour from a database
or produces it randomly. Turing’s key idea is that, although
intelligence is not decidable in practice, an observer’s confi-
dence in testing for intelligence can increase quickly with the
length of the interaction. In other words, our intelligence pro-
vides us with a means of quickly posing and responding to
finite tests which are reliably hard to pass. At the core of this
conjecture lies the idea that intelligence gives us the ability
to quickly and easily verify, with high confidence, properties
that appear hard to compute.

Because it was not possible for Turing in 1950 to present
his conjecture mathematically, he instead chose to publish
these ideas as a philosophical article in the journal Mind. An
unfortunate outcome of this choice is that Turing’s (1950) ar-
ticle seems whimsical. Reading it quickly, one might almost
imagine that Turing was playing the gender-based imitation
game at a party and stumbled by chance upon the idea of us-
ing it as a test for intelligence. Hayes and Ford (1995) go so
far as to suggest Turing was proposing “a test of making a
mechanical transvestite” and state that “Turing’s vision from
1950 is now actively harmful to our field”.

Turing’s trite presentation betrays the sophisticated theory
behind the concept. From his extended writings we can see
that he was concerned with, not the idea of a psychological
standard for AI, but the more general concept of how intel-
ligence can be evidenced in practice. In particular, Turing
(1950) was not claiming that every test that humans come up
with is reliable. Inevitably, if a Turing-style test is run us-
ing laypeople, the programs that get furthest will be those
that exploit the weaknesses of human psychology. Turing’s
conjecture instead concerns the actual concept of testability -
the idea that if a group of world-leading experts got together
and laboured for long enough, they would be able to distil
stronger and stronger tests for intelligence, though without

ever being able to decide the reliability of a test. The assump-
tion that Turing’s (1950) concept can be addressed by a lo-
calised testing event involving untrained and unsophisticated
judges is thus a serious misinterpretation of the basic idea.

In conclusion, we have proposed that the Turing test does
not aim to decide a yes/no answer to the question of whether
or not a system is intelligent. It does not address, and was
never intended to address, the question of whether the mind is
a program. The Turing test is the observation that finite inter-
actions can result in very high confidence in a system’s ability
to exhibit intelligent behaviour. Hence, intelligent ‘thinking’
machinery is feasible in practice.

References
Aaronson, S. (2006). PHYS771 lecture 10.5: Penrose.
Block, N. (1981). Psychologism and behaviorism. The Philo-

sophical Review, 5–43.
French, R. M. (2012). Moving beyond the Turing test. Com-

munications of the ACM, 55(12), 74–77.
Harnad, S. (1992). The Turing test is not a trick: Turing

indistinguishability is a scientific criterion. ACM SIGART
Bulletin, 3(4), 9–10.

Hayes, P., & Ford, K. (1995). Turing test considered harmful.
In Ijcai (1) (pp. 972–977).

Hodges, A. (2009). Alan Turing and the Turing test.
Springer.

Hodges, A. (2013). Alan Turing. In E. N. Zalta (Ed.), The
stanford encyclopedia of philosophy (Winter 2013 ed.).

Lucas, J. R. (1961). Minds, machines and Gödel. Philosophy,
36(137), 112–127.

Lucas, J. R. (1976). This Gödel is killing me: A rejoinder.
Philosophia, 6(1), 145–148.

Odifreddi, P. (1992). Classical recursion theory: The theory
of functions and sets of natural numbers. Elsevier.

Penrose, R. (1994). Shadows of the mind (Vol. 52). Oxford
University Press Oxford.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral
and brain sciences, 3(03), 417–424.

Turing, A. M. (1936). On computable numbers, with an ap-
plication to the Entscheidungsproblem. J. of Math, 58(345-
363), 5.

Turing, A. M. (1947). Lecture on the ACE.
Turing, A. M. (1948). Intelligent machinery.
Turing, A. M. (1950). Computing machinery and intelli-

gence. Mind, 433–460.
Turing, A. M. (1951). Intelligent machinery, a heretical the-

ory.
Turing, A. M. (1954). Solvable and unsolvable problems.
Turing, A. M., Braithwaite, R., Jefferson, G., & Newman,

M. (1952). Can automatic calculating machines be said to
think?

Turing, A. M., & Copeland, B. J. (2004). The essential Tur-
ing: seminal writings in computing, logic, philosophy, ar-
tificial intelligence, and artificial life, plus the secrets of
Enigma. Clarendon Press Oxford.

323


