
An Institution for Event-B

Marie Farrell?, Rosemary Monahan, and James F. Power

Dept. of Computer Science, Maynooth University, Co. Kildare, Ireland

Abstract. This paper presents a formalisation of the Event-B formal
specification language in terms of the theory of institutions. The main ob-
jective of this paper is to provide: (1) a mathematically sound semantics
and (2) modularisation constructs for Event-B using the specification-
building operations of the theory of institutions. Many formalisms have
been improved in this way and our aim is thus to define an appropriate
institution for Event-B, which we call EVT . We provide a definition of
EVT and the proof of its satisfaction condition. A motivating example
of a traffic-light simulation is presented to illustrate our approach.

Keywords: Event-B; institutions; refinement; formal methods; modular
specification; formal specification

1 Introduction and Motivation

Event-B is an industrial-strength, state-based formalism for system-level mod-
elling and verification, combining set theoretic notation with event-driven mod-
elling. However, Event-B lacks well-developed modularisation constructs and it
is not easy to combine specifications in Event-B with those written in other for-
malisms [7]. Our thesis, presented in this paper, is that the theory of institutions
can provide a framework for defining a rich set of modularisation operations and
promoting interoperability and heterogeneity for Event-B.

This paper is centered around an illustrative example of a specification writ-
ten in Event-B, inspired by one in the Rodin Handbook [8], which we present in
the remainder of Section 1. We define our institution for Event-B, called EVT , in
Section 2, prove that it is a valid institution, and define a comorphism between
the institution for first-order predicate logic with equality and EVT in Section 3.
In Section 4 we use this institution to recast our Event-B example in modular
form using specification-building operators and address refinement, since this is
of central importance in Event-B. We summarise our contributions and outline
future directions in Section 5.

1.1 Formal Specification of a Traffic-Lights System in Event-B

Figure 1 presents an Event-B machine for a traffic-lights system with one light
signalling cars and one signalling pedestrians [3]. The goal of the specification

? This work is funded by Government of Ireland Postgraduate Grant from the Irish
Research Council.

is to ensure that it is never the case that both cars and pedestrians receive the
“go” signal at the same time (represented by boolean flags on line 2). Machine
specifications typically contain variable declarations (line 2), a variant expression
(none in this example), invariants (lines 3–6) and event specifications (lines 7–
21). Contexts in Event-B can be used to model the static properties of a system
(constants, axioms and carrier sets). Figure 2 provides a context giving a spec-
ification for the data-type COLOURS . The axiom on line 5 explicitly restricts
the set to only contain the constants red, green and orange.

Figure 1 specifies five different events (including a starting event called Init-

ialisation defined on lines 8–10). Each event has a guard, specifying when it
can be activated, and an action, specifying what happens when the event is
activated. For example, the set peds go event as specified on lines 11–13, has
one guard expressed as a boolean expression (line 12), and one action, expressed
as an assignment statement (line 13). Moreover, each event has a status, which
can be either ordinary, convergent, or anticipated. If the status is different
from ordinary, then the event is concerned with the variant expression, i.e.
with a natural-number expression used in proving termination properties. Our
example has no variant so all events have the status ordinary.

Figure 3 shows an Event-B machine specification for mac2 that refines the
machine mac1 (Figure 1). The machine mac1 is refined by first introducing the
new context on line 1 and then by replacing the truth values used in the abstract
machine with new values from the carrier set COLOURS . This new data type
is included into mac2 using the SEES construct on line 1 of Figure 3. During
refinement, the user typically supplies a gluing invariant relating properties of
the abstract machine to their counterparts in the concrete machine [3]. The
gluing invariants in Figure 3 (lines 6 and 8) define a one-to-one mapping between
the concrete variables introduced in mac2 and the abstract variables of mac1. The
concrete variables (peds colour and cars colour) can be assigned either red or
green, thus the gluing invariants map true to green and false to red.

Event-B permits the addition of new variables and events: button pushed

(line 2) and press button (lines 30–31). The existing events from mac1 are re-
named to reflect refinement; for example, the event set peds green is declared
to refine set peds go (lines 14–15). This event has also been altered via the addi-
tion of a guard (line 16) and an action (line 18) that incorporate the functionality
of a button-controlled pedestrian light. This example highlights features of the
Event-B language, but notice how the same specification has to be provided
twice in Figure 1. The events set peds go and set peds stop are equivalent,
modulo renaming of variables, to set cars go and set cars stop. Ideally, writ-
ing and proving the specification for these events should only be required once.
Our approach addresses these issues as will be seen in Section 4.

1.2 Related Work: Institutions and Modularisation

Originally, Event-B was not equipped with any modularisation constructs. Be-
cause of this, several approaches have been suggested for modularising Event-B

2

1 MACHINE mac1
2 VARIABLES cars go, peds go
3 INVARIANTS
4 inv1: cars go ∈ BOOL
5 inv2: peds go ∈ BOOL
6 inv3: ¬ (peds go = true

∧ cars go = true)
7 EVENTS
8 Initialisation ordinary
9 then act1: cars go := false

10 act2: peds go := false
11 Event set peds go =̂ ordinary
12 when grd1: cars go = false
13 then act1: peds go := true
14 Event set peds stop =̂ ordinary
15 then act1: peds go := false
16 Event set cars go =̂ ordinary
17 when grd1: peds go = false
18 then act1: cars go := true
19 Event set cars stop =̂ ordinary
20 then act1: cars go := false
21 END

Fig. 1: Event-B machine specification
for a traffic system.

1 CONTEXT ctx1
2 SETS COLOURS
3 CONSTANTS red, green, orange
4 AXIOMS
5 axm1: partition(COLOURS,

{red}, {green}, {orange})
6 END

Fig. 2: Event-B context specification
for the colours of a set of traffic–lights.

1 MACHINE mac2 refines mac1 SEES ctx1
2 VARIABLES cars colour, peds colour,
3 buttonpushed
4 INVARIANTS
5 inv1: peds colour ∈ {red, green}
6 inv2: (peds go = true)

⇔ (peds colour = green)
7 inv3: cars colour ∈ {red, green}
8 inv4: (cars go = true)

⇔ (cars colour = green)
9 inv5: buttonpushed ∈ BOOL

10 EVENTS
11 Initialisation ordinary
12 then act1: cars colour := red
13 act2: peds colour := red
14 Event set peds green =̂ ordinary
15 refines set peds go
16 when grd1: cars colour = red
17 grd2: buttonpushed = true
18 then act1: peds colour := green
19 act2: buttonpushed := false
20 Event set peds red =̂ ordinary
21 refines set peds stop
22 then act1: peds colour := red
23 Event set cars green =̂ ordinary
24 refines set cars go
25 when grd1: peds colour = red
26 then act1: cars colour := green
27 Event set cars red =̂ ordinary
28 refines set cars stop
29 then act1: cars colour := red
30 Event press button =̂ ordinary
31 then act1: buttonpushed := true
32 END

Fig. 3: A refined Event-B machine spec-
ification for a traffic system.

specifications. Abrial first proposed two styles of decomposition based on identi-
fying shared variables and shared events [4]. Elaborating these approaches, ap-
proximately 8 modularisation plugins have been developed for various versions
of Rodin, each offering a different perspective on implementing modularisation.
By defining an institution for the Event-B formalism, we can modularise Event-
B specifications using specification-building operators [14], and thus provide an
approach to developing modular specifications that is consistent with the state
of the art in formal specification.

An attempt was previously made to provide an institution and correspond-
ing morphisms for Event-B and UML [5]. However, the definitions of Event-B
sentences and models were vague, making it difficult to evaluate their semantics
in a meaningful way. Also, the models described resemble the set-theoretic foun-
dations of B specifications, whereas here we concentrate on event-based models.
Our presentation of an illustrative example in both Event-B and its modular
institutional version is an important element of developing this work.

Our approach provides scope for the interoperability of Event-B and other
formalisms using institution (co)morphisms. Those familiar with the institution
for UML state machines, UML, may notice that we have based the construction
of our institution for Event-B, EVT , on UML. Both institutions describe state-

3

based formalisms so, by keeping UML in mind during the development of EVT ,
it will be possible to design meaningful translations between them in the future.

2 An Institution for Event-B

The theory of institutions, originally developed by Goguen and Burstall in a
series of papers originating from their work on algebraic specification, provides
a general framework for defining a logical system [6].

Definition 1 (Institution) An institution INS for some given formalism
will consist of definitions for:
Vocabulary: a category Sign whose objects are called signatures and whose
arrows are called signature morphisms.

Syntax: a functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences
for each signature Σ and a function Sen(σ) : Sen(Σ) → Sen(Σ′) for each
signature morphism σ : Σ → Σ′.

Semantics: a functor Mod : Signop → Cat giving a category Mod(Σ) of Σ-
models for each signature Σ and a functor Mod(σ) : Mod(Σ′)→Mod(Σ) for
each signature morphism σ : Σ → Σ′.

Satisfaction: for every signature Σ, a satisfaction relation |=INS,Σ between
Σ-models and Σ-sentences.

An institution must uphold the satisfaction condition: for any signature mor-
phism σ : Σ → Σ′ and translations Mod(σ) of models and Sen(σ) of sentences
we have for any φ ∈ Sen(Σ) and M ′ ∈ |Mod(Σ′)|.

M ′ |=INS,Σ′ Sen(σ)(φ) ⇐⇒ Mod(σ)(M ′) |=INS,Σ φ

There are two basic languages within the Event-B language. The first one
is the Event-B mathematical language (propositional/predicate logic, set-theory
and arithmetic) and the second is the Event-B modelling language [2]. To rep-
resent the latter, we propose a new custom solution; for the former, however,
we can use FOPEQ, the institution of first-order logic with equality. Thus, our
institution for Event-B is built on FOPEQ.

Definition 2 (FOPEQ-Signature) A signature in FOPEQ, ΣFOPEQ = 〈S,Ω,Π〉,
is a tuple where S is a set of sort names, Ω is a set of operation names indexed
by arity and sort, and Π is a set of predicate names indexed by arity.

Definition 3 (ΣFOPEQ-Sentence) For any ΣFOPEQ = 〈S,Ω,Π〉, ΣFOPEQ-
sentences are closed first-order formulae built out of atomic formulae using
∧,∨,¬,⇒, ⇐⇒ ,∃,∀. Atomic formulae are equalities between 〈S,Ω〉-terms, pred-
icate formulae of the form p(t1, . . . , tn) where p ∈ Π and t1, . . . , tn are terms
(with variables), and the logical constants true and false.

Definition 4 (ΣFOPEQ-Model) Given a signature ΣFOPEQ = 〈S,Ω,Π〉, a
model over FOPEQ consists of a carrier set |A|s for each sort name s ∈ S, a

4

function fA : |A|s1 × · · · × |A|sn → |A|s for each operation name f ∈ Ωs1...sn,s
and a relation pA ⊆ |A|s1 × · · · × |A|sn for each predicate name p ∈ Πs1···sn ,
where s1, . . . , sn, and s are sort names.

The satisfaction relation in FOPEQ is the usual satisfaction of first-order sen-
tences by first-order structures.

2.1 Defining EVT
Definition 5 (EVT -Signature) A signature in EVT is a five-tuple ΣEVT =
〈S,Ω,Π,E, V 〉 where 〈S,Ω,Π〉 is a standard FOPEQ-signature as described
above, E is a set of events, i.e. of pairs 〈event name, status〉 where status belongs
to the poset {ordinary < anticipated < convergent}, and V is a set of sorted
variables. We assume that every signature has an initial event, called Init,
whose status is always ordinary.

Notation: We write Σ in place of ΣEVT when describing a signature over our
institution for Event-B. For signatures over other institutions than EVT we
will use the subscript notation; e.g. a signature over FOPEQ is denoted by
ΣFOPEQ. For a given signature Σ, we access its individual components using a
dot-notation, e.g. Σ.V for the set V in the tuple Σ.

Definition 6 (EVT -Signature Morphism) A signature morphism σ : Σ →
Σ′ is a five-tuple containing σS, σΩ, σΠ , σE and σV . Here σS, σΩ, σΠ are the
mappings taken from the corresponding signature morphism in FOPEQ.
– σE : Σ.E → Σ′.E is a function such that for any mapping σE〈e, st〉 =
〈e′, st′〉 we have st ≤ st′; in addition, σE preserves the initial event: in
symbols, we have that σE〈Init, ordinary〉 = 〈Init, ordinary〉.

– σV : Σ.V → Σ′.V is a sort-preserving function on sets of variable names,
working similarly to the sort-preserving mapping for constant symbols, σΩ.

Definition 7 (ΣEVT -Sentence) A sentence over EVT is a pair 〈e, φ(x, x′)〉
where e is an event name in the domain of Σ.E and φ(x, x′) is an open FOPEQ-
formula over the variables x from Σ.V and their primed versions x′.

In the Rodin Platform, Event-B machines are presented (syntactically sugared)
as can be seen below, where I(x) represents the invariant over x.

The variant expression, denoted by n(x), is used
for proving termination properties. Events that
have a status of anticipated or convergent

must not increase and strictly decrease the
variant expression respectively. Events can have
parameter(s) as given by p. G(x, p) and W (x, p)
represent the guard(s) and witness(es) respec-
tively over the variables and parameter(s).
Actions are interpreted as before-after predi-
cates i.e. x := x+ 1 is interpreted as x′ = x+ 1.
Thus, BA(x, p, x′) represents the action(s) over

MACHINE m SEES ctx refines a
VARIABLES x
INVARIANTS I(x)
VARIANT n(x)
EVENTS
Initialisation ordinary

then act-name: BA(x, x′)
Event e =̂ status

any p
when guard-name: G(x, p)
with witness-name: W (x, p)
then act-name: BA(x, p, x′)

.

.

.
END

5

the parameter(s) p and the sets of variables x and x′.
Sentences written in the mathematical language (such as axioms) are inter-

preted as sentences over FOPEQ. We can include these in specifications over
EVT using the comorphism which will be defined in Section 3. We represent the
Event-B event, variant and invariant sentences as sentences over EVT .

For each Event-B invariant sentence I(x) we form the open FOPEQ-sentence
I(x)∧I(x′). Since invariants must hold for all events in a machine, each invariant
sentence is paired with each event name e for all 〈e, s〉 ∈ Σ.E, where s is an event
status. Thus, we form the EVT sentence 〈e, I(x) ∧ I(x′)〉.

The variant expression applies to specific events, so we pair it with an event
name in order to meaningfully evaluate it. This expression can be translated into
an open FOPEQ-term, which we denote by n(x), and we use this to construct
a formula based on the status of the event(s) in the signature Σ.
– For each 〈e, anticipated〉 ∈ Σ.E we form the sentence 〈e, n(x′) ≤ n(x)〉.
– For each 〈e, convergent〉 ∈ Σ.E we form the sentence 〈e, n(x′) < n(x)〉.

Note that we are assuming the existence of a suitable type for variant expressions
and the usual arithmetic interpretation of the predicates < and ≤.

Event guard(s) and witnesses are also labelled predicates that can be trans-
lated into open FOPEQ-formulae over the variables x in V and parameters p.
These are denoted by G(x, p) and W (x, p) respectively. In Event-B, actions are
interpreted as before-after predicates, and so they can be translated into open
FOPEQ-formulae denoted by BA(x, p, x′). Thus for each event we form the
formula φ(x, x′) = ∃p · G(x, p) ∧W (x, p) ∧ BA(x, p, x′) where p are the event
parameters. This generates an EVT -sentence of the form 〈e, φ(x, x′)〉.The Init

event, which is an Event-B sentence over only the after variables denoted by x′,
is a special case. In this case, we form the EVT -sentence 〈Init, φ(x′)〉.

There is no formal semantics for Event-B defined in the literature as such.
Therefore, we have based our construction of EVT -models on the notion of a
mathematical model as described by Abrial [2, Ch. 14]. In these models the
state is represented as a sequence of variable-values and models are defined over
before and after states. We interpret these states as sets of variable-to-value
mappings in our definition of EVT -models.

Definition 8 (Σ-StateA) For any given EVT -signature Σ we define a Σ-state
of an algebra A as a set of (sort appropriate) variable-to-value mappings whose
domain is the set of sort-indexed variable names Σ.V . We define the set StateA
as the set of all such Σ-states. By “sort appropriate” we mean that for any
variable x of sort s in V , the corresponding value for x should be drawn from
|A|s, the carrier set of s given by the FOPEQ-model A.

Definition 9 (ΣEVT -Model) Given Σ = 〈S,Ω,Π,E, V 〉, Mod(Σ) provides a
category of models, where a model over Σ is a tuple 〈A,L,R〉. A is a ΣFOPEQ-
model, and the non-empty initialising set L ⊆ StateA provides the states after
the Init event. Then for every event name e ∈ dom(E), other than Init, we
define R.e ⊆ StateA × StateA where for each pair of states 〈s, s′〉 in R.e, s
provides values for the variables x in V , and s′ provides values for their primed
versions x′. Then R = {R.e | e ∈ dom(E) and e 6= Init}.

6

Intuitively, a model over Σ maps every event name e ∈ dom(Σ.E) to a set of
variable-to-value mappings over the carriers corresponding to the sorts of each
of the variables x ∈ Σ.V and their primed versions x′. In cases where there are
no variables in Σ.V , L is the singleton {{}}.

For example, given the event e on the right, with
natural number variable x and boolean variable y
we construct the variable to value mappings:

Event e =̂
when grd1: x<2
then act1: x := x + 1

act2: y := false

Re =

{
{x 7→ 0, y 7→ false, x′ 7→ 1, y′ 7→ false}, {x 7→ 0, y 7→ true, x′ 7→ 1, y′ 7→ false},
{x 7→ 1, y 7→ false, x′ 7→ 2, y′ 7→ false}, {x 7→ 1, y 7→ true, x′ 7→ 2, y′ 7→ false}

}
The notation used above is interpreted as variable name 7→ value where the value
is drawn from the carrier set corresponding to the sort of the variable name given
in Σ.V . We note that trivial models be excluded as the initialising set L is never
empty. In cases where there are no variables in Σ.V , L is the singleton L = {{}}.

The reduct of an EVT -model M = 〈A,L,R〉 along an EVT -signature mor-
phism σ : Σ → Σ′ is given by M |σ = 〈A|σ, L|σ, R|σ〉. Here A|σ is the reduct of
the FOPEQ-component of the EVT -model along the FOPEQ-components of
σ. L|σ and R|σ are based on the reduction of the states of A along σ, i.e. for
every Σ′-state s of A, that is for every sorted map s : Σ′.V → |A|, s|σ is the map
Σ′.V → |A| given by the composition σV ; s. This extends in the usual manner
from states to sets of states and to relations on states.

Satisfaction: In order to define the satisfaction relation for EVT , we describe an
embedding from EVT -signatures and models to FOPEQ-signatures and models.

Given an EVT -signatureΣ = 〈S,Ω,Π,E, V 〉 we form the following two FOPEQ-
signatures:

– Σ
(V,V ′)
FOPEQ = 〈S,Ω ∪ V ∪ V ′, Π〉 where V and V ′ are the variables and their

primed versions, respectively, that are drawn from the EVT -signature, and
represented as 0-ary operators with unchanged sort. The intuition here is
that the set of variable-to-value mappings for the free variables in an EVT -
signature Σ are represented by adding a distinguished 0-ary operation sym-
bol to the corresponding FOPEQ-signature for each of the variables x ∈ V
and their primed versions.

– Similarly, for the initial state and its variables, we construct the signature

Σ
(V ′)
FOPEQ = 〈S,Ω ∪ V ′, Π〉.

Given the EVT Σ-model 〈A,L,R〉, we construct the FOPEQ-models:

– For every pair of states 〈s, s′〉, we form the Σ
(V,V ′)
FOPEQ-model expansion A(s,s′),

which is the FOPEQ-component A of the EVT -model, with s and s′ added
as interpretations for the new operators that correspond to the variables
from V and V ′ respectively.

– For each initial state s′ ∈ L we construct the Σ
(V ′)
FOPEQ-model expansion

A(s′) analogously.
For any EVT -sentence over Σ of the form 〈e, φ(x, x′)〉 we create a correspond-

ing FOPEQ-formula by replacing the free variables with their corresponding
operator symbols. We write this (closed) formula as φ(x, x′).

7

Definition 10 (Satisfaction Relation) For any EVT -model 〈A,L,R〉 and EVT -
sentence 〈e, φ(x, x′)〉, where e is an event name other than Init, we define:
〈A,L,R〉 |=Σ 〈e, φ(x, x′)〉 ⇐⇒ ∀〈s, s′〉 ∈ R.e · A(s,s′) |=

Σ
(V,V ′)
FOPEQ

φ(x, x′)

Similarly, we evaluate the satisfaction condition of EVT -sentences of the form
〈Init, φ(x′)〉 as follows:
〈A,L,R〉 |=Σ 〈Init, φ(x′)〉 ⇐⇒ ∀s′ ∈ L ·A(s′) |=

Σ
(V ′)
FOPEQ

φ(x′)

Theorem 1 (Satisfaction Condition). Given EVT signatures Σ1 and Σ2, a
signature morphism σ : Σ1 → Σ2, a Σ2-model M2 and a Σ1-sentence ψ1, the
following satisfaction condition holds:

Mod(σ)(M2) |=EVT Σ1
ψ1 ⇐⇒ M2 |=EVT Σ2

Sen(σ)(ψ1)

Proof. Let M2 be the model 〈A2, L2, R2〉, and ψ1 the sentence 〈e, φ(x, x′)〉. Then
the satisfaction condition is equivalent to

∀〈s, s′〉 ∈ R2|σ.e · (A2|σ)(s,s
′)|σ |=FOPEQ

Σ
(V1,V

′
1)

FOPEQ

φ(x, x′)

⇐⇒ ∀〈s, s′〉 ∈ R2.σE(e) ·A(s,s′)
2 |=FOPEQ

Σ
(V2,V

′
2)

FOPEQ

Sen(σ)(φ(x, x′))

Here, validity follows from the validity of satisfaction in FOPEQ. We prove a
similar result for initial events in the same way.

Pragmatics of Specification Building in EVT : We represent an Event-B
specification, such as that for mac1 in Figure 1, as a presentation over EVT .
For any signature Σ, a Σ-presentation is a set of Σ-sentences. A model of a Σ-
presentation is a Σ-model that satisfies all of the sentences in the presentation
[6]. Thus, for a presentation in EVT , model components corresponding to an
event must satisfy all of the sentences specifying that event. This incorporates
the standard semantics of the extends operator for events in Event-B where
the extending event implicitly has all the parameters, guards and actions of the
extended event but can have additional parameters, guards and actions [4].

An interesting aspect is that if a variable is not assigned to within an action,
then a model for the event may associate a new value with this variable. Some
languages deal with this using a frame condition, asserting implicitly that values
for unmodified variables do not change. In Event-B such a condition would cause
complications when combining presentations, since variables unreferenced in one
event will be constrained not to change, and this may contradict an action for
them in the other event. As far as we can tell, the informal semantics for the
Event-B language do not require a frame condition, and we have not included
one in our definition.

3 Relating FOPEQ and EVT

Initially, we defined the relationship between FOPEQ and EVT to be a du-
plex institution formed from a restricted version of EVT (EVT res) and FOPEQ

8

where EVT res is the institution EVT but does not contain any FOPEQ compo-
nents. Duplex institutions are constructed by enriching one institution, in this
case EVT res, by the sentences of another, in this case FOPEQ, using an institu-
tion semi-morphism [6, 14]. This approach would allow us to constrain EVT res
by FOPEQ and thus facilitate the use of FOPEQ-sentences in an elegant way.
However, duplex institutions are not supported in Hets [11], and therefore we
opt for a comorphism which embeds the simpler institution FOPEQ into the
more complex institution EVT [14].

Definition 11 (The institution comorphism ρ) We define ρ : FOPEQ →
EVT to be an institution comorphism composed of:
– The functor ρSign : SignFOPEQ → SignEVT which takes as input a FOPEQ-

signature of the form 〈S,Ω,Π〉 and extends it with the set E = {〈Init
ordinary〉} and an empty set of variable names V . ρSign(σ) works as σ on
S, Ω and Π, it is the identity on the Init event and the empty function on
the empty set of variable names.

– The natural transformation ρSen : SenFOPEQ → ρSign; SenEVT which pairs
any closed FOPEQ-sentence (given by φ) with the Init event name to form
the EVT -sentence 〈Init, φ〉. As there are no variables in the signature, we
do not require φ to be over the variables x and x′.

– The natural transformation ρMod : (ρSign)op; ModEVT → ModFOPEQ is
such that for any FOPEQ-signature Σ,

ρMod
Σ (Mod(ρSign(Σ))) = ρMod

Σ (〈A,L,∅〉) = A

Theorem 2. The institution comorphism ρ is defined such that for any Σ ∈
|SignFOPEQ|, the translations ρSenΣ : SenFOPEQ(Σ)→ SenEVT (ρSign(Σ)) and
ρMod
Σ : ModEVT (ρSign(Σ)) → ModFOPEQ(Σ) preserve the satisfaction rela-

tion. That is, for any ψ ∈ SenFOPEQ(Σ) and M ′ ∈ |ModEVT (ρSign(Σ))|
ρMod
Σ (M ′) |=FOPEQΣ ψ ⇐⇒ M ′ |=EVT

ρSign(Σ)
ρSenΣ (ψ) (∗)

Proof. By definition 11,M ′ = 〈A,L,∅〉, ρMod
Σ (M ′) = A and ρSenΣ (ψ) = 〈Init, ψ〉.

Therefore, we transform (∗) into

A |=FOPEQΣ ψ ⇐⇒ M ′ |=EVT
ρSign(Σ)

〈Init, ψ〉

Then, by the definition of satisfaction in EVT (Definition 20)

A |=FOPEQΣ ψ ⇐⇒ A(s′) |=FOPEQ
(ρSign(Σ))

(V ′)
FOPEQ

ψ

We deduce that Σ = (ρSign(Σ))V
′

FOPEQ, since there are no variable names in
V ′ and thus no new operator symbols are added to the signature. As there are
no variable names in V ′, L = {{}}, so we can conclude that A(s′) = A. Thus the
satisfaction condition holds.

For aΣ-specification written over FOPEQ we can use the specification build-
ing operator with ρ : SpecFOPEQ(Σ)→ SpecEVT (ρSign(Σ)) to interpret this
as a specification over EVT [14]. This results in a specification with just the Init

9

event and no variables, containing FOPEQ-sentences that hold in the initial
state. This process is used to represent contexts, specifically their axioms, which
are written over FOPEQ as sentences over EVT .

In cases where a specification is enriched with new events, then the axioms
and invariants should also apply to these new events. One approach to this
would require a new kind of EVT -sentence for invariants, which we denote by
〈inv, φ(x, x′)〉, these are applied to all events in the specification when evaluating
the satisfaction condition. We do not present these details fully here due to space
concerns.

3.1 Pushouts and Amalgamation

We ensure that the institution EVT has good modularity properties by proving
that EVT admits the amalgamation property: all pushouts in SignEVT exist and
every pushout diagram in SignEVT admits weak model amalgamation [14].

Proposition 1. Pushouts exist in SignEVT .

Proof. Given two signature morphisms σ1 : Σ → Σ1 and σ2 : Σ → Σ2 a
pushout is a triple (Σ′, σ′1, σ

′
2) that satisfies the universal property: for all triples

(Σ′′, σ′′1 , σ
′′
2) there exists a unique morphism u : Σ′ → Σ′′ such that the diagram

on the left below commutes. Our pushout construction follows FOPEQ for the
elements that FOPEQ has in common with EVT . In SignEVT the additional
elements are E and V .

Σ

Σ1

Σ′

Σ2

Σ′′

σ1

σ′
1 σ′

2

σ2

σ′′
1 σ′′

2

u

– Set of 〈event name, status〉 pairs E: The set of
all event names in the pushout is the pushout in
Set on event names only. Then, the status of an
event in the pushout is the supremum of all sta-
tuses of all events that are mapped to it. Since
signature morphisms map 〈Init,ordinary〉 to
〈Init, ordinary〉 the pushout does likewise.
The universality property for E follows from
that of Set.

– Set of sort-indexed variable names V : The set of sort-indexed variable names
in the pushout is the pushout in FOPEQ for the sort components and the
pushout in Set for the variable names. This is a similar construction to the
pushout for operation names in FOPEQ as these also have to follow the
sort pushout. Thus, the universality property for V follows from that of Set
and the FOPEQ pushout for sorts.

Proposition 2. Every pushout diagram in SignEVT admits weak model amal-
gamation.

We decompose this proposition into two further subpropositions:

Proposition 2(a) For M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such that M1|σ1
=

M2|σ2
, there exists a model (the amalgamation of M1 and M2) M ′ ∈ |Mod(Σ′)|

such that M ′|σ′
1

= M1 and M ′|σ′
2

= M2.

10

Proof. Consider the commutative diagram with signature morphisms σ1, σ2, σ
′
1

and σ′2 below:
M ′ = 〈A′, L′, R′〉

M1 = 〈A1, L1, R1〉

M = 〈A,L,R〉

M2 = 〈A2, L2, R2〉

Mod(σ′
1)

Mod(σ1) Mod(σ2)

Mod(σ′
2)

We construct M ′ = 〈A′, L′, R′〉 as follows. A′ is the FOPEQ-model (amal-
gamation of A1 and A2) over FOPEQ. We construct the initialising set L′ by
amalgamating L1 and L2 to get the set of all possible combinations of variable
mappings, while respecting the amalgamations induced on variable names via
the pushout V ′. We construct the relation R′, which is the amalgamation of R1

and R2, in a similar manner.

Proposition 2(b) For any two model morphisms f1 : M11 →M12 in Mod(Σ1)
and f2 : M21 → M22 in Mod(Σ2) such that f1|σ1

= f2|σ2
, there exists a model

morphism (the amalgamation of f1 and f2) called f ′ : M ′1 → M ′2 in Mod(Σ′),
such that f ′|σ′

1
= f1 and f ′|σ′

2
= f2.

We have omitted this proof but it can be found on our webpage1.

4 Modularising Event-B Specifications

Our definition of EVT allows the restructuring of Event-B specifications using
the standard specification-building operators for institutions [14]. Thus EVT
provides a means for writing down and splitting up the components of an Event-
B system, facilitating increased modularity for Event-B specifications. Figure 4
contains heterogeneous structured specifications corresponding to the Event-B
machine mac1 defined in Figure 1. Since Hets is our target platform, where each
institution is represented as a “logic”, we use its notation and implementation of
the logic for CASL to represent the FOPEQ components of our specifications.
Lines 1–6: TwoBools can be presented as a pure CASL specification, declaring
two boolean variables constrained to have different values.

Lines 7–17: LightAbstract is a specification in the EVT logic for a single
traffic light that extends (using keyword then) TwoBools which is first trans-
lated via the comorphism ρ into a specification over EVT . It contains the events
set go and set stop, with the constraint that a light can only be set to “go”
if its opposite light is not set to “go”. We use “thenAct” in place of the “then”
Event-B keyword to distinguish from the “then” specification-building operator.

Lines 18–32: The specification mac1 combines (using keyword and) two ver-
sions of LightAbstract, each with a different signature morphism (σ1 and σ2)
mapping the specification variables and event names to those in the Event-B
machine. The where notation used on lines 22–32 is just a convenient presenta-
tion of the signature morphisms, it is not part of the syntax of the specification
language that we use in Hets.

1 http://www.cs.nuim.ie/∼mfarrell/extended.pdf

11

1 logic CASL
2 spec TwoBools =
3 Bool
4 then
5 ops i go, u go : Bool
6 . ¬ (i go = true ∧ u go = true)

7 logic EVT
8 spec LightAbstract =
9 TwoBools with ρ

10 then
11 Initialisation ordinary
12 thenAct act1 : i go := false
13 Event set go =̂ ordinary
14 when grd1: u go = false
15 thenAct act1: i go := true
16 Event set stop =̂ ordinary
17 thenAct act1: i go := false

18 logic EVT
19 spec mac1 =
20 (LightAbstract with σ1)
21 and (LightAbstract with σ2)
22 where
23 σ1 = {i go 7→ cars go, u go 7→ peds go,
24 〈set go, ordinary〉
25 7→ 〈set cars go, ordinary〉,
26 〈set stop, ordinary〉
27 7→ 〈set cars stop, ordinary〉}
28 σ2 = {i go 7→ peds go, u go 7→ cars go,
29 〈set go, ordinary〉
30 7→ 〈set peds go, ordinary〉,
31 〈set stop, ordinary〉
32 7→ 〈set peds stop, ordinary〉}

Fig. 4: A modular institution-based
presentation corresponding to the ab-
stract machine mac1 in Fig 1.

We get a presentation over the institution EVT for mac1 by flattening out
the structuring. Notice that the specification for each individual light had to be
explicitly written down twice in the Event-B machine in Figure 1 (lines 11–15
and lines 16–20). In our modular institution-based presentation we only need one
light specification and simply supply the required variable and event mappings.
In this way, EVT provides a more flexible degree of modularity than is currently
present in Event-B.

4.1 Refinement in the EVT Institution

Event-B supports three forms of machine refinement: the refinement of event
internals (guards and actions) and invariants; the addition of new events; and
the decomposition of an event into several events [3]. It is therefore essential for
any formalisation of Event-B to be capable of capturing refinement.

In general for institutions, a refinement from an abstract specification A to
some concrete specification C is defined using model-class inclusion as |Mod(C)|
⊆ |Mod(A)| when Sig[A] = Sig[C]. In Event-B, new variable or event names
cannot be added if the signatures stay the same. This provides only one option:
strengthen the formulae in event definitions, which will result in at most the same
number of models. This accounts for the first form of refinement in Event-B. Both
of the other forms of refinement in Event-B cause the signatures to change i.e. the
set of events will get larger when adding or decomposing events. In the case when
the signatures are different, we can define a signature morphism σ : Sig[A] →
Sig[C] from which we can construct the model reduct Mod(σ) : Mod(C) →
Mod(A). We can thus restrict the concrete model to only contain elements of
the abstract signatures by applying the model reduct before evaluating the subset
relation defined above.

4.2 A Modular, Refined Specification

Figure 5 contains a presentation over EVT corresponding to the main elements
of the Event-B specification mac2 presented in Figures 2 and 3. Here, we present
three CASL specifications and three EVT specifications.

12

1 logic CASL
2 spec Colours =
3 then
4 sorts
5 free type Colours ::= red|green|

orange

6 spec TwoColours =
7 Colours
8 then
9 ops icol, ucol : Colours

10 . ¬(icol = green ∧ ucol = green)

11 spec BoolButton =
12 Bool
13 then
14 ops button : Bool

15 logic EVT
16 spec LightRefined =
17 TwoColours with ρ
18 then
19 Initialisation ordinary
20 thenAct act1: icol := red
21 Event set green =̂ ordinary
22 when grd1: ucol = red
23 thenAct act1: icol := green
24 Event set red =̂ ordinary
25 thenAct act1: icol := red

26 logic EVT
27 spec ButtonSpec =
28 BoolButton with ρ
29 then
30 Event gobutton =̂ ordinary
31 when grd1: button = true
32 thenAct act1: button := false
33 Event pushbutton =̂ ordinary
34 thenAct act1: button := true

35 spec mac2 =
36 (LightRefined with σ3)
37 and (LightRefined and
38 (ButtonSpec with σ5)with σ4)

39 where
40 σ3 = {i col 7→ cars colour, u col 7→ peds colour,
41 〈set green, ordinary〉
42 7→ 〈set cars green, ordinary〉,
43 〈set red, ordinary〉
44 7→ 〈set cars red, ordinary〉}
45 σ4 = {i col 7→ peds colour, u col 7→ cars colour,
46 〈set green, ordinary〉
47 7→ 〈set peds green, ordinary〉,
48 〈set red, ordinary〉
49 7→ 〈set peds red, ordinary〉}
50 σ5 = {〈gobutton, ordinary〉
51 7→ 〈set green, ordinary〉}

Fig. 5: A modular institution-based presentation corresponding to the refined machine
mac2 specified in Fig 3.

Lines 1–10: We specify the Colours data type with a standard CASL specifi-
cation, as can be seen in Figure 2. The specification TwoColours describes two
variables of type Colours constrained to be not both green at the same time.
This corresponds to the gluing invariants on lines 5 and 7 of Figure 3. The
specification modularisation constructs used in Figure 5, allow these properties
to be handled distinctly and in a manner that facilitates comparison with the
TwoBools specification on lines 1–6 of Figure 4.

Lines 15–25: A specification for a single light is provided in LightRefined

which uses TwoColours to describe the colour of the lights. As was the case
with LightAbstract in Figure 4, the specification makes clear how a single light
operates. An added benefit here is that a direct comparison with the abstract
specification can be done on a per-light basis.

Lines 11–14, 26–34: The specifications BoolButton and ButtonSpec account
for the part of the mac2 specification that requires a button. These details
were woven through the code in Figure 3 (lines 2, 8, 16, 18, 29, 30) but the
specification-building operators allow us to modularise the specification and
group these related definitions together, clarifying how the button actually op-
erates.

Lines 35–51: Finally, to bring this all together we combine a copy of LightRe-

fined with a specification corresponding to the sum (and) of LightRefined

and ButtonSpec with appropriate signature morphisms. This second specifi-
cation combines the event gobutton in ButtonSpec with the event set green

in LightRefined thus accounting for set peds green in Figure 3. One small
issue involves making sure that the name replacements are done correctly, and
in the correct order, hence the bracketing on lines 37–38 is important.

13

1 refinement REF : Bool to Colours =
2 Bool 7→ Colours,
3 true 7→ green,
4 false 7→ red
5 i go 7→ icol,
6 u go 7→ ucol,
7 〈set peds go, ordinary〉
8 7→ 〈set peds green, ordinary〉,

9 〈set peds stop, ordinary〉
10 7→ 〈set peds red, ordinary〉,
11 〈set cars go, ordinary〉
12 7→ 〈set cars green, ordinary〉,
13 〈set cars stop, ordinary〉
14 7→ 〈set cars red, ordinary〉
15 end

Fig. 6: Defining the refinement relationships between the concrete and abstract pre-
sentations.

The combination of these specifications involves merging two events with
different names: gobutton from ButtonSpec with the event set green from
LightRefined. To ensure that these differently-named events are combined into
an event of the same name we use the signature morphism σ5 to give gobutton

the same name as set green before combining them. Ensuring that the events
have the same name allows the and operator to combine both events’ guards
and actions and the morphism σ4 to name the resulting event set peds green.
The resulting specification also contains the event pushbutton. The labels given
to guards/actions are syntactic sugar to make the specification aesthetically
resemble the usual Event-B notation for guards/actions.

Figure 6 uses the refinement syntax available in Hets to specify each of the
refinements in the specification of the concrete machine mac2:

Lines 2–4: define the data refinement of Bool into Colours, with an appropriate
mapping for the values.

Lines 5–6: define the refinement of the two boolean variables into their corre-
sponding variables of type Colour . In combination with lines 2–4, this corre-
sponds to the gluing invariants on lines 5 and 7 of Figure 3.

Lines 7–14: define the refinement relation between the four events: this corre-
sponds to the refines statements on lines 14, 20, 23 and 27 of Figure 3.

5 Conclusion and Future Work

Currently, the core benefit of EVT , our institution for Event-B, is the increased
modularity of Event-B specifications via the use of specification-building oper-
ators. The concept of refinement, central to Event-B, is also well-developed in
the theory of institutions, and we have shown how this can be applied here. De-
vising meaningful institutions and corresponding morphisms to/from Event-B
provides a mechanism not only for ensuring the safety of a particular specifica-
tion but also, via morphisms, a potential for integration with other formalisms.
Interoperability and heterogeneity are significant goals in the field of software
engineering, and we believe that the work presented in this paper provides a
basis for the integration of Event-B with other formalisms defined in this way.

The Heterogeneous Tool-Set Hets provides a framework for heterogeneous
specifications where each formalism is represented as a logic and understood in
the theory of institutions [11]. Our logic for EVT utilises the already existing
institution CASL [1] to account for the FOPEQ parts of the EVT institution
thus taking advantage of the interoperability/heterogeneity supplied by Hets.
CASL provides sorts and predicates like those written in lines 4–6 from Figure 4.

14

At present we can parse, statically analyse and combine specifications written
over EVT . Future work includes developing comorphisms to translate between
EVT and other logics in Hets as well as integrating with the provers currently
available in Hets (e.g. Isabelle). Comorphisms between these theorem provers
and EVT will allow us to prove our specifications correct in Hets. We envisage
that development should take place here to fully take advantage of the prospects
for interoperability. A translation from Event-B to EVT in the future will not
only enable us to fully utilise both the Rodin Platform and Hets, but will also
provide a translational semantics for Event-B using the theory of institutions.

Acknowledgements The authors would like to acknowledge the reviewers for
their helpful comments and Ionut Tutu for his assistance with the presentation
of the technical details of our institution for Event-B.

15

A FOPEQ, the insitution for first-order predicate logic
with equality

Definition 12 (FOPEQ-Signature) A signature in FOPEQ, ΣFOPEQ =
〈S,Ω,Π〉, is a tuple where S is a set of sort names, Ω is a set of operation
names indexed by arity and sort, and Π is a set of predicate names indexed by
arity.

Definition 13 (ΣFOPEQ-Sentence) For any ΣFOPEQ = 〈S,Ω,Π〉, ΣFOPEQ-
sentences are closed first-order formulae built out of atomic formulae using
∧,∨,¬,⇒, ⇐⇒ ,∃,∀. Atomic formulae are equalities between 〈S,Ω〉-terms, pred-
icate formulae of the form p(t1, . . . , tn) where p ∈ Π and t1, . . . , tn are terms
(with variables), and the logical constants true and false.

Definition 14 (ΣFOPEQ-Model) Given a signature ΣFOPEQ = 〈S,Ω,Π〉, a
model over FOPEQ consists of a carrier set |A|s for each sort name s ∈ S, a
function fA : |A|s1 × · · · × |A|sn → |A|s for each operation name f ∈ Ωs1...sn,s
and a relation pA ⊆ |A|s1 × · · · × |A|sn for each predicate name p ∈ Πs1···sn ,
where s1, . . . , sn, and s are sort names.

The satisfaction relation in FOPEQ is the usual satisfaction of first-order sen-
tences by first-order structures.

B Defining EVT , an institution for Event-B

There are two basic languages in Event-B, these are the Event-B mathemati-
cal language (propositional/predicate logic, set-theory and arithmetic) and the
Event-B modelling language [2]. We use FOPEQ, the institution for first-order
logic with equality, to represent this mathematical language. Therefore, EVT ,
our formalisation of Event-B in terms of institutions is based on splitting an
Event-B specification into two parts:

– A data part, which can be defined using some standard institution such as
that for algebra or first-order logic. We have chosen FOPEQ, the institution
for first order predicate logic with equality [14], since it most closely matches
the kind of data specification needed.

– An event part, which defines a set of events in terms of formula constrain-
ing their before- and after- states. Our specification here is closely based
on UML, an institution for UML state machines [10]. We also draw some
inspiration from the institution for CSPCASL, CSPCASL, [13].

Note that we will write Σ in place of ΣEVT when describing a signature over
our institution for Event-B, EVT . Where we speak of signatures over other in-
stitutions than EVT we will use the subscript notation. For example a signature
over the institution for first-order predicate logic with equality will be denoted
ΣFOPEQ.

16

B.1 Sign, the category of EVT signatures

In this section we define and prove that signatures over EVT and their respec-
tive morphisms form a category. In particular, we prove that we can compose
signature morphisms, that this composition is associative and that there exists
an identity signature morphism. The category Sign describes the structure of
the vocabulary that can be used in an Event-B specification.

Definition 15 (EVT -Signature) A signature in EVT is a five-tuple ΣEVT =
〈S,Ω,Π,E, V 〉 where 〈S,Ω,Π〉 is a standard FOPEQ-signature as described
above, E is a set of events, i.e. of pairs 〈event name, status〉 where status belongs
to the poset {ordinary < anticipated < convergent}, and V is a set of sorted
variables. We assume that every signature has an initial event, called Init,
whose status is always ordinary.

Definition 16 (EVT -Signature Morphism) We define the signature mor-
phism σ : Σ → Σ′ to be a five-tuple containing σS, σΩ, σΠ , σE and σV . Here
σS, σΩ, σΠ are the mappings taken from the corresponding signature morphism
in FOPEQ with composition, associativity of composition and identities as in
FOPEQ. In particular,

σS : Σ.S → Σ′.S is a function mapping sort names to sort names.

σΩ : Σ.Ω → Σ′.Ω is a family of functions mapping operation names in Ω,
respecting the arities and result sorts.

σΠ : Σ.Π → Σ′.Π is a family of functions mapping the predicate names in
Π, respecting the arities and sorts.

σE : Σ.E → Σ′.E is a function such that for any mapping σE〈e, st〉 =
〈e′, st′〉 we have st ≤ st′; in addition, σE preserves the initial event: in
symbols, we have that σE〈Init, ordinary〉 = 〈Init, ordinary〉.
σV : Σ.V → Σ′.V is a sort-preserving function on sets of variable names,
working similarly to the sort-preserving mapping for constant symbols, σΩ.

Lemma 1. Signatures and signature morphisms define a category Sign. The
objects are signatures and the arrows are signature morphisms

Proof. Let Σ = 〈S,Ω,Π,E, V 〉 be a signature where 〈S,Ω,Π〉 is a signature
over FOPEQ, ΣFOPEQ, the institution for first-order logic with equality [14].
E is a set of 〈event name, status〉 pairs and V is a set of sort indexed variable
names.

Composition of signature morphisms:

– Signature morphisms can be composed, the composition of σS , σΩ and σΠ
is as in FOPEQ so we are only concerned here with the composition of σE
and σV .

17

σE : Event names are not concerned with sort/arity so the only restriction
is on pairs of the form 〈Initialisation, ordinary〉 for which, it is easy
to see that the composition holds for σE .

σV : Variable names are sort indexed so σV utilises σS on these sorts and σV
is order-preserving.

σ2(σ1(v : s))

= σ2((σ1V (v) : σ1S (s)))

= ((σ2V (σ1V (v)) : (σ2S (σ1S (s))))

Let σ1 : Σ1 → Σ2 and σ2 : Σ2 → Σ3. We can check that σ2 ◦ σ1 is actually
a morphism.

• For all 〈e1, st1〉 ∈ Σ1.E1 we have that σ1(〈e1, st1〉) ∈ Σ2.E2 and for
all 〈e2, st2〉 ∈ Σ2.E2 we have that σ2(〈e2, st2〉) ∈ Σ3.E3. Therefore
σ2(σ1(〈e1, st1〉)) ∈ Σ3.E3 so

∀〈e1, st1〉 ∈ Σ1.E1 ⇒ σ2 ◦ σ1(〈e1, st1〉) ∈ Σ3.E3

• For (v1 : s1) ∈ Σ1.V1 we have that σ1((v1 : s1)) ∈ Σ2.V2 and for (v2 :
s2) ∈ Σ2.V2 then σ2((v2 : s2)) ∈ Σ3.V3. Therefore σ2(σ1((v1 : s1))) ∈
Σ3.V3 so

(v1 : s1) ∈ Σ1.V1 ⇒ σ2 ◦ σ1((v1 : s1)) ∈ Σ3.V3

– Composition of signature morphisms is associative, i.e.

(σ3 ◦ σ2) ◦ σ1 = σ3 ◦ (σ2 ◦ σ1)

For 〈e, st〉 ∈ Σ.E: σ2◦σ1(〈e, st〉) = σ2(σ1(〈e, st〉)) and so σ3◦(σ2◦σ1)(〈e, st〉) =
σ3(σ2(σ1(〈e, st〉))) by the definition of composition. This is equal to σ3 ◦σ2 ◦
(σ1(〈e, st〉)) which is the same as (σ3 ◦ σ2) ◦ σ1(〈e, st〉).

For (v : s) ∈ Σ.V : σ2 ◦ σ1((v : s)) = σ2(σ1((v : s))) and so σ3 ◦ (σ2 ◦ σ1)((v :
s)) = σ3(σ2(σ1((v : s)))) by the definition of composition. Similar to the
above, this is also equal to (σ3 ◦ σ2) ◦ σ1((v : s)).

Identity morphism for signatures: For any signature Σ, there exists an identity
signature morphism idΣ : Σ → Σ.

idE and idV are such that idE(〈e, st〉) = 〈e, st〉 and idV ((v : s)) = (v : s).This
morphism satisfies the signature morphism condition since

〈e, st〉 ∈ Σ.E ⇒ idE(〈e, st〉) ∈ E ∧ ((v : s) ∈ Σ.V ⇒ idV ((v : s)) ∈ V
ut

18

B.2 The functor Sen, giving EVT sentences

In this section we prove that Sen is a functor that provides for each signature
a set of sentences and for each signature morphism a function mapping the
corresponding sentences. In particular, we prove that Sen preserves composition
and identity of signature morphisms. The functor Sen describes the syntax of
an EVT -sentence over a specific vocabulary given by Σ.

Definition 17 (ΣEVT -Sentence) A sentence over EVT is a pair 〈e, φ(x, x′)〉
where e is an event name in the domain of Σ.E and φ(x, x′) is an open FOPEQ-
formula over the variables x from Σ.V and their primed versions x′.

Lemma 2. There is a functor Sen : Sign→ Set giving for each signature Σ a
set of sentences (objects in the category Set) and for each signature morphism
σ : Σ1 → Σ2 (arrows in the category Sign) a function Sen(σ) : Sen(Σ1) →
Sen(Σ2) (arrows in the category Set) translating sentences.

Proof. This proof can be decomposed into three subcomponents as follows:

Sentence morphisms: Sen is a functor therefore it is necessary to map the sig-
nature morphisms to corresponding functions over sentences. The functor maps
morphisms to sentence morphisms respecting sort, arity and initialisation events.
The domain and codomain of Sen(σ) are their respective images under σ.

Composition of sentence morphisms: We can show that

Sen(σ2 ◦ σ1) = Sen(σ2) ◦ Sen(σ1)

Sen(σ2) ◦ Sen(σ1) is the application of the signature morphism σ1 to a sen-
tence composed with the application of σ2 and since signature morphisms can
be composed this is the same as Sen(σ2 ◦ σ1).

Identity morphism for sentences: Let idΣ1
be an identity signature morphism

as defined in Lemma 1. Since signature morphisms already preserve identity
and Sen(idΣ1) is the application of the identity signature morphisms to every
element of the sentence, then the identities are preserved.

ut

B.3 The functor Mod, giving EVT models

In this section we prove that every signature corresponds to a category of models
with model morphisms as arrows (Lemma 3). Then, for each signature morphism
we define the model reduct as a functor from models over one signature to
models over another (Lemma 4). Finally, we prove that Mod is actually a functor
(Lemma 5). The functor Mod formally defines the semantics of an Event-B
specification by intuitively assigning values to all variables (including the after
variables described during an event) as described below. We begin by providing
a couple of definitions that will be required in order to carry out the proofs of
the above mentioned lemmas.

19

Definition 18 (Σ-StateA) For any given EVT -signature Σ we define a Σ-
state of an algebra A as a set of (sort appropriate) variable-to-value mappings
whose domain is the set of sort-indexed variable names Σ.V . We define the set
StateA as the set of all such Σ-states. By “sort appropriate” we mean that for
any variable x of sort s in V , the corresponding value for x should be drawn
from |A|s, the carrier set of s given by the FOPEQ-model A.

Definition 19 (ΣEVT -Model) Given Σ = 〈S,Ω,Π,E, V 〉, Mod(Σ) provides
a category of models, where a model over Σ is a tuple 〈A,L,R〉. A is a ΣFOPEQ-
model, and the non-empty initialising set L ⊆ StateA provides the states after
the Init event. Then for every event name e ∈ dom(E), other than Init, we
define R.e ⊆ StateA × StateA where for each pair of states 〈s, s′〉 in R.e, s
provides values for the variables x in V , and s′ provides values for their primed
versions x′. Then R = {R.e | e ∈ dom(E) and e 6= Init}.

Intuitively, a model over Σ maps every event name e ∈ dom(Σ.E) to a set of
variable-to-value mappings over the carriers corresponding to the sorts of each
of the variables x ∈ Σ.V and their primed versions x′. In cases where there are
no variables in Σ.V , L is the singleton {{}}.

For example, given the event e on the right, with
natural number variable x and boolean variable y
we construct the variable to value mappings:

Event e =̂
when grd1: x<2
then act1: x := x + 1

act2: y := false

Re =

{
{x 7→ 0, y 7→ false, x′ 7→ 1, y′ 7→ false}, {x 7→ 0, y 7→ true, x′ 7→ 1, y′ 7→ false},
{x 7→ 1, y 7→ false, x′ 7→ 2, y′ 7→ false}, {x 7→ 1, y 7→ true, x′ 7→ 2, y′ 7→ false}

}
The notation used above is interpreted as variable name 7→ value where the value
is drawn from the carrier set corresponding to the sort of the variable name given
in Σ.V . We note that trivial models be excluded as the initialising set L is never
empty. In cases where there are no variables in Σ.V , L is the singleton L = {{}}.

Lemma 3. For any signature Σ there is a category of models Mod(Σ) where
the objects in the category are models and the arrows are model morphisms.

Proof. There are three components to this proof as follows:

Model morphisms: In FOPEQ a model morphism h : A1 → A2 is a family of
functions h = 〈hs :: |A1|s → |A2|s〉s∈S which respects the sorts and arities of
the operations and predicates. EVT models have the form 〈A,L,R〉 so EVT -
morphisms are given by the FOPEQ-morphisms for A applied to the set L and
the relation R.

Thus there is a model morphism µ : 〈A1, L1, R1〉 → 〈A2, L2, R2〉 if there is a
FOPEQ-model morphism h : A1 → A2 and we extend this to the states in the
set L1 and in the relation R1. That is, for any element {b1 7→ a1, ..., bn 7→ an} ∈
R.e1 in R1 we have

{h(b1) 7→ h(a1), ..., h(bn) 7→ h(an)} ∈ R.e2
in R2. A similar construction follows for L1. The composition of model mor-
phisms, their associativity and identity derives from that of FOPEQ.

20

Composition of model morphisms: Let Mi = 〈Ai, LiRi〉 be a model and hi :
Mi →Mi+1 be a model morphism where i ∈ {1, 2, 3...}

Composition of model morphisms is associative:

(h3 ◦ h2) ◦ h1 = h3 ◦ (h2 ◦ h1)

(h3 ◦ h2)(h1(M1)) = h3 ◦ (h2(h1(M1)))

(h3 ◦ h2)(M2) = h3 ◦ (h2(M2))

h3(h2(M2)) = h3(h2(M2))

h3(M3) = h3(M3)

M4 = M4

Identity morphism for models: For any model Mi there exists an identity model
morphism hid : Mi →Mi. If Mi = 〈Ai, Li, Ri〉 then hid(Mi) = 〈Ai, Li, Ri〉

ut

Lemma 4. For each signature morphism σ : Σ1 → Σ2 the model reduct is a
functor Mod(σ) from Σ2-models to Σ1-models.

Note that each Σ-stateA is a set of variable-to-value mappings of the form

{v1 7→ val1, . . . , vn 7→ valn}

where v1, . . . , vn ∈ V .

Proof. Let M2 = 〈A2, L2, R2〉 be a Σ2-model respectively. Then the reduct M2|σ
collapses the model to only contain signature items supported by Σ1 and consists
of the tuple M2|σ = 〈A2|σ, L2|σ, R2|σ〉 such that

– A2|σ is the reduct of the FOPEQ-component of the EVT -model along the
FOPEQ-components of σ : Σ → Σ′.

– L2|σ and R2|σ are based the reduction of the states of A2 along σ.

Given e ∈ dom(E1) ∧ e 6= Initialisation and R.σ(e) ∈ R2

R.σ(e) = {s1, ..., sm}

where each si is a Σ2-stateA2
(1 ≤ i ≤ m) is of the form

{σ(v1) 7→ val1, ..., σ(vn) 7→ valn}

with v1, ..., vn ∈ V .
Then for each e ∈ dom(E1) ∧ e 6= Initialisation and R.e ∈ R2|σ we have

R.e = {s1|σ, ..., sm|σ}

where each si|σ (1 ≤ i ≤ m) is of the form

{v1 7→ val1, ..., vn 7→ valn}

21

Preservation of composition for model reducts: Given model morphisms
h1 : M1 →M2, h2 : M2 →M3: we must show (h2 ◦ h1)|σ = h2|σ ◦ h1|σ.

For any R.e ∈ R, (h2 ◦h1)|σ = (h2 ◦h1)|σ(R.e) which by definition of compo-
sition of morphisms is (h2)|σ ◦ ((h1)|σ(R.e)) which equals ((h2)|σ ◦ (h1)|σ)(R.e)
which is h2|σ ◦ h1|σ

Preservation of identities for model reducts: The reduct of the identity is the
identity.

Let idM2
be an identityΣ2-morphism then idM2

|σ is an identityΣ1-morphism
h1 defined by h1(re) = idM2

|σ(re) = re for any re ∈ R and e ∈ dom(E) ∧ e 6=
Initialisation.

For the components belonging to A these proofs follow the corresponding
proofs in FOPEQ. ut

Lemma 5. There is a functor Mod giving a category Mod(Σ) of models for
each signature Σ, and for each signature morphism σ : Σ1 → Σ2 a functor
Mod(σ) from Σ2-models to Σ1-models.

Proof. Proving that Mod is a functor:

For each σ : Σ1 → Σ2 in Sign there is an arrow in Signop going in the
opposite direction. By Lemma 4, the image of this arrow in Signop is Mod(σ) :
Mod(Σ2)→Mod(Σ1) in Cat. By Lemma 3, the image of a signature Sign is
an object Mod(Σ) in Cat. Therefore, domain and codomain of the image of an
arrow are the images of the domain and codomain respectively.

Preservation of composition: Mod(σ2 ◦ σ1) = Mod(σ2) ◦Mod(σ1)
Let σ1 : Σ1 → Σ2 and σ2 : Σ2 → Σ3 be signature morphisms and let Mi =
〈Ai, Li, Ri〉 be a model over Σi and let hi be a Σi-model morphism. i ∈ {1, 2, 3}.

– M3|σ2◦σ1
= (M3|σ2

)|σ1

By definition of reduct M3|σ2 = 〈A3, L3, R3〉|σ2 = 〈A2, L2, R2〉 = M2 .
Then (M3|σ2)|σ1 = M2|σ1 = 〈A2, L2, R2〉|σ1 = 〈A1, L1, R1〉 = M1.
By composition of signature morphisms σ2 ◦ σ1 : Σ1 → Σ3. So M3|σ2◦σ1

=
〈A3, L3, R3〉|σ2◦σ1

= 〈A1, L1, R1〉 = M1

Therefore M3|σ2◦σ1
= (M3|σ2

)|σ1

– h3|σ2◦σ1
= (h3|σ2

)|σ1

Proof similar to above.

Preservation of identities: Let idΣ1
be an identity signature morphism as defined

in Lemma 1. Since signature morphisms already preserve identity andMod(idΣ1
)

is the application of the identity signature morphisms to every part of the model,
then the identities are preserved.

ut

22

B.4 The Satisfaction relation for EVT

This satisfaction relation is a relation between EVT -sentences and EVT -models.
This satisfaction relation describes what it means for an EVT -sentence to be sat-
isfied using the variable to value mappings defined by any particular EVT -model.

Satisfaction: In order to define the satisfaction relation for EVT , we describe an
embedding from EVT -signatures and models to FOPEQ-signatures and models.

Given an EVT -signatureΣ = 〈S,Ω,Π,E, V 〉 we form the following two FOPEQ-
signatures:

– Σ
(V,V ′)
FOPEQ = 〈S,Ω ∪ V ∪ V ′, Π〉 where V and V ′ are the variables and their

primed versions, respectively, that are drawn from the EVT -signature, and
represented as 0-ary operators with unchanged sort. The intuition here is
that the set of variable-to-value mappings for the free variables in an EVT -
signature Σ are represented by adding a distinguished 0-ary operation sym-
bol to the corresponding FOPEQ-signature for each of the variables x ∈ V
and their primed versions.

– Similarly, for the initial state and its variables, we construct the signature

Σ
(V ′)
FOPEQ = 〈S,Ω ∪ V ′, Π〉.

Given the EVT Σ-model 〈A,L,R〉, we construct the FOPEQ-models:

– For every pair of states 〈s, s′〉, we form the Σ
(V,V ′)
FOPEQ-model expansion A(s,s′),

which is the FOPEQ-component A of the EVT -model, with s and s′ added
as interpretations for the new operators that correspond to the variables
from V and V ′ respectively.

– For each initial state s′ ∈ L we construct the Σ
(V ′)
FOPEQ-model expansion

A(s′) analogously.
For any EVT -sentence over Σ of the form 〈e, φ(x, x′)〉 we create a correspond-

ing FOPEQ-formula by replacing the free variables with their corresponding
operator symbols. We write this (closed) formula as φ(x, x′).

Definition 20 (Satisfaction Relation) For any EVT -model 〈A,L,R〉 and EVT -
sentence 〈e, φ(x, x′)〉, where e is an event name other than Init, we define:
〈A,L,R〉 |=Σ 〈e, φ(x, x′)〉 ⇐⇒ ∀〈s, s′〉 ∈ R.e · A(s,s′) |=

Σ
(V,V ′)
FOPEQ

φ(x, x′)

Similarly, we evaluate the satisfaction condition of EVT -sentences of the form
〈Init, φ(x′)〉 as follows:
〈A,L,R〉 |=Σ 〈Init, φ(x′)〉 ⇐⇒ ∀s′ ∈ L ·A(s′) |=

Σ
(V ′)
FOPEQ

φ(x′)

Theorem 3 (Satisfaction Condition). Given EVT signatures Σ1 and Σ2, a
signature morphism σ : Σ1 → Σ2, a Σ2-model M2 and a Σ1-sentence ψ1, the
following satisfaction condition holds:

Mod(σ)(M2) |=EVT Σ1
ψ1 ⇐⇒ M2 |=EVT Σ2

Sen(σ)(ψ1)

Proof. Let M2 be the model 〈A2, L2, R2〉, and ψ1 the sentence 〈e, φ(x, x′)〉. Then
the satisfaction condition is equivalent to

23

∀〈s, s′〉 ∈ R2|σ.e · (A2|σ)(s,s
′)|σ |=FOPEQ

Σ
(V1,V

′
1)

FOPEQ

φ(x, x′)

⇐⇒ ∀〈s, s′〉 ∈ R2.σE(e) ·A(s,s′)
2 |=FOPEQ

Σ
(V2,V

′
2)

FOPEQ

Sen(σ)(φ(x, x′))

Here, validity follows from the validity of satisfaction in FOPEQ. We prove a
similar result for initial events in the same way.

B.5 Comorphism

We define the relationship between EVT and FOPEQ as a comorphism em-
bedding of the simpler institution FOPEQ into the more complex institution
EVT .

Definition 21 Given two institutions INS = 〈Sign, Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉
and INS′ = 〈Sign′, Sen′,Mod′, 〈|=′Σ′〉Σ′∈|Sign′|〉. An institution comorphism
ρ : INS → INS′ consists of :

– a functor ρSign : Sign→ Sign′.

– a natural transformation ρSen : Sen → ρSign;Sen′ that is, for each Σ ∈
|Sign|, a function ρSenΣ : Sen(Σ) → Sen′(ρSign(Σ)) such that the following
diagram commutes for every σ : Σ1 → Σ2 in Sign.

Σ2

Σ1

σ

Sen(Σ2) Sen′(ρSign(Σ2))

Sen(Σ1) Sen′(ρSign(Σ1))

ρSenΣ2

Sen(σ) Sen′(ρSign(σ))

ρSenΣ1

– a natural transformation ρMod : (ρSign)op;Mod′ → Mod that is, for each
Σ ∈ |Sign|, a functor ρMod

Σ : Mod′(ρSign(Σ))→Mod(Σ) such that the fol-
lowing diagram commutes for every σ : Σ1 → Σ2 in Sign.

Σ2

Σ1

σ

Mod′(Σ2) Mod(ρSign(Σ2))

Mod′(Σ1) Mod(ρSign(Σ1))

ρModΣ2

Mod′(σ) Mod(ρSign(σ))

ρModΣ1

such that for any Σ ∈ |Sign|, the translations ρSenΣ : Sen(Σ)→ Sen′(ρSign(Σ))
of sentences and ρMod

Σ : Mod′(ρSign(Σ))→Mod(Σ) of models preserve the sat-
isfaction relation, that is, for any ψ ∈ Sen(Σ) and M ′ ∈ |Mod′(ρSign(Σ)|

ρMod
Σ (M ′) |=Σ ψ ⇐⇒ M ′ |=′ρSign(Σ) ρ

Sen
Σ (ψ)

24

Based on this definition we define the comorphism between FOPEQ and
EVT as follows:

Theorem 4. ρ : FOPEQ → EVT is an institution comorphism which consists
of:

– The functor ρSign : SignFOPEQ → SignEVT which takes as input a FOPEQ-
signature of the form 〈S,Ω,Π〉 and extends it with the set E = {〈Init
ordinary〉} and an empty set of variable names V . ρSign(σ) works as σ on
S, Ω and Π, it is the identity on the Init event and the empty function on
the empty set of variable names.

– The natural transformation ρSen : SenFOPEQ → ρSign; SenEVT which pairs
any closed FOPEQ-sentence (given by φ) with the Init event name to form
the EVT -sentence 〈Init, φ〉. As there are no variables in the signature, we do
not require φ to be over the variables x and x′. For each Σ ∈ |SignFOPEQ|, a
function ρSenΣ : SenFOPEQ(Σ)→ SenEVT (ρSign(Σ)) such that the following
diagram commutes for every σ : Σ1 → Σ2 in SignFOPEQ.

Σ2

Σ1

σ

SenFOPEQ(Σ2) SenEVT (ρSign(Σ2))

SenFOPEQ(Σ1) SenEVT (ρSign(Σ1))

ρSenΣ2

SenFOPEQ(σ) SenEVT (ρSign(σ))

ρSenΣ1

– The natural transformation ρMod : (ρSign)op; ModEVT → ModFOPEQ is
such that for any FOPEQ-signature Σ,

ρMod
Σ (Mod(ρSign(Σ))) = ρMod

Σ (〈A,L,∅〉) = A
For each Σ ∈ |SignFOPEQ|, a functor

ρMod
Σ : ModEVT (ρSign(Σ))→ModFOPEQ(Σ) such that the following

diagram commutes for every σ : Σ1 → Σ2 in SignFOPEQ.

Σ2

Σ1

σ

ModEVT (Σ2) ModFOPEQ(ρSign(Σ2))

ModEVT (Σ1) ModFOPEQ(ρSign(Σ1))

ρModΣ2

ModEVT (σ) ModFOPEQ(ρSign(σ))

ρModΣ1

such that for any Σ ∈ |SignFOPEQ|, the translations ρSenΣ : SenFOPEQ(Σ) →
SenEVT (ρSign(Σ)) and ρMod

Σ : ModEVT (ρSign(Σ)) → ModFOPEQ(Σ) pre-
serve the satisfaction relation, that is, for any ψ ∈ SenFOPEQ(Σ) and M ′ ∈
|ModEVT (ρSign(Σ)|

ρMod
Σ (M ′) |=FOPEQΣ ψ ⇐⇒ M ′ |=EVT

ρSign(Σ)
ρSenΣ (ψ)

25

Proof. By definition 11,M ′ = 〈A,L,∅〉, ρMod
Σ (M ′) = A and ρSenΣ (ψ) = 〈Init, ψ〉.

Therefore, we transform (∗) into

A |=FOPEQΣ ψ ⇐⇒ M ′ |=EVT
ρSign(Σ)

〈Init, ψ〉

Then, by the definition of satisfaction in EVT (Definition 20)

A |=FOPEQΣ ψ ⇐⇒ A(s′) |=FOPEQ
(ρSign(Σ))

(V ′)
FOPEQ

ψ

We deduce that Σ = (ρSign(Σ))V
′

FOPEQ, since there are no variable names in
V ′ and thus no new operator symbols are added to the signature. As there are
no variable names in V ′, L = {{}}, so we can conclude that A(s′) = A. Thus the
satisfaction condition holds. ut

For a specification written over FOPEQ we can use the specification-building
operator with ρ : SpecFOPEQ(Σ) → SpecEVT (ρSign(Σ)) where Σ ∈ |Sign|
to interpret SpecFOPEQ(Σ) as a specification over EVT .

26

C Modularisation: Pushouts and Amalgamation in EVT

One of our primary aims is to use the theory of institutions in order to pro-
vide access to an array of formally defined modularisation constructs, namely
specification-building operators, for Event-B. We have successfully represented
Event-B in the institution EVT and in the theory of institutions, pushouts and
amalgamation are required for any institution to have good modularity prop-
erties with respect to the specification building operators [12]. In fact, (weak)
amalgamation properties are a required for good parametrisation behaviour [14].
In this section we prove that EVT has pushouts and the (weak) amalgamation
property.

An institution has the weak amalgamation property if all pushouts in Sign
exist and every pushout diagram in Sign admits weak amalgamation [14].

We split the proof of amalgamation into two lemmas as follows:

Lemma 6. Pushouts exist in Sign

Proof. Given two signature morphisms σ1 : Σ → Σ1 and σ2 : Σ → Σ2 a pushout
is a triple (Σ′, σ′1, σ

′
2) with σ′1 ◦σ1 = σ′2 ◦σ2 that satisfies the universal property:

for every other such triple (Σ′′, σ′′1 , σ
′′
2) with σ′′1 ◦ σ1 = σ′′2 ◦ σ2 there exists a

unique morphism u : Σ′ → Σ′′ such that the following diagram commutes:

Σ

Σ1

Σ′

Σ2

Σ′′

σ1

σ′
1 σ′

2

σ2

σ′′
1 σ′′

2

u

Given some signature Σ = 〈S,Ω,Π,E, V 〉, and signature morphisms σ1 :
Σ → Σ1, σ2 : Σ → Σ2 we will construct the pushout (Σ′, σ′1, σ

′
2). Since FOPEQ

admits amalgamation and is semi-exact, all pushouts exist in SignFOPEQ and
the Mod functor maps them to pullbacks in Cat [14]. Hence, our pushout con-
struction follows FOPEQ for the elements that FOPEQ has in common with
EVT . In SigEVT the only additional elements are E and V , and for each of these
the pushouts are derived from Set those of FOPEQ.

– Set of 〈event name, status〉 pairs E: The set of all event names in the pushout
is the pushout in Set on event names only. Then, the status of an event in
the pushout is the supremum of all statuses of all events that are mapped

27

to it. Since signature morphisms map 〈Init,ordinary〉 to 〈Init, ordinary〉
the pushout does likewise. The universality property for E follows from that
of Set.

– Set of sort-indexed variable names V : The set of sort-indexed variable names
in the pushout is the pushout in FOPEQ for the sort components and the
pushout in Set for the variable names. This is a similar construction to the
pushout for operation names in FOPEQ as these also have to follow the
sort pushout. Thus, the universality property for V follows from that of Set
and the FOPEQ pushout for sorts.

ut

Lemma 7. Every pushout diagram in Sign admits weak model amalgamation

Consider the following diagram in Sign:

Σ′

Σ1

Σ

Σ2

σ′
1

σ1 σ2

σ′
2

This diagram admits weak model amalgamation if:

(a) for M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such that M1|σ1
= M2|σ2

, there
exists a model (the amalgamation of M1 and M2) M ′ ∈ |Mod(Σ′)| such
that M ′|σ′

1
= M1 and M ′|σ′

2
= M2.

(b) for any two model morphisms f1 : M11 →M12 in Mod(Σ1) and f2 : M21 →
M22 in Mod(Σ2) such that f1|σ1

= f2|σ2
, there exists a model morphism

(the amalgamation of f1 and f2) f ′ : M ′1 → M ′2 in Mod(Σ′) such that
f ′|σ′

1
= f1 and f ′|σ′

2
= f2.

We handle both of these conditions separately by splitting this lemma further
into two sublemmas:

Lemma 7(a) For M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such that M1|σ1
=

M2|σ2
, there exists a model (the amalgamation of M1 and M2) M ′ ∈ |Mod(Σ′)|

such that M ′|σ′
1

= M1 and M ′|σ′
2

= M2.

Proof. Consider the commutative diagram with signature morphisms σ1, σ2, σ
′
1

and σ′2 below:

28

M ′ = 〈A′, L′, R′〉

M1 = 〈A1, L1, R1〉

M = 〈A,L,R〉

M2 = 〈A2, L2, R2〉

Mod(σ′
1)

Mod(σ1) Mod(σ2)

Mod(σ′
2)

We construct M ′ = 〈A′, L′, R′〉 as follows. A′ is the FOPEQ-model (amalga-
mation of A1 and A2) over FOPEQ. We construct the initialising set L′ by
amalgamating L1 and L2 to get the set of all possible combinations of variable
mappings, while respecting the amalgamations induced on variable names via
the pushout V ′. We construct the relation R′, which is the amalgamation of R1

and R2, in a similar manner.
Specifically, starting from any R.e = {s1, ..., sm} ∈ R where s1, ..., sm are

states of the form
{v1 7→ val1, ..., vn 7→ valn}

we construct the corresponding R′.σ′(e) in R′ so that the following diagram
commutes:

29

R
′ .
σ
′ (
e)

=
{.
..
,{
σ
′ (
v 1

)
7→
h
′ (
v
a
l 1

),
..
.,
σ
′ (
v n

)
7→
h
′ (
v
a
l n

)}
,.
..
}
∈
R
′

R
1
.σ

1
(e

)
=
{.
..
,{
σ
1
(v

1
)
7→
h
1
(v
a
l 1

),
..
.,
σ
1
(v
n
)
7→
h
1
(v
a
l n

)}
,.
..
}
∈
R

1

R
.e

=
{.
..
,{
v 1
7→
v
a
l 1
,.
..
,v
n
7→
v
a
l n
},
..
.}
∈
R

R
2
.σ

2
(e

)
=
{.
..
,{
σ
2
(v

1
)
7→
h
2
(v
a
l 1

),
..
.,
σ
2
(v
n
)
7→
h
2
(v
a
l n

)}
,.
..
}
∈
R

2

M
o
d
(σ

′ 1
)

M
o
d
(σ

1
)

M
o
d
(σ

2
)

M
o
d
(σ

′ 2
)

30

Here h′ = (h1 + h2), the corresponding function over the carrier-sets in M ′

obtained from FOPEQ, and σ′ = (σ′1 ◦ σ1)+(σ′2 ◦ σ2) the mapping for variable
and event names obtained from the corresponding construction in Sign.

ut

Lemma 7(b) For any two model morphisms f1 : M11 → M12 in Mod(Σ1)
and f2 : M21 → M22 in Mod(Σ2) such that f1|σ1

= f2|σ2
, there exists a model

morphism (the amalgamation of f1 and f2) called f ′ : M ′1 → M ′2 in Mod(Σ′),
such that f ′|σ′

1
= f1 and f ′|σ′

2
= f2.

Proof. Here, we are given the morphisms f1 and f2 and their common reduct
f0, and must construct f ′ so that the following diagram commutes:

f ′ : M ′1 →M ′2

f1 : M11 →M12

f0 : M01 →M02

f2 : M21 →M22

Mod(σ′
1)

Mod(σ1) Mod(σ2)

Mod(σ′
2)

Since each EVT -model has a FOPEQ model as its first component, each of
the EVT -model morphisms f0, f1, f2 and f ′ must have an underlying model
morphism in FOPEQ, which we denote f−0 , f−1 , f−2 and f

′− respectively. To
build the amalgamation for EVT -models we must show how to extend these to
cover the data states of the EVT -models. This EVT -model morphism follows the
underlying FOPEQ-model morphism on sort carrier sets for the values in the
data states.

Given by R.e ∈ R, suppose we start with any f0-maplet of the form

{. . . , {v1 7→ val1, . . . , vn 7→ valn}, . . .}
7→ {. . . , {v1 7→ f−0 (val1), . . . , vn 7→ f−0 (valn)}, . . .}e ∈ f0

where f−0 is the underlying map on data types from the FOPEQ model
morphism.

Then the original two functions in f1 and f2 must have maplets of the form

{. . . , {σ1(v1) 7→ h1(val1), . . . , σ1(vn) 7→ h1(valn)}, . . .}
7→ {. . . , {σ1(v1) 7→ f−1 (h1(val1)), . . . , σ1(vn) 7→ f−1 (h1(valn))}, . . .} ∈ f1

and

{. . . , {σ2(v1) 7→ h2(val1), . . . , σ2(vn) 7→ h2(valn)}, . . .}
7→ {. . . , {σ2(v1) 7→ f−2 (h2(val1)), . . . , σ2(vn) 7→ f−2 (h2(valn))}, . . .} ∈ f2

31

where f−1 and f−2 are again the data type maps from the underlying FOPEQ
model morphism, and h1 and h2 are obtained from Mod(σ1) and Mod(σ2).

We then can construct the elements of the model morphism f ′, which is the
amalgamation of f1 and f2, as f ′-maplets of the form:

{. . . , {σ′(v1) 7→ h′(val1), . . . , σ′(vn) 7→ h′(valn)}, . . .}
7→ {. . . , {σ′(v1) 7→ f ′−(h′(val1)), . . . , σ′(vn) 7→ f ′−(h′(valn))}, . . .} ∈ f ′

As before, h′ = (h1 + h2), the corresponding function over the carrier-sets in
M ′ obtained from FOPEQ, and σ′ = (σ′1 ◦ σ1) + (σ′2 ◦ σ2) the mapping for
variable and event names obtained from the corresponding construction in Sign.
Here f

′− = f−1 + f−2 is the amalgamation from the corresponding diagram for
model morphisms in FOPEQ, which ensures that the data states are mapped
to corresponding states in the model M ′2.

ut

32

D An Institution-Based Semantics for Event-B

D.1 Syntax of Event-B

Our objective is to define a translational semantics for Event-B by representing
Event-B specifications as specifications over EVT , our institution for Event-B
[9]. There are two basic languages in Event-B, these are the Event-B mathemat-
ical language (propositional/predicate logic, set-theory and arithmetic) and the
Event-B modelling language [2]. We decompose the Event-B modelling language
into two further languages; the infrastructure language and the superstructure
language. In order to translate Event-B into the institutional framework we
divide the constructs of the Event-B language into three layers, each layer cor-
responding to one of its three component languages, as shown in Figure 7.

– At the base of Figure 7 is the Event-B mathematical language. The institu-
tion for first order predicate logic with equality, FOPEQ, is embedded via
comorphism into the institution for Event-B, EVT . The semantics that we
have defined translates the constructs of this mathematical language into
corresponding constructs over FOPEQ.

– At the next level is the Event-B infrastructure, which consists of those lan-
guage elements used to define variables, invariants, variants and events.
These are translated into sentences over EVT .

– At the topmost level is the Event-B superstructure which deals with the
definition of Event-B machines and contexts, as well as their relationships
(refines, sees, extends). These are translated into presentations over EVT .

Event-B Superstructure refines, sees
EVT specification
building operators

Event-B Infrastructure
variables, invariants,

variants, events
EVT -sentences

Mathematical Language
carrier sets, constants,

axioms, extends

FOPEQ-sentences
and specification

building operators

Fig. 7: We split the Event-B syntax into three components: superstructure, infrastruc-
ture and a mathematical language

The abstract syntax for Event-B is described briefly in [2] and we provide a
more detailed version in Figure 8. A Specification consists of any number of Ma-
chine and Context definitions. The nonterminals predicate and expression are not

33

defined in Figure 8. These are part of the Event-B mathematical language, and in
our translation these syntactic elements will be supplied by FOPEQ, the insti-
tution for first order predicate logic with equality, with predicates corresponding
to FOPEQ-formulae and expressions corresponding to FOPEQ-terms.

Both machines and contexts allow the user to specify theorems which are used
to generate proof obligations. Since these must be consequences of the specifi-
cation and do not add any constraints, we omit them from further discussion
here. We order things in a slightly different manner to the standard in Event-
B in that we use MachineBody,EventBody and ContextBody to refer to the
non-superstructure elements of a machine, event or context.

Based on the syntax defined in Figure 8, we define the semantics of each
of the Event-B infrastructure sentences by describing a mechanism to trans-
late them into EVT -sentences. In order to carry out such a translation we first
extract the corresponding EVT signature Σ = 〈S,Ω,Π,E, V 〉 from any given
Event-B specification. Contexts can be represented entirely by the underlying
mathematical language and thus translated into specifications over FOPEQ. In
section D.2, we define the interface in Figure 9 in order to facilitate the use of
some FOPEQ operations and semantic functions.

D.2 A FOPEQ Interface

The Event-B formalism is parametrised by an underlying mathematical language
and EVT , our institution for Event-B is parametrised by FOPEQ, the institu-
tion for first-order predicate logic with equality in Figure 9. We define a FOPEQ
interface in order to facilitate the use of its operations and semantic functions
within our semantic definition of Event-B using EVT . The description of the
operations defined in Figure 9 is contained within the figure.

The semantic function PΣ described in Figure 9 takes a labelled predicate
and outputs a FOPEQ-sentence (Σ-formula). The semantic function TΣ takes
an expression and returns a Σ-term. These functions are used later to translate
Event-B predicates and expressions into Σ-formulae and Σ-terms respectively.

The purpose of the semantic function M is to take two lists of identifiers
and a list of labelled predicates and, use these to form the FOPEQ signature
〈S,Ω,Π〉. The reason for this is that when extracting a signature from a context
(described in Figure 12) carrier sets are interpreted as sorts and used to form
S. The constants and axioms are used to form Ω and Π. We assume that M
provides this translation.

For simplicity, we assume that it is possible to use Event-B identifiers in
FOPEQ and EVT . Also, when we reference a Σ-formula in Figure 9 we mean a
possibly open FOPEQ-formula over the signature given by Σ. We only return a
closed FOPEQ-formula when applying PΣ to axiom sentences since they form
closed predicates in Figure 12.

34

Specification ::= (Machine | Context)+

Machine ::= machine identifier
[refines identifier]
[sees identifier+]
MachineBody
end

MachineBody ::= variables identifier+

invariants LabelledPredicate∗

[theorems LabelledPredicate+]
[variant expression]
events InitEvent Event∗

LabelledPredicate ::= label : predicate

InitEvent ::= event Initialisation

status ordinary

[then LabelledPredicate]
end

Event ::= event identifier
status Stat
[refines identifier+]
EventBody
end

EventBody ::= [any identifier+]
[where LabelledPredicate]
[with LabelledPredicate]
[then LabelledPredicate]

Stat ::= ordinary | convergent | anticipated

Context ::= context identifier
[extends identifier+]
ContextBody
end

ContextBody ::= [sets identifier+]
[constants identifier+]
[axioms LabelledPredicate+]
[theorems LabelledPredicate+]

identifier ::= String

label ::= String

Fig. 8: The Event-B syntax is parametrised by first order logic as indicated by our
use of the nonterminals predicate and expression. These will be mapped to FOPEQ-
formulae and terms respectively.

35

FOPEQ Operations

• F.and : Σ-formula∗ → Σ-formula
This corresponds to the logical conjunction (∧) of formulae in FOPEQ which
results in the formation of a formula.

• F.lt : Σ-formula×Σ-formula→ Σ-formula
This operation takes two formulae and returns a formula corresponding to
arithmetic less than (<).

• F.leq : Σ-formula×Σ-formula→ Σ-formula
This operation takes two formulae and returns a formula corresponding to
arithmetic less than or equal to (≤).

• F.exists : identifier∗ ×Σ-formula→ Σ-formula
This operation takes a sequence of identifiers and a formula and returns a
formula corresponding to the existential quantification of the identifiers over
the input formula.

• F.ι : identifier∗ → Σ-formula→ Σ-formula
This operation takes a list of identifiers and formula and returns the input
formula with the names of all the free variables (as given by the list of
identifiers) primed.

FOPEQ Semantic Functions

• PΣ : LabelledPredicate→ Σ-formula

• TΣ : expression→ Σ-term

• M : identifier∗ × identifier∗ × LabelledPredicate∗ → |SignFOPEQ|

Fig. 9: The FOPEQ interface provides access to a range of operations and semantic
functions which we assume to exist. These are used throughout our semantic definitions
in figures 10, 11 and 12.

36

Env = Id→ |Sign|

D : Specification→ Env → Env
D J〈 〉K ξ = ξ
D Jhd :: tlK ξ = D (JtlK) (D JhdK ξ)

D : Machine→ Env → Env

D

u

wwww
v

machine m
refines a
sees ctx1, . . . , ctxn
mbody
end

}

����
~
ξ = ξ ∪ {JmK 7→ (〈S,Ω,Π,E, V 〉 ∪ r(ξJaK))}

where
〈S,Ω,Π〉 = {(ξ Jctx1K) ∪ . . . ∪ (ξ JctxnK)}
〈E, V,RA〉 = DJmbodyK
r : |Sign| → |Sign|
r(ξJaK) = let Σa = ξJaK in 〈Σa.S,Σa.Ω,Σa.Π,RA−CΣa.E,Σa.V 〉

D : MachineBody → 〈E, V, {identifier}〉

D

u

wwww
v

variables v1, . . . , vn
invariants i1, . . . , in
theorems t1, . . . , tn
variant n
events einit e1, . . . , en

}

����
~

= 〈E, V,RA〉

where
E = {defJeinitK, defJe1K, . . . , defJenK}
V = 〈Jv1K, . . . , JvnK〉
RA = refJeinitK ∪ refJe1K ∪ . . . ∪ refJenK

def : Event→ identifier × Stat
def Jevent e, status s, refines e1, . . . , en, · · · endK = 〈JeK, s〉
def JeinitK = 〈Initialisation, ordinary〉

ref : Event→ {identifier}
ref Jevent e, status s, refines e1, . . . , en, · · · endK = {Je1K, . . . , JenK}
ref JeinitK = {JeinitK}

D : Context→ Env → Env

D

u

ww
v

context ctx
extends ctx1, . . . , ctxn
cbody
end

}

��
~ ξ = ξ ∪ (JctxK 7→ (DJcbodyK ∪ ξJctx1K ∪ . . . ∪ ξJctxnK))

D : ContextBody → |SignFOPEQ|

D

u

ww
v

sets s1, . . . , sn
constants c1, . . . , cn
axioms a1, . . . , an
theorems t1, . . . , tn

}

��
~ = 〈S,Ω,Π〉

where
〈S,Ω,Π〉 = M((Js1K, . . . , JsnK), (Jc1K, . . . , JcnK), (Ja1K, . . . , JamK))

Fig. 10: The semantics of signature extraction uses the interface described in Figure
9 in order to extract signature components from the definition of a ContextBody.
Context signatures are over FOPEQ and machine signatures are over EVT .

37

D.3 Extracting the Signature Σ

We define an environment Env to map machine/context names to signatures,
since, due to the superstructure components, machines/contexts can refer to
other machines/contexts. In all further definitions we use ξ to denote an envi-
ronment as defined by Env. We define the overloaded semantic function D in
Figure 10 to extract the environment from a given specification.

We map D through the list of machines and contexts that make up an Event-B
specification. D extracts the signature from machines and contexts. The function
def extracts the pair (event name, status) for each event in the machine and
these pairs form the E component of the signature. The status is paired with each
event name in order to correctly form variant sentences which will be discussed in
Section D.5. The function ref forms the set of events that a particular concrete
event refines. We use this function to remove the names of the refined abstract
events, and the status that each is paired with, from the abstract machine’s
signature before we combine it with the concrete signature. We use the domain
anti-restriction operator −C to achieve this.

Once we have formed the environment, we can then define a systematic trans-
lation from specifications in Event-B to specifications over EVT . We take a top-
down approach to this translation which is comprised of two parts.

– The first semantic mapping (in Figure 11) that we provide is from the super-
structure components of an Event-B specification to presentations over EVT
(for machines) and presentations over FOPEQ (for contexts) in section D.4.

– The second semantic mapping (in Figure 12) that we define is from the
Event-B infrastructure sentences (invariants, variants, events and axioms)
to sentences over EVT (for invariants, variants and events) and sentences
over FOPEQ (for axioms) in section D.5.

D.4 Defining the Semantics of Event-B Superstructure sentences
using EVT

Based on the syntax defined in Figure 8 we have identified a number of constructs
that form the Event-B superstructure language, these are:

• extends context identifier+

• refines machine identifier
• sees context identifier+

• refines event identifier+

In this section, we define a semantics for the Event-B superstructure lan-
guage using specification building operators. In Figure 11 we define the semantic
function B to translate Event-B specifications written using the superstructure
language to presentations over EVT that use the specification building operators
defined in the theory of institutions [14].

We translate a specification as described by Figure 8 into a presentation over
the institution EVT .

38

Definition 22 (Presentation) For any Σ, a Σ-presentation is a pair 〈Σ,Φ〉
where Φ ⊆ Sen(Σ). M ∈ |Mod(Σ)| is a model of a Σ-presentation 〈Σ,Φ〉 if
M |= Φ [14].

The construct that enables a context to extend others is used in Event-B
to add more details to a context. Since a context in Event-B only refers to
elements of the FOPEQ component of an EVT signature it is easy to see that
we can translate this using the specification building operator then. then is
used to enrich the signature with new sorts/operations etc [14]. It is possible
to extend more than one context. In this case the resulting context contains all
constants and axioms of all extended contexts and the additional specification of
the extending context itself [8]. To give a semantics for this using the specification
building operators we and all extended contexts and use then to incorporate the
extending context itself. The specification building operator and takes the sum
of two specifications that can be written over different signatures. It is the most
straight forward way to combine specifications over different signatures [14].

In Event-B machines may see contexts. This construct is used to add a con-
text(s) to a machine so that the machine can refer to elements of the context(s).
We have shown that the relationship between FOPEQ and EVT is that of a
comorphism. This enables us to directly use FOPEQ-sentences, as given by the
context in this case, in an EVT -presentation. We use the specification building
operation with ρ which indicates translation by an institution comorphism ρ [14].
The resulting machine specification is heterogeneous as it links two institutions
by an institution comorphism.

An Event-B machine can refine at most one other machine and there are
two types of machine refinement: superposition and data refinement [8]. then
accounts for both of these types of refinement because either new signature
components or constraints on the data (gluing invariants) are added to the spec-
ification. In Figure 11 the semantic function AΣ is used to process the events in
the concrete machine which refine those in the abstract machine.

Event refinement in Event-B is superposition refinement [8]. By superposi-
tion refinement all of the components of the corresponding abstract event are
implicitly included in the refined version. This approach is useful for gradually
adding more detail to the event. In EVT , we have not prohibited multiple defi-
nitions of the same event name. When there are multiple definitions we combine
them by taking the conjunction of their respective formulae which will constrain
the model. As mentioned above, when refining an abstract machine we use the
semantic function AΣ , in Figure 11 to process the events in the concrete ma-
chine which refine those in the abstract machine. AΣ in turn calls the semantic
function RΣ . RΣ gets the abstract machine signature and restricts its event com-
ponent to those events contained in the refines clause of the event definition
using domain restriction. This new signature is included in the abstract via the
signature morphism σh. We then form the signature morphism σm which is the
identity on the sort, operation, predicate and variable components of Σh. σm
maps each of the abstract event signature components that are being refined
by the concrete event ec to the signature component corresponding to ec. The

39

For an Event-B specification denoted by SP, the environment is given by ξ = DJSP Kξ0
where ξ0 is the empty environment.

B : Specification→ Env → 〈|Pres|〉
B J〈 〉K ξ = 〈 〉
B Jhd :: tlK ξ = (B JhdK ξ) :: (B JtlK ξ)

B : Machine→ Env → |PresEVT |

B

u

wwww
v

machine m
refines a
sees ctx1, . . . , ctxn
mbody
end

}

����
~
ξ =

〈
Σ,



spec JmK over EVT =
(Jctx1K and . . . and JctxnK) with ρ
(and AΣJmbodyKJaKξ)∗

then

SΣJmbodyK
where
ρ : FOPEQ → EVT


where Σ = ξJmK

〉

∗only included if the refines clause is nonempty

AΣ : MachineBody → identifier → Env → Sen(Σ)

AΣ

u

wwww
v

variables v1, . . . , vn
invariants i1, . . . , in
theorems t1, . . . , tn
variant n
events einit, e1, . . . , en

}

����
~

JaKξ = RΣJe1KJaKξ and . . . and RΣJenKJaKξ

RΣ : Event→ identifier → Env → Sen(Σ)

RΣ

u

wwww
v

event ec
status s
refines e1, . . . , en
ebody
end

}

����
~

JaKξ =

let

Σa = ξJaK,
Σh = 〈Σa.S,Σa.Ω,Σa.Π, {Je1K, . . . , JenK}CΣa.E,Σa.V 〉,
σh : Σh ↪→ Σa,
σm : Σh → Σ
σm = 〈Σh.S ↪→ Σ.S,Σh.Ω ↪→ Σ.Ω,Σh.Π ↪→ Σ.Π,

Σh.E 7→ {JecK}CΣ.E,Σh.V ↪→ Σ.V 〉
in

(JaK hide via σh) with σm

B : Context→ Env → |PresFOPEQ|

B

u

ww
v

context ctx
extends ctx1, . . . , ctxn
cbody
end

}

��
~ ξ =

〈
Σ,


spec JctxK over FOPEQ =
Jctx1K and . . . and JctxnK
then

SΣJcbodyK


where Σ = ξJctxK

〉

Fig. 11: We define the semantics of Event-B superstructure sentences by translating
them into presentations over EVT using the semantic function B and the specification
building operators defined in the theory of institutions. Note that objects of Pres are
of the form 〈Σ,Φ〉 for a signature Σ and Φ ⊆ Sen(Σ).

40

resulting sentence uses hide via and with to apply these signature morphisms
(σh and σm) in the correct way.

D.5 Defining the Semantics of Event-B Infrastructure sentences
using EVT

In this section we define a translation from Event-B infrastructure sentences to
sentences over EVT . We translate the axiom sentences that are found in Event-B
contexts to sentences over FOPEQ as they form part of the underlying Event-B
mathematical language in Figure 7.

We define an overloaded meaning function, SΣ , for specifications in Figure
12. SΣ takes as input a specification and returns a set of sentences over EVT
(SenEVT (Σ)) for machines and a set of sentences over FOPEQ (SenFOPEQ(Σ))
for contexts. When applying SΣ to a machine (resp. context) we also define
semantic functions for processing invariants, variants and events (resp. axioms).
These are given by IΣ ,VΣ and EΣ in Figure 12. Axioms are predicates that
can be translated into closed FOPEQ-formulae using the semantic function PΣ
which is defined in the interface in Figure 9.

Given a list of invariants i1, . . . , in we define the semantic function IΣ in
Figure 12. Each invariant, i, is a LabelledPredicate from which we form the
open FOPEQ-sentence F.and(PΣJiK, F.ι(Σ.V)(PΣJiK)). Each invariant sentence
is paired with each event name e where (e, s) ∈ E and s is the status correspond-
ing to event e. This is due to the fact that invariants in Event-B are shared
globally by all events in a machine.

Given a variant expression n, we define the semantic function VΣ in Figure
12. The variant is only relevant for specific events so we pair it with an event
name in order to meaningfully evaluate the variant expression. An event whose
status is convergent must strictly decrease the variant expression. An event
whose status is anticipated must not increase the variant expression. This
expression can be translated into an open FOPEQ-term using the semantic
function TΣ as described in Figure 9. From this we form a formula based on the
status of the event(s) in the signature Σ. Event-B machines are only permitted
to have one variant [8].

In Figure 12 we define the semantic function EΣ to process a given event
definition. Event guard(s) and witnesses are predicates that can be translated
via PΣ into open FOPEQ-formulae denoted by G and W respectively in Figure
12. In Event-B, actions are interpreted as before-after predicates e.g. x := x+ 1
is interpreted as x′ = x + 1. Therefore, actions can also be translated via PΣ
into open FOPEQ-formulae denoted by BA in Figure 12. Thus the semantics
of an EventBody definition is given by the semantic function FΣ which returns
the formula F.exists (p, F.and(G, W, BA)) where p are the event parameters.

A context can exist independently of a machine and is written as a spec-
ification over FOPEQ. Thus, we translate an axiom sentence directly as a
FOPEQ-sentence which is a closed Σ-formula using the semantic function PΣ
given in Figure 9. Axiom sentences are closed FOPEQ-formulae (elements of

41

SΣ : MachineBody → SenEVT (Σ)

SΣ

u

wwww
v

variables v1, . . . , vn
invariants i1, . . . , in
theorems t1, . . . , tn
variant n
events einit, e1, . . . , en

}

����
~

=

(
IΣJi1K ∪ . . . ∪ IΣJinK ∪ VΣJnK
∪ EΣJeinitK ∪ EΣJe1K ∪ . . . ∪ EΣJenK

)

IΣ : LabelledPredicate→ SenEVT (Σ)
IΣJiK = {〈JeK, F.and(PΣJiK, F.ι(Σ.V)(PΣJiK))〉 | (e, s) ∈ E}

VΣ : expression→ SenEVT (Σ)

VΣJnK =
{〈JeK, F.lt(F.ι(Σ.V)(TΣJnK),TΣJnK)〉 | (e, convergent) ∈ E}
∪{〈JeK, F.leq(F.ι(Σ.V)(TΣJnK),TΣJnK)〉 | (e, anticipated) ∈ E}

EΣ : InitEvent→ SenEVT (Σ)

EΣ :

u

ww
v

event Initialisation

status ordinary

then act1, . . . , actn
end

}

��
~ = {〈Initialisation, BA〉}

where
BA = F.and(PΣJact1K, . . . ,PΣJactnK)

EΣ : Event→ SenEVT (Σ)

EΣ :

u

wwww
v

event e
status s
refines e1, . . . , en
ebody
end

}

����
~

= {〈JeK,FΣJebodyK〉}

FΣ : EventBody → Σ-formula

FΣ :

u

ww
v

any p1, . . . , pn
where grd1, . . . , grdn
with w1, . . . , wn
then act1, . . . , actn

}

��
~ = F.exists(p, F.and(G,W,BA))

where
p = 〈Jp1K, . . . , JpnK〉
G = F.and(PΣJgrd1K, . . . ,PΣJgrdnK)
W = F.and(PΣJw1K, . . . ,PΣJwnK)
BA = F.and(PΣJact1K, . . . ,PΣJactnK)

SΣ : ContextBody → SenFOPEQ(Σ)

SΣ

u

ww
v

sets s1, . . . , sn
constants c1, . . . , cn
axioms a1, . . . , an
theorems t1, . . . , tn

}

��
~ = {PΣJa1K, . . . ,PΣJanK}

Fig. 12: We provide a semantics for Event-B infrastructure sentences by translating
them into sentences over EVT , denoted SenEVT (Σ), for machines and sentences over
FOPEQ, denoted SenFOPEQ(Σ), for contexts. We use the interface operations and
semantic functions described in Figure 9 throughout this translation.

42

SenFOPEQ(Σ)) which are interpreted as a valid sentences in EVT using the
comorphism ρ.

References

1. CASL reference manual. In P. D. Mosses, editor, The Complete Documentation of
the Common Algebraic Specification Language, volume 2960 of LNCS. 2004.

2. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

3. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. International
Journal on Software Tools for Technology Transfer, 12(6):447–466, 2010.

4. J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundamenta Informaticae, 77(1-2):1–28,
2007.

5. A. Achouri and L. Jemni Ben Ayed. UML activity diagram to Event-B: A model
transformation approach based on the institution theory. In Information Reuse
and Integration, pages 823–829, Aug. 2014.

6. J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, 1992.

7. A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic,
and T. Latvala. Supporting reuse in Event-B development: Modularisation ap-
proach. In Abstract State Machines, Alloy, B and Z, volume 5977 of LNCS, pages
174–188. 2010.

8. M. Jastram and P. M. Butler. Rodin User’s Handbook: Covers Rodin V.2.8. Cre-
ateSpace Independent Publishing Platform, USA, 2014.

9. A. Kleppe. Software language engineering: creating domain-specific languages using
metamodels. Pearson Education, 2008.

10. A. Knapp, T. Mossakowski, M. Roggenbach, and M. Glauer. An institution for
simple UML state machines. In Fundamental Approaches to Software Engineering,
volume 9033 of LNCS, pages 3–18. 2015.

11. T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, Hets. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 4424
of LNCS, pages 519–522, 2007.

12. T. Mossakowski and M. Roggenbach. Structured CSP - a process algebra as an
institution. In Recent Trends in Algebraic Development Techniques, volume 4409
of LNCS, pages 92–110. 2007.

13. M. Roggenbach. Csp-casla new integration of process algebra and algebraic speci-
fication. Theoretical Computer Science, 354(1):42–71, 2006.

14. D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

43

References

1. CASL reference manual. In P. D. Mosses, editor, The Complete Documentation of
the Common Algebraic Specification Language, volume 2960 of LNCS. 2004.

2. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

3. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. International
Journal on Software Tools for Technology Transfer, 12(6):447–466, 2010.

4. J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundamenta Informaticae, 77(1-2):1–28,
2007.

5. A. Achouri and L. Jemni Ben Ayed. UML activity diagram to Event-B: A model
transformation approach based on the institution theory. In Information Reuse
and Integration, pages 823–829, Aug. 2014.

6. J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, 1992.

7. A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic,
and T. Latvala. Supporting reuse in Event-B development: Modularisation ap-
proach. In Abstract State Machines, Alloy, B and Z, volume 5977 of LNCS, pages
174–188. 2010.

8. M. Jastram and P. M. Butler. Rodin User’s Handbook: Covers Rodin V.2.8. Cre-
ateSpace Independent Publishing Platform, USA, 2014.

9. A. Kleppe. Software language engineering: creating domain-specific languages using
metamodels. Pearson Education, 2008.

10. A. Knapp, T. Mossakowski, M. Roggenbach, and M. Glauer. An institution for
simple UML state machines. In Fundamental Approaches to Software Engineering,
volume 9033 of LNCS, pages 3–18. 2015.

11. T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, Hets. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 4424
of LNCS, pages 519–522, 2007.

12. T. Mossakowski and M. Roggenbach. Structured CSP - a process algebra as an
institution. In Recent Trends in Algebraic Development Techniques, volume 4409
of LNCS, pages 92–110. 2007.

13. M. Roggenbach. Csp-casla new integration of process algebra and algebraic speci-
fication. Theoretical Computer Science, 354(1):42–71, 2006.

14. D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

44

