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Abstract
We define a variable-order Markov model, representing a Probabilistic Context Free Grammar, built from the sentence-level, de-
lexicalized parse of source texts generated by a standard lexicalized parser, which we apply to the authorship attribution task. First, we
motivate this model in the context of previous research on syntactic features in the area, outlining some of the general strengths and
limitations of the overall approach. Next we describe the procedure for building syntactic models for each author based on training
cases. We then outline the attribution process – assigning authorship to the model which yields the highest probability for the given
test case. We demonstrate the efficacy for authorship attribution over different Markov orders and compare it against syntactic features
trained by a linear kernel SVM. We find that the model performs somewhat less successfully than the SVM over similar features. In the
conclusion, we outline how we plan to employ the model for syntactic evaluation of literary texts.
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1. Introduction
Syntactic features for authorship attribution have received
considerable attention recently. Parts of speech tags have
been studied extensively, (see Stamatatos (2009) and Luy-
ckx (2010) for comprehensive overviews), Gamon (2004)
trained an SVM over a transition rule feature set, Luyckx
and Daelemans (2008) have used shallow parsing, Kaster
et al. (2005) have examined the role of parse depth in clas-
sification, Feng et al. (2012) have established the efficacy
of employing a number of different deep grammatical fea-
tures in an SVM classifier, and van Cranenburgh (2012)
successfully employs a tree-kernel SVM. Raghavan et al.
(2010) train a Probabilistic Context Free Grammar (PCFG)
for each author, and then parse test cases using these mod-
els, choosing the model which parses with highest proba-
bility.
Purely syntactic approaches have generally been found in-
ferior to traditional lexical approaches in terms of pure at-
tribution accuracy. However, there is some evidence (Feng
et al., 2012; Raghavan et al., 2010) that combining syntac-
tic features with traditional lexical features is superior to
either approach when used alone.
Stamatatos (2009) describes a number of other shortcom-
ings with the syntactic approach, including the language
dependence of the parsing/tagging tools required in order to
prepare the source text, and the introduction of error/noise
by the parsing process. The latter is of particular concern
for applications to social media contexts where loose gram-
mar, slang, abbreviations and acronyms are common (and
hence where character ngrams are perhaps most resilient).
Regarding Raghavan’s particular approach, Feng et al.
(2012) observe that since lexical leaf production rules are
constituents of the PCFG model employed, it is difficult
to assess the relative discriminative powers of the lexical
and syntactic feature components. As such, it is not clear
from their study the extent to which syntactic features per
se contribute to classification. Also, if off-the-shelf PCFGs
are used, then each text needs to be reparsed for each author
model, which is computationally expensive.

One particular motivation for removing lexical information
is that syntactic features are among those most relevant to
traditional literary analysis. Therefore it is potentially ben-
eficial, in the context of computational studies of literary
texts, to employ models which discriminate via features
similar to those employed in general comparative literature
studies. Hence syntactic features have been of particular in-
terest to researchers who have focused on literature (Feng
et al., 2012; Jautze et al., 2013).

2. Deep Context Grammatical Modeling
We take an approach which is closest to Raghavan et al.
(2010). We retain the core premise of creating author-
specific PCFGs and assigning texts to whichever model
parses with the highest probability. We abstract from lexi-
cal information simply by building our own model and dis-
carding the lexical level.
We develop this approach by exploiting conditional prob-
abilities through vertical Markovization, i.e. increasing
the Markov order to consider ancestors preceding the pro-
duction rule, effectively counting at increasing depths the
context wherein a rewrite rule occurs. This technique has
been employed extensively in PCFG parsers, for instance
by Johnson (1998), Collins (2003), Charniak (2000), and
Klein and Manning (2003), and 2-order Markov feature
sets have been used for authorship attribution by Feng et
al. (2012). Intuitively, these techniques are relevant to au-
thorship attribution of literary texts, since sentence struc-
ture features prominently in traditional literary analysis,
and previous studies (Feng et al., 2012; Jautze et al., 2013)
have demonstrated that sentence structural forms differ sig-
nificantly between cases in author and genre studies.
We build a sentence-deep variable-order Markov model
similar to a generalized suffix tree, which we call a gener-
alized parse-suffix tree, and compare different probability
estimators at varying Markov orders.
Our purpose in this article is to define the model and
demonstrate its efficacy as a representation of an individ-
ual author’s style. To do so, we compare the attribution
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Figure 1: Trees T1 and T2: example inputs to the model

accuracy to that of a linear kernel SVM over broadly equiv-
alent syntactic features, which is the basic model employed
by Feng et al. (2012). While our model performs slightly
below the latter, the proximity of the accuracy of the model
to this benchmark suggests that a uniform-weighted high-
order Markov model captures most of the syntactic variance
between authors, and is thus a strong and intuitive formal
model for further stylometric literary modeling and analy-
sis.

3. Model And Algorithms
The data set’s training and test cases are consecutive se-
quences of sentence-level parse trees with the lexical levels
removed.1 We train a model for each author with grammars
drawn from a set of their respective works. The total num-
ber of tags per text is set to a fixed number, by curtailing the
depth of the final input tree. We then estimate the probabil-
ity of a test case given each model, and return the author
whose model maximizes the probability.

3.1. Model
Each input tree starts at a root node with reserved label R,
from which descends the estimated grammatical parse of
the sentence with the lexical leaves removed. We record
the counts of every production rule under all Markov or-
ders to sentence depth. Upon insertion of each input tree,
we increment the model by these counts, recording the oc-
currence of rules in contexts of all available depths. Table
1 provides the table and Figure 2 the tree structure, after
insertion of T1 and T2.
For efficient insertion and retrieval, we distribute these
counts across a suffix-tree augmented with production
counts at internal nodes. A tree is inserted as follows: for
each node in the tree (uniquely identified by its label and
ancestors), insert it into the model at the equivalent loca-
tion to which it appears in the tree, and then recursively in-
sert it into the equivalent nodes under progressively lower
Markov orders, until the node is added to the root, R. In-
serting a node has two steps: i) if the node’s label (e.g.
NP) does not exist as a model node in the required loca-
tion already, then create a node with that label and locally

1We employ a standard parser – Stanford PCFG Lexicalized,
English model(Klein and Manning, 2003).

Table 1
L Rule C L Rule C
R:1 S 2 VP:3 Vt, NP 1
R:1 DT, N 3 S:4 NP, VP 2
R:1 NP, VP 2 NP:5 DT, N 1
R:1 Vi 1 NP:6 DT, N 2
R:1 Vt, NP 1 VP:7 Vt, NP 1
NP:2 DT, N 3 VP:7 Vt 1
VP:3 Vi 1 NP:8 DT, N 1

Table 1: L, the location in Figure 2 where the count is
stored; Rule: the specific rewrite; and C, the counts, upon
insertion of trees T1 and T2. For instance the rewrite rule
NP→ DT, N occurs 3 times at NP(2) and twice at NP(6) in
Figure 2.

record its depth; ii) in the dictionary attached to that model
node, increment by one the value associated with the key
representing that node’s children, i.e. the production rule
activated at that node in the input tree.
The final detail is the use of suffix pointers to traverse up-
wards to equivalent nodes at lower Markov orders. These
are used to perform the recursive insertions quickly, and
later to switch efficiently during probability estimation.
Figure 2 illustrates the model after T1 and T2 are inserted.
For clarity, only suffix pointers for tag DT are shown.

3.2. Probability Estimation
The task is to assign a given text S to an author-model Mi.
Let Mi, 1 ≤ i ≤ k be k author models. S contains n
sentences, sj which are calculated sequentially, P (S|Mi)
being the product of the probability of its sentences under
Mi, i.e. P (S|Mi) =

∏n
1 P (sj |Mi).

Using this, we apply Bayes’ rule, i.e.:

P(Mi|S) = P(S|Mi) ∗P(Mi)/P(S).

We drop the denominator and attribute the text to the high-
est scoring model Mt, where:

t = argmax
i

P(S|Mi) ∗P(Mi).

Since in the test cases we here consider, every author has
an equal number of cases in the training and test sets, we
drop the prior and this simplifies here to:

t = argmax
i

P(S|Mi).

Generally, priors representing a known disproportion, or
adaptive priors such as Dirichlet, can be employed without
altering P(S|Mi). We now describe P(S|Mi).
The probability of a sequence is the product of its sen-
tences, and the probability of a parsed sentence is the prod-
uct of the probability of its rules. The probability of a given
rule is estimated at the position in the model-tree that cor-
responds to its position in the input tree, when this depth
is less than or equal to the Markov assumption. When the
rule’s occurrence in the input tree is deeper than the Markov
assumption, we traverse the suffix-pointers (Figure 2) until
we reach the desired depth. Now we return the count for the
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Figure 2: Parse suffix tree after insertion of T1 and T2 - only the Vi nodes are added with T2. The internal nodes are
numbered corresponding to the L columns in Table 1, e.g. the count C ( 〈 DT, N 〉 | VP, NP ) is stored at NP(5). For clarity
we include only the suffix-pointers for DT nodes, represented by the dashed arrows.

rule at the node over the total count at that node (see Table
1). We here employ 5 probability estimations Q1, Q2, Q3,
Q4 and Q5, which assume Markov orders of 1 to 5 succes-
sively (or the highest possible lower order given the node’s
depth in the input tree), where a production rule is order 1.
As a final point, since a node may occur in a test sen-
tence which is not represented in the model, we use a
zero-frequency estimator to give a small probability for
an unseen occurrence. Preliminary investigations explored
back-off estimators (Katz, 1987) and PPM escape estima-
tors (Cleary and Witten, 1984; Moffat, 1990). However it
proved more effective to penalize cases of non-occurrences
of a context more heavily than these estimators permit.
Hence we opt for the heuristic that a non-occurring tag’s
probability is its model-wide frequency over the total num-
ber of parsed tags, and we keep positive occurrences as de-
scribed above.

4. Tests: Authorship Attribution
Following standard practice, we examine performance on
two separate sample sets: the first consists of 10 works by
10 19th Century/early 20th Century novelists drawn from
Project Gutenberg (www.gutenberg.org).2; the second con-
sists of 10 works by contemporary suspense/mystery writ-
ers.3

We parsed the texts using the Stanford NLP English model
and discarded lexical levels. We randomly separated them
into 5 groups, of 2 works per author, and performed 4 vs 1
cross-validation across these 5 groups, of which we report
the mean accuracy. Employing the 5Qi probability models
described above, we sampled text from the start of each
document, rising in increments of 1000 tags to 5000.
As we state in the introduction, lexical approaches have
been consistently found to outperform syntactic ones, and
we do not re-evaluate these against our own model, since
the general trend has been well demonstrated in the previ-

2Conrad, Dickens, Hardy, Scott, Eliot, Southworth, James,
Gaskell, Stevenson, Trollope.

3Baldacci, Coben, Grisham, Koontz, Patterson, Cook, Corn-
well, Crichton, Archer, Follett.

Table 2A: Classics - PCFG
Sample Size Q1 Q2 Q3 Q4 Q5

1000 49 47 51 48 45
2000 53 49 59 59 47
3000 71 70 76 76 71
4000 78 82 86 84 77
5000 80 84 86 87 85

Table 2B: Classics - SVM
Sample Size Q1 Q2 Q3 Q4 Q5

1000 39 39 44 36 37
2000 50 53 50 58 48
3000 65 59 70 74 67
4000 76 78 85 84 74
5000 84 85 89 86 78

Table 2: Mean % accuracies of 4 vs 1 cross-validation on
sample set of 10 classic novelists for PCFG model and Lin-
ear SVM.

Table 3A: Suspense Writers - PCFG
Sample Size Q1 Q2 Q3 Q4 Q5

1000 46 44 50 49 52
2000 58 63 63 59 58
3000 67 67 66 68 70
4000 71 71 69 75 79
5000 78 73 76 84 87

Table 3B: Suspense Writers - SVM
Sample Size Q1 Q2 Q3 Q4 Q5

1000 58 55 46 44 37
2000 72 72 64 55 50
3000 74 78 80 71 60
4000 83 82 80 77 68
5000 89 88 85 85 69

Table 3: Mean % accuracies of 4 vs 1 cross-validation
on sample set of 10 contemporary suspense novelists for
PCFG model and Linear SVM.
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ous literature. Rather, we compare our model against an
SVM over similar feature sets, in order to evaluate the rela-
tive performance of the algorithms themselves, rather than
the relative performance of different classes of features, i.e.
lexical and syntactic. Stamatatos (2009) cites SVMs as
among the best machine learning algorithms for authorship
attribution, and a linear SVM has been previously been em-
ployed by Feng et al. (2012) over syntactic features, so we
chose this as our benchmark for evaluating the algorithm.
Specifically, we used LIBLINEAR through R (Fan et al.,
2008; Helleputte, 2010) with the Crammer and Singer
(2001) form, re-selecting the 3000 most common features
across all training sets for each cross-validation. We nor-
malized to document frequency over chosen features, then
scaled according to the training set. We selected features
from the model according to Markov orders 1 to 5, where
an order 1 feature is a production rule, and higher orders in-
clude ancestors. Table 2 presents the respective results for
the Classics set and Table 3 for the contemporary fiction.

5. Results
Our model performs slightly below the SVM at highest
sample sizes, and significantly below at some smaller sizes.
This is somewhat expected since the SVM weights differ-
ent features in order to differentiate the candidate training
sets. The SVM responds to higher orders inconsistently,
and performance deteriorates for the highest, probably due
to the small sample sizes for these more complex features.
The PCFG model generally improves with Markov order at
the larger sample sizes, i.e. given enough sample data. For
instance in Table 3 the PCFG reaches 87% at order 5 from
78% at order 1, while the SVM peaks at 89% at order 1.
Hence, given a more advanced learning algorithm such as
an SVM, deeper syntactic features have comparatively lim-
ited effect. Our model tacitly imposes uniform weighting
across the tree structure, implicitly claiming that a simple
and consistent grammatical relation can differentiate au-
thors. For this simpler model, with stronger constraints, the
increased Markov order generally improves performance,
indicating that the deep sentence structure of authors is a
determinable characteristic, and that authors become more
distinguishable when their models are compared at greater
depths.
We have only carried out a perfunctory process of feature
selection for the SVM, and a more rigorous and compre-
hensive process of selection and pruning would most likely
produce better results. Nonetheless our relatively simple
model produces competitive results, whilst making stronger
theoretical claims regarding author differentiation, e.g. in
its uniform weight attribution as described above.

6. Conclusion
We have described a variable-order PCFG model and
demonstrated its general efficacy as a syntactic classifier
by comparing its performance to a linear SVM. This high-
order Markov model over the deep syntactic structure of
a collection of classes of texts successfully models most
of the syntactic difference between the classes. For future
work we will make use of this model for stylometric anal-
ysis of authors and genres, for instance to return charac-

teristic sentence and phrase structures for different classes,
drawn from the suffix-tree models, which will be compared
to traditional stylistic comparisons of the authors under ex-
amination. We also plan to create a variable weighted ver-
sion of the PCFG to increase attribution accuracy.
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