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Abstract—In this article we introduce a new strategy for
optimal diversification which combines elements of Diversified
Risk Parity [1], [2] and Diversification Ratio [3], with emphasis on
positive risk premiums. The Uncorrelated Positive Bets strategy
involves the identification of reliable, independent sources of ran-
domness and the quantification of their positive risk premium. We
use principal component analysis to identify the most significant
sources of randomness contributing to the market and then apply
the Randomness Deficiency Coefficient metric [4] and principal
portfolio positivity to identify a set of reliable uncorrelated
positive bets. Portfolios are then optimized by maximizing their
diversified positive risk premium. We contrast the performance
of a range of diversification strategies for a portfolio held for
a two-year out-of-sample period with a 30 stock constraint. In
particular, we introduce the notion of diversification inefficiency
to explain why diversification strategies might outperform the
market.

“But divide your investments among many places, for you
do not know what risks might lie ahead” – Ecclesiastes 11:2

I. INTRODUCTION

Perhaps the only predictable thing about financial markets
is that, over the long term, we expect things to get better.
The population of the earth will steadily increase beyond
2050, developing nations will become industrialised and new
technologies will unlock previously inaccessible resources
and enhance efficiency. These future scenarios will provide
new opportunities for the creation of wealth, leading to the
expectation that, over the long term, the value of global stock
markets will rise. Investors who hold stocks for long enough
can expect to be rewarded. A downside of investing in the
stock market is that unpredictable events will cause the value
of the investment to fluctuate over the short and medium term.
Investors’ aversion to risk explains the difference between the
risk-free returns that can be earned by holding safe assets such
as government treasury bills and the larger gains anticipated
for investors holding equities.

According to the Capital Asset Pricing Model (CAPM;
see [5]), a competitive investment environment only awards a
risk premium for the holding of risk that cannot be diluted
in any way by holding other securities. This concept of
‘undiversifiable risk’ is commonly associated with the market
index, the assumption being that it is not possible to create a

portfolio which is more diversified than one which includes
every company.

However, it may be the case that the market index does
not represent the most diversified portfolio. If it were possible
to create a more diversified portfolio, of which relatively few
investors were aware, then this would set up the opportunity
of holding an investment with a higher risk-to-reward ratio
than that of the market. This scenario would present a form
of market inefficiency, with risk premiums transferred from
naive diversifiers to sophisticated diversifiers. In this article we
investigate the efficacy of various strategies for constructing
portfolios which are more diversified than the market.

II. DIVERSIFICATION STRATEGIES

Imagine throwing a single dice. In this case you are equally
likely to get any number between 1 and 6. However, if you
roll 100 dice and take the average, this is likely to be close to
3.5, with an extreme value being vanishingly improbable. The
more dice you roll, the more likely it is that the average will
be right in the middle.

Now imagine you have a very slightly biased dice, which
favours the higher numbers. What are your odds of beating
the average expected roll of 3.5? If you roll only one dice, the
odds are not far from 50/50. However, if you roll 100 biased
dice you can be nearly certain of beating the average each
time.

What diversification strategies seek to do is identify multi-
ple uncorrelated sources of risk with a positive risk premium.
The more of these that can be combined simultaneously, the
more reliably the portfolio will outperform the risk-free rate. If
the market is indeed diversification-efficient, then there should
be only a single source of undiversifiable risk, with no investor
being able to diversify better than any other.

Ever since its introduction in the 1960s the CAPM has
come under scrutiny, with numerous diversified alternatives
being offered to the market capitalization weighted index
[6]. According to the theory, the tangency portfolio is the
only efficient one and should produce the greatest returns
relative to risk [7]. However, many empirical studies have
shown that investing in a minimum variance portfolio yields
better out-of-sample results than does an investment in the
tangency portfolio, thus supporting the idea that the market is



diversification inefficient (see [8], [9]). For example, over the
1972 to 1989 period, the minimum variance portfolio delivered
equal or greater returns than a broad market cap-weighted
index of U.S. stocks, while achieving lower volatility [6].
Lohre, Neugebauer and Zimmer [1] identify the existence of a
large literature demonstrating minimum-variance strategies to
be far more efficient than capitalization-weighted benchmarks.
These surprising findings have been attributed to the high
estimation risk associated with expected returns [7].

Given perfect foresight, Markowitz’s mean-variance opti-
mization approach provides the rationale of choice for gener-
ating efficient portfolios with an optimal risk to return trade-
off. However, because of the estimation risk that confounds
expected returns, these supposedly optimal weights are rarely
put into practice [10]. DeMiguel, Garlappi and Uppal [11] in-
vestigated the out-of-sample performance of the mean-variance
model relative to the naive 1/N portfolio. Of the 14 models
they evaluated across seven empirical datasets, none was
consistently better than the 1/N rule in terms of Sharpe ratio,
certainty-equivalent return, or turnover. These results indicate
that, out-of-sample, the gain from mean-variance optimization
is more than offset by estimation error. In fact, DeMiguel et al.
estimate that, in order for the modern portfolio theory approach
and its extensions to outperform the 1/N benchmark, 500 years
of data would be required to optimize a portfolio containing
50 assets [11].

One way to circumvent the problem is simply to avoid
estimating returns and instead use risk-based allocation tech-
niques. In this article we explore and contrast a range of
such techniques for evaluating the diversification of a port-
folio, including Diversification Ratio (DR), Diversified Risk
Parity (DRP), Uncorrelated Positive Bets (UPB) and Minimum
Variance (MV).

III. DIVERSIFICATION RATIO

Choueifaty and Coignard [3] originally proposed a measure
of portfolio diversification called Diversification Ratio (DR),
defined as the ratio of a portfolio’s weighted average volatility
to its overall volatility. The DR of a portfolio w is given by

DR(w) =
〈w|σ〉
σ(w)

where w = (wi) is the weights of a long-only portfolio,
σ(w) its volatility and

∑
i wiσi its average volatility.

This concept encapsulates the core feature of diversifi-
cation, which is that the volatility of a diversified portfolio
should be less than that of the individual assets’ volatilities.
The DR of a single asset portfolio is 1, while that of a
portfolio containing N independent assets is

√
N . According

to Choueifaty et al. [6], the DR2 of a portfolio is equal to
the number of independent risk factors, or degrees of freedom,
represented in the portfolio. It can be interpreted as the number
of independent risk factors necessary for a portfolio that
allocates equal risk to independent risk factors to achieve the
same DR.

Choueifaty et al. [6] define the Most Diversified Portfolio
(MDP) as the long-only portfolio that maximizes the Diversi-
fication Ratio. The MDP supports several elegant properties.

First, any stock not held by the MDP is more correlated with
the portfolio than any of the stocks that do belong to it. In
addition, all stocks belonging to the MDP share the same
correlation to the portfolio. These properties illustrates that all
assets in the universe are effectively represented in the MDP,
even if the portfolio does not physically hold them [6]. For
example, even though an MDP portfolio might hold only 50
stocks from the S&P 500, the 450 stocks not included are more
correlated to it than the ones it actually holds, supporting the
view that it represents the most undiversifiable portfolio. A
further core property of the MDP is that the more diversified
a given long-only portfolio, the greater its correlation with the
MDP [6].

A. Limitations of the Diversification Ratio

The DR approach aims to deliver a portfolio with an overall
volatility which is much lower than that of its individual
constituents. One problem with this concept is that it fails
to distinguish between different forms of volatility. Not all
diversification is good diversification. For example, if you go
to the roulette wheel in a casino you can bet on red and black
at the same time. Betting on red or black in isolation is a risky
investment, but betting on both at the same time eliminates this
volatility. Despite boasting a great DR, one cannot expect to
profit from this strategy because the reduction in volatility is
due to oppositional bets which sum to zero, as opposed to
uncorrelated bets where the reduction in volatility does not
affect the expected sum.

Not only do we need uncorrelated sources of randomness
to profit from diversification, we also need to ensure that
those risk sources are associated with a long-term positive risk
premium. The type of independent risk sources investors want
to hold are those that are expected, over the long term, to
increase in value (like the biased dice). Even though it might
reduce volatility, there is no point holding a risk source without
an associated positive risk premium, or worse, a negative risk
premium. The DR measure fails to recognize whether risk
sources are associated with positive or negative risk premiums.
For example, going long and going short on the same portfolio
both have the same DR.

Choueifaty et al. [6] get around these two problems by
defining the Most Diversified Portfolio (MDP) in terms of a
long-only portfolio, which minimizes the potential for oppo-
sitional relationships and negative risk premiums. However,
this ad hoc constraint suggests that the MDP is unlikely to
represent the final word in diversification. Without the ability
to short securities it may be impossible to unlock the full range
of uncorrelated risk sources present in the market.

Consider, for instance, a pharmaceutical company involved
in the development of untested new drugs. Whether the re-
search succeeds or fails is completely independent of any other
event in the financial universe. It is also associated with a
positive risk premium (the drug company would not invest in
the research otherwise). However, the risk of drug development
might only account for a fraction of the overall volatility of the
company’s stock. In order to separate out the independent risk
source, we must short the market to cancel out its influence.
MDP’s imposition of long-only constraints reduces the variety
of independent risk sources that can be exploited, suggesting



that the diversification the strategy provides can be further
enhanced.

A further issue of MDP is its susceptibility to over-fitting.
When a portfolio is optimised to maximize DR for a large
pool of securities with limited historical data, it is likely
that spurious data will rise to the surface. There will often
be groups of stocks which, by chance, happen to appear
uncorrelated for the training period, hence dominating the
optimization process. The hidden risk is that, out-of-sample,
these supposedly independent time series will immediately
return to being correlated (see [12] for a demonstration of
such overfitting).

In the following section we review an alternative strategy
for diversification which identifies the largest sources of inde-
pendent risk in the market, and allows them to be isolated by
combining long and short positions.

IV. DIVERSIFIED RISK PARITY

Diversified Risk Parity, which is based on the work of
Meucci [2] and Lohre et al. [1], involves using principal
components analysis (PCA) to identify the largest uncorrelated
risk sources in the investment universe. The most diversified
portfolio is the one which follows the risk parity approach
and spreads risk evenly across these independent sources [10].
Uncorrelated components can be constructed by applying a
PCA to the variance-covariance matrix of the portfolio assets.
Following the spectral decomposition theorem the covariance
matrix can be expressed as the product

Σ = EΛE′

where Λ = diag(λ1, . . . , λN) is a diagonal matrix con-
sisting of Σ’s eigenvalues that are assembled in descending
order, λ1 . . ., and the columns of matrix E represent the
eigenvectors of Σ [1]. These eigenvectors define a set of N
uncorrelated principal portfolios with variance (λ1, . . . , λN ).
A given portfolio can be either expressed in terms of its
original weights w or in terms of weights in the principal
portfolios, w̃ = E′w. Given that the principal portfolios are
uncorrelated, the total portfolio variance in the returns Rw
can be expressed as the weighted average over the principal
portfolios’ variance λi using weights w̃2

i

var(Rw) =

n∑
i=1

w̃2
i λi

The principal portfolio’s contribution can then be nor-
malized in terms of the overall portfolio variance to yield a
diversification distribution which sums to one.

pi =
w̃2
i λi

var(Rw)
, i = 1, . . . , N

Meucci considers a portfolio to be well-diversified when
the pi terms are approximately equal and the diversification
distribution is close to uniform, in other words, when the

portfolio variance is equally distributed across each of the un-
correlated principal portfolios. To quantify the overall diversifi-
cation, Meucci applies a dispersion metric to the diversification
distribution, namely the exponential of its entropy [2].

NEnt = exp

(
−

n∑
i=1

pi ln pi

)

NEnt delivers values between 1, for a portfolio whose
variance is concentrated on a single principal portfolio, and N ,
for a portfolio whose variance is equally distributed across all
principal portfolios. Lohre et al. [1] define the Diversified Risk
Parity (DRP) portfolio as the one whose risk parity weights
maximize NEnt under a set of investment constraints (e.g. long-
only investment, limited size portfolio, weight granularity).

One issue with the use of PCA is that only the first few
components are reliable. In theory, it is possible to identify
as many principal portfolios as assets that enter the PCA
decomposition. For example, a PCA analysis of the S&P 500
yields 500 supposedly uncorrelated risk sources. Table 1 shows
that the first principal portfolio accounts for an overwhelming
majority of the overall variance in the market, with subsequent
portfolios accounting for diminishing residues. This makes it
necessary to determine a cut-off point which separates genuine
components from statistical artefacts. Lohre et al. [10] use the
PCp1 and PCp2 criteria of Bai and Ng [13] for determining
the number of principal portfolios to use. For the data analysed
in Table 1, these criteria identify a cut-off after the sixth
principal portfolio. The values for what we henceforth refer
to as ‘positivity’ reflect the balance between long and short
positions. For example, the first principal portofolio consists
of 100% long positions, while the variance-normalized long
positions of the second principal portfolio exceed the short
positions by only 1.4%.

TABLE I. PRINCIPAL PORTFOLIO CONTRIBUTIONS TO MARKET
VARIANCE FOR S&P 500 JULY 2009 TO JULY 2011

PP Variance % Positivity %
1 99.59 100
2 0.0006 1.4
3 0.12 18.1
4 0.19 28.4
5 0.03 13.1
6 0.003 6.6
7 0.0002 1.3
8 0.00005 0.7
9 0.01 12.1
10 0.00003 0.6

A. Limitations of NEnt

As previously stated, the goal of diversification is not
only to identify uncorrelated risk sources but to identify
uncorrelated risk sources with a positive risk premium. Each
principal portfolio has two degrees of freedom, in that investors
can go short or go long on it. Intuitively, one would rather
go with the direction which has an excess of long market
positions. Lohre et al. [1] recommend flipping the principal
portfolio weights such that they align with the direction of
the historical risk premium. However, as can be seen in the
case of the second principal portfolio in Table 1, long and
short positions can be closely matched, making it impossible



to decide the direction in which to invest. Decisions which are
effectively taken on the basis of a coin toss cannot be expected
to yield a long-term return.

This raises the question of whether it might be best to
avoid investing in principal portfolios which have no clear
directionality. Not all sources of risk are associated with long-
term growth. For example, although the weather may be an
independent source of risk in the market, good weather can
affect stocks positively (ice-cream sales) as well as negatively
(umbrella sales). Because they are easily diversified, such
directionless sources of risk do not attract a risk premium.
A limitation associated with using the Bai and Ng cut-off [13]
is that it fails to take into account the positivity of the principal
portfolios.

Another issue that emerges with DRP is that, when invest-
ment constraints are imposed, portfolios retain a significant
amount of idiosyncratic risk that is not accounted for by the
principal portfolios being used. The effect of this idiosyncratic
risk on the level of diversification is not taken into account by
the NEnt value. For example, an extremely independent stock
might have 1% variance across the first six principal portfolios
and 94% idiosyncratic variance, yielding an NEnt of 6. The
problem here is that the massive exposure to idiosyncratic risk
renders the stock almost totally undiversified.

In a personal communication Lohre states “I have seen
optimizations returning a 100% allocation to some special
stock... Any long-only combination of assets will quickly pick
up Principal Portfolio 1 risk, while single stock portfolios
represent a lot of idiosyncratic risk that can translate into seem-
ingly more bets, at least statistically. As a result, the optimizer
leans towards stocks that exhibit the weirdest return history
relative to the remaining universe. Of course, these portfolios
should not be put into practice. For taming the optimizer,
we introduce upper stock bounds of 2%.” The fact that stock
bounds must be deployed to tame the optimizer suggests that
the NEnt formula does not provide a comprehensive reflection
of diversification where investment constraints are involved. As
will subsequently be discussed, this problem can be resolved
by recognizing the impact that idiosyncratic risk has on the
overall level of diversification.

B. Comparison of DR and DRP

Comparing Choueifaty and Coignard’s DR [3] with Lohre
et al.’s DRP [10], we can see that both generate a maximum
value when risk is spread evenly across a set of uncorrelated
risk sources. Both measures have a minimum value of 1 when
risk is concentrated on a single source. Because the DR value is
wholly determined by the stocks in the portfolio, investment in
a single stock always yields a DR of 1. However, a single stock
can have a DRP well above 1 if the variance of that stock is
well spread across the principal portfolios. Unlike DR, which
considers the number of effective uncorrelated risk sources
present in a given portfolio, DRP identifies its uncorrelated
risk sources by decomposing covariances in the universe of
investments.

In sum, the weaknesses of DR as a measure of diver-
sification are that it does not discriminate between good
and bad diversification, cannot handle short investments, and
bases its value on relationships within rather than outside the

portfolio, leaving it vulnerable to overfitting (see [12]). The
weaknesses of DRP as a measure of diversification are that
it does not account for idiosyncratic risk where investment
constraints are applied, and imposes an arbitrary cut-off for
identifying investable principal portfolios, without regard to
their positivity.

In the following section we develop a strategy for diversi-
fication we henceforth refer to as Uncorrelated Positive Bets,
which combines the desirable features of DR with DRP, while
counteracting the identified weaknesses.

V. UNCORRELATED POSITIVE BETS

The principle idea of Uncorrelated Positive Bets (UPB) is
that we want to identify uncorrelated risk sources that carry
a positive risk premium and then to construct a portfolio
that spreads investment as beneficially as possible over these
risk sources, while minimizing exposure to idiosyncratic risk.
Following the approach of Meucci [2] and Lohre et al. [10]
we perform PCA on the universe of stocks. However, rather
than applying the Bai and Ng cut-off [13] we consider the
positivity of the principal components. The UPB approach is
founded on the assumption that the positivity of a principal
portfolio quantifies its risk premium. Figure 1 shows the
absolute positivity of the 100 first principal portfolios for the
period July 2009 to July 2011.
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Fig. 1. Positivity by principal portfolio for the S&P 500 during the period
July 2009 to July 2011

As can be seen, the first few principal portfolios are the
most positive. This is not a coincidence. The first principal
portfolio, which aims to maximize the variance accounted
for, is expected to contain weights in a single direction (i.e.
all companies move with the market, none move against the
market). For the later principal portfolios, a greater proportion
of the investment is eaten up by the need to isolate the
influences of the earlier principal portfolios.

The positivity value reflects the proportion of the invest-
ment that is actually being invested in the random risk source.



For example, if we want to isolate the part of a pharmaceutical
stock’s volatility that reflects the development of new drugs,
we must short other stocks to counteract its correlation with
the market. A substantial amount of the investment is tied up
by the process of isolating the source, as opposed to being
invested in the source itself. The lower its positivity, the less
likely it is that a given principal portfolio will match the risk-
free rate. As can be seen in Table 1, higher principal portfolios
require nearly 100% of the investment to go into isolating
the risk source, completely drowning out any risk premium.
Because they are market neutral and exhibit little volatility,
these later principal portfolios are certain to fail to match the
risk-free rate (like betting on red and black at the same time).

We want as little of our equity as possible to be tied up
in isolating risk sources. Accordingly, we should choose the
principal portfolios with the highest positivity. As shown in
Figure 1, the first few principal portfolios tend to be the most
positive, raising the question of where the cut-off should be
applied. As more principal portfolios are included, the level of
risk falls but so do returns (see Table 2).

UPB orders principal portfolios by positivity and applies
a cut-off such that the Randomness Deficiency Coefficient
(RDC; see [4]) of the resulting portfolio is maximized. RDC
is a risk to reward measure which, in general, is closely
related to the Sharpe Ratio [14], though expressed from a
sceptical perspective. While Sharpe’s ratio seeks to quantify
the performance of an investment over the risk-free rate, RDC
instead assumes that there is no performance over the risk-
free rate. Instead, its value reflects the number of random
walks with the same volatility profile that would have to
be considered before finding one as good as the one being
evaluated. For example, if a time series has an RDC of 10, this
means that we would expect to have to consider 10 random
time series like this one before finding one with the same level
of growth [4].

Positive RDC values fall in the range of 2 to infinity. A
negative sign is used for investments that can be shorted to
generate profits above the risk-free rate, while an RDC value
of 0 reflects an investment that does not exceed the risk-free
rate whether longed or shorted. Maguire et al. [4] show that
RDC holds several advantages over the Sharpe Ratio, including
the fact that it can be used with small datasets, is time-frame
independent and can be easily adjusted to take into account
the familywise error rate which results from selection bias.

Table 2 shows the RDC of the diversified portfolios cre-
ated by applying different cut-offs to the positivity-ordered
principal portfolios for the period July 2009 to July 2011. For
the purpose of identifying a cut-off, it is assumed that the
risk-free rate is zero, with no cost involved in isolating risk
sources. Initially, the RDC rises as the inclusion of more risk
sources with positive risk premiums enhances diversification
and improves the risk to reward profile. However, as more
principal portfolios are added, the lower positivity leads to
lower returns and more noise, with the result that RDC drops.
For the example shown, UPB selects the top 3 positivity-
ordered principal portfolios (1, 4 and 3) as these yield the
historical portfolio with the highest RDC (i.e. 92.9).

When constraints are imposed on a portfolio (e.g. long-only
investment, limited size portfolio, weight granularity) then it

TABLE II. PRINCIPAL PORTFOLIO CONTRIBUTIONS TO MARKET
VARIANCE FOR S&P 500 JULY 2009 TO JULY 2011

Principal Portfolios used RDC(0) Volatility % Return %
1 43.3 1.96 82.4

1,4 31.6 0.45 19.2
1,4,3 92.9 0.41 21.2

1,4,3,5 20.3 0.36 13.7
1,4,3,5,9 8.0 0.32 8.3

1,4,3,5,9,12 12.6 0.30 9.5
1,4,3,5,9,12,24 9.5 0.26 7.6

1,4,3,5,9,12,24,6 20.1 0.27 10.3
1,4,3,5,9,12,24,6,21 5.5 0.25 5.2

1,4,3,5,9,12,24,6,21,25 4.2 0.24 3.9

is no longer possible to balance investments equally across the
selected principal portfolios. As a result, the portfolio will have
exposure to idiosyncratic risk sources, reducing the overall
level of diversification. If these are not taken into account then
portfolios which have a small yet evenly spread risk across
the principal portfolios, and a large remaining undiversified
idiosyncratic risk, will be incorrectly identified as being well
diversified. Consequently, the spread of the idiosyncratic risk
must also be taken into account.

The UPB strategy acknowledges both principal portfolio
dispersion and the remaining idiosyncratic risk dispersion in
quantifying the overall level of diversification. While the prin-
cipal portfolio risk is treated as having a positive risk premium,
the idiosyncratic risk is expected to match the risk-free rate,
in line with the CAPM (e.g. [5]). In essence, the principal
portfolios are considered as separate sources of undiversifiable
risk while the remaining idiosyncratic risk sources are treated
as diversifiable and thus without associated risk premium.

UPB draws on Choueifaty and Coignard’s DR formula
[3] to quantify the number of equivalent risk factors and the
expected impact on returns. Choueifaty et al. [6] decompose
the DR into a volatility-weighted average correlation ρ(w) and
a volatility-weighted Concentration Ratio CR(w):

DR(w) = [ρ(w) (1− CR(w)) + CR(w)]−
1
2

Because the principal portfolios and idiosyncratic risk
sources are all uncorrelated, we can set ρ(w) to 0. In such a
case the DR is given by the inverse square root of Choueifaty
et al.’s Concentration Ration CR(w) [6], where w = (wi) is
the weights of a long-only portfolio, σ(w) its volatility and∑
i wiσi its average volatility.

DR(w) = CR(w)−
1
2 =

Σi(wiσi)√
Σi(wiσi)2

By slightly adapting this formula, we can define a Positive
Diversification Ratio (PDR) which takes into account the
three flavours of diversification, namely valenced diversifica-
tion (going long or short on the principal portfolios), neutral
diversification (idiosyncratic risk which is expected to match
the risk-free rate) and oppositional diversification (investing
in opposing positions with an expected return of zero). The
original DR formula represents the expected enhancement
in the risk to return profile of a portfolio relative to the
market benchmark. The numerator quantifies the expected
returns, while the denominator quantifies the reduction in risk.



Given that the principal portfolios are associated with both a
positive risk premium (negative if shorted) and a lowering of
volatility, we include these components in both the numerator
and denominator. While separate sources of idiosyncratic risk
serve to lower volatility, they are not expected to deliver returns
above the risk-free rate. Hence, we include exposure to sources
of idiosyncratic risk in the denominator only.

The final ingredient in the PDR formula is to adjust for the
reduction in overall equity premium caused by shorting stocks.
Because the market is expected to increase in value over the
long term, any short positions in the portfolio will eat into
long-term profits. If a portfolio consists of 60% long positions
and 40% short positions, then the proportion attracting an
equity premium is only 20%. The other 80% of the investment
is effectively neutralised through oppositional bets. In the case
that the risk-free rate is zero, then this is not a problem, as
the investment can be leveraged for free to deliver the same
level of returns as a long-only portfolio. However, if the risk-
free rate is higher than zero, this leverage has an associated
cost which consumes profits and must be taken into account.
The cost is based on the difference between the risk-free rate
rf and the expected market return rm. The narrower the gap
between the market return and the risk-free rate, the greater
the burden of financing the leverage, and the greater the level
of diversification needed to justify it.

Accordingly, we define the Positive Diversification Ratio
(PDR) as follows:

PDR(w) =
Σi(pi)√

Σi(pi)
2

+ Σi(si)
2

[
rm − rfP−1

rm − rf

]

where pi is the set of principal portfolio volatilities and si is
the set of residual idiosyncratic equity volatilities that together
make up the volatility of portfolio w, P is the volatility-
normalized positivity of the portfolio w, rm is the market
return and rf is the risk-free rate.

The PDR value reflects the factor by which the portfolio is
expected to outperform the risk to reward profile of the market.
For example, a PDR of 2 implies that the portfolio will deliver
twice as much return per unit of risk as will the market. Similar
to Choueifaty and Coignard’s DR [3], the PDR2 is the number
of degrees of freedom represented in the portfolio, that is, the
effective number of positive independent risk factors necessary
for a portfolio that allocates equal risk to independent risk
factors to achieve the same PDR.

The principal difference between DR [3] and PDR is
that PDR takes into account the impact of different types
of diversification, namely valenced, neutral and oppositional.
As these distinctions are achieved via a principal components
analysis of the universe of stocks, our Uncorrelated Positive
Bets (UPB) approach can be viewed as combining Choueifaty
and Coignard’s DR [3] with Lohre et al.’s DRP [1], while si-
multaneously quantifying the associated positive risk premium.

VI. RESULTS

We investigated the performance of maximized Diversifi-
cation Ratio (DR), maximized Diversified Risk Parity (DRP),

maximized Uncorrelated Positive Bets (UPB) and minimized
Variance (MV) against the market. A 30 stock constraint
was imposed, with full investment. The four strategies were
optimised based on historical S&P 500 data for the training
period July 2009 to July 2011 and tested on the period July
2011 to July 2013. The constraints and test periods were not
cherry-picked to suit any particular strategy, with the earlier
sections of this paper having been written before running the
experiment.

As the NEnt formula does not recognize any difference
between going short or long on the principal portfolios or
the market, we applied the optimization constraints that all
portfolio investment weights must be positive and all exposures
to the principal portfolios must be in the same direction as
the in-sample historical risk premium. Similarly, we applied
the positive weight constraint for optimising MV and DR.
The PDR formula was the only strategy which was allowed
the choice of holding short equity positions. The fact that no
constraints needed to be applied reinforces our claim that the
PDR value provides a comprehensive measure of diversifica-
tion. For the variables rm and rf we applied Damadoran’s
estimations of 6.95 and 1.23 respectively [15]. All formulas
were optimized through numerical computation.

Table 3 shows how the in-sample historical portfolios
selected by each strategy were evaluated by the various di-
versification measures associated with those strategies, includ-
ing Diversification Ratio, Diversified Risk Parity (i.e. NEnt),
Uncorrelated Positive Bets, variance, and market beta (with
the market defined as 1/N). It also provides the percentage
of portfolio variance explained by the first principal portfolio
(i.e. the market), the drawdown, overall returns and RDC.
Figure 2 shows how the in-sample performance of the top-
performing NEnt strategy compares to the market. Because the
S&P 500 index is sampled in July 2011, it includes stocks
which qualified for the index because of a rise over the training
period and excludes those which dropped in value and were
removed from the index. This future bias explains why the
market benchmark achieves an unrealistically high RDC.

TABLE III. CROSS-COMPARISON OF IN-SAMPLE OPTIMIZED
PORTFOLIO PERFORMANCE FOR THE DIVERSIFICATION STRATEGIES

Max Max Max Min 1/N
DR NEnt PDR Variance

DR 3.07 1.52 1.63 2.26 1.50
NEnt 2.95 3.63 2.42 3.45 1.55
PDR 0.55 0.82 1.13 0.76 1.08

Volatility 1.41% 1.84% 1.65% 0.97% 1.64%
β 0.33 0.46 0.44 0.23 1.00

1st PP % 59.9 82.9 88.5 68.1 99.6
Drawdown 15.0% 20.1% 20.0% 22.0% 17.0%

Return 83.6% 107% 70.1% 18.4% 73.7%
RDC 96.9 168 28.7 3.59 38.9

Table 4 shows how the portfolios selected by each strategy
performed over the test period July 2011 to July 2013. Figure
3 compares the out-of-sample portfolio performance of the top
performing NEnt strategy with the market benchmark.
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Fig. 2. In-sample performance of maximized NEnt against the market
benchmark

All of the diversified strategies have higher absolute returns
than the market benchmark. In addition, they all have a higher
RDC, supporting the idea that the market features diversifi-
cation inefficiency. The maximized DR portfolio retains the
highest DR in the test period. The maximized NEnt strategy
also retains a higher NEnt than the market. Though the market
beta has risen towards 1 for all strategies, the exposure to the
first principal portfolio remains significantly below 100%, sug-
gesting that some element of diversification has been sustained
into the test period. However, the PDR values, which we have
argued provide the most accurate quantification of positive
diversification, are all below that of the market. These results
indicate that the type of diversification on display involves
idiosyncratic risk, which should not outperform the risk-free
rate over the longer-term. The fact that the diversified strategies
have outperformed the market may either be down to luck, or it
may be the case that PDR is too conservative in its distinction
between undiversifiable and idiosynractic risk. Further testing
is required to differentiate between these possibilities. Either
way, it should be noted that, as the PDR formula is the only
one that can be optimized without constraints, it is the one that
most closely matches the intuitive concept of diversification.

TABLE IV. CROSS-COMPARISON OF OUT-OF-SAMPLE OPTIMIZED
PORTFOLIO PERFORMANCE FOR THE DIVERSIFICATION STRATEGIES

Max Max Max Min 1/N
DR NEnt PDR Variance

DR 3.04 2.16 2.05 2.64 2.11
NEnt 4.64 2.98 2.41 2.73 1.62
PDR 0.56 0.85 0.95 0.81 1.06

Volatility 1.21% 1.21% 1.26% 1.17% 1.21%
β 0.86 0.93 1.00 0.89 1.00

1st PP % 75.6 86.5 92.9 85.8 99.7
Drawdown 28.1% 20.0% 22.4% 21.5% 23.8%

Return 17.6% 25.1% 17.6% 20.9% 16.0%
RDC 2.86 3.84 2.85 3.30 2.74
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Fig. 3. Out-of-sample performance of maximized NEnt against the market
benchmark

VII. CONCLUSION

If the stock market was truly efficient, with people investing
their money as cleverly as possible, then there would be
no possibility of gaining an edge in diversification. With
everybody competing to diversify as much as possible, no
constructible portfolio of stocks would be more diversified
than any other. Successful diversification allows investors to
enhance their risk to reward ratio at the expense of others. In
an efficient market, this should not occur.

The results from our experiment provide some evidence
that the stock market contains diversification inefficiency. All
of the strategies DR, DRP, UPB and MV outperformed the
market, which supposedly represents the limit of undiversifi-
able risk. How can this be explained?

Much of the focus on earning profit from the stock market
is based on attempts to predict its direction. The efficient
market hypothesis (EMH) asserts that financial markets are
informationally efficient (e.g. [16]). Informational efficiency
entails that current prices reflect all publicly available infor-
mation, and that prices instantly change to reflect new public
information. Accordingly, all stocks, and indeed all portfolios
of stocks, should follow a random walk, where knowledge of
past events has no value for predicting future prices changes.

However, the notion of prediction efficiency advanced by
the EMH is separate to that of diversification efficiency. Even
if a market is prediction-efficient it may not be diversification-
efficient: Sophisticated diversifiers may be drawing down a
larger proportion of the long-term risk premium the market
provides, leaving other naive diversifiers to shoulder risk
without the expected rewards. Even if the market is totally
unpredictable from day to day, the results from our experiment
hint that investors who simply buy the market index may
be transferring their risk premiums to more sophisticated
diversifiers.



It may be the case that diversification inefficiency is
harder to spot than prediction inefficiency. While predictable
patterns in individual stocks can be recognized by individual
traders without complex analysis, the diversification strategies
discussed in this article have only recently come to light.
Another possible explanation for the observation of diversifi-
cation inefficiency in the stock market is that, while prediction
inefficiency can be exploited to generate immediate profits,
diversification inefficiency only delivers over the longer term,
and hence may be overlooked by active traders.

If diversification inefficiency is real, then, by definition,
sophisticated diversifiers are gaining more reward per unit of
risk than naive diversifiers, who are taking on risk but failing
to achieve the expected rewards. An interesting hypothesis is
that the growth of diversification inefficiency may explain why
stock market returns have fallen short of expectations in the
21st century. Maguire et al. [4] found that, when adjusted for
selection bias, none of the stocks in the S&P 500 provided
evidence of outperforming the risk-free rate over the last 10
years.

While U.S. equities delivered an average of 4.3% inflation-
adjusted annual return during the 20th century, the S&P 500
has since failed to match the risk-free rate. If diversification
inefficiency is being exploited by a subset of investors, this
would explain the reduction in risk premium for investors
who are not diversifying optimally (e.g. those who are simply
buying the market index). It seems conceivable that increas-
ing sophistication of diversification practiced by a subset of
investors may be drawing down the bulk of the expected risk
premium from the market, reducing the market index to a form
of idiosyncratic risk.
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