
Modularising and Promoting Interoperability for
Event-B Specifications using Institution Theory

Marie Farrell, Rosemary Monahan & James F. Power
Department of Computer Science

Maynooth University
Maynooth, Co. Kildare, Ireland

Introduction & Motivation

Event-B is an industrial-strength language for system-level modelling and ver-
ification that combines an event-based logic with basic set theory.
• Event-B supports formal refinement, which allows a developer to write an
abstract specification of a system and gradually add complexity.

• The Rodin Platform, an IDE for Event-B, ensures the safety of system
specifications and refinement steps by generating appropriate
proof-obligations, and then discharging these via support for various
theorem provers [2].

Limitations of Event-B

Modularity: Event-B lacks well-developed modularisation constructs and
it is not easy to combine specifications in Event-B with those
written in other formalisms [1]. Notice how, in Figure 1 the same
specification has to be provided twice. The events set_peds_go
and set_peds_stop are equivalent, modulo renaming of
variables, to set_cars_go and set_cars_stop.

Interoperability: When developing software using Event-B, it is at least
necessary to transform the final concrete specification into a
different language to get an executable implementation. Current
approaches to interoperability in Event-B consist of a range of
Rodin-based plugins to translate to/from Event-B, but these often
lack a solid logical foundation.

Adding Event-B to the theory supermarket

• We have identified the theory of institutions as a suitable metalogical
framework in which to provide a specification of the Event-B specification
language.

• In order to represent a formalism/logic using institutions, the syntax and
semantics for the formalism must first be defined and verified in a uniform
way using some basic constructs from category theory [3].

• It is necessary to verify that the resulting metalogical structure is actually
a valid institution. This is ensured by proving the satisfaction condition
which states in formal terms the basic maxim of institutions, that “truth is
invariant under change of notation”.

Building an Institution for Event-B, EVT

Our institution, EVT , for Event-B consists of the following definitions:
• A signature over EVT describes the permitted vocabulary to use when
writing Event-B specifications, consisting of names for sorts, operations,
predicates, events and variables. Signature morphisms provide a
mechanism for moving between vocabularies and mapping the
corresponding sentences and models in a similar fashion.

• A sentence over EVT is an Event-B specification written using this
vocabulary. Such sentences can be evaluated in a model.

• An EVT model consists of possible before-after value pairs for each
variable in each event.

Further details and proofs can be found on our website:
http://www.cs.nuim.ie/~mfarrell

A Modular Traffic Light System

By defining EVT and carrying out the appropriate proofs, we gain access
to an array of generic specification building operators [3]. These facilitate
the combination (and, +, ∪), extension (then), hiding (hide via, reveal) and
renaming via signature morphism (with) of specifications. Thus EVT provides
a means for writing down and splitting up the components of an Event-B
system, facilitating increased modularity for Event-B specifications. Figure 2
is a presentation (set of sentences) over the institution EVT corresponding to
the Event-B machine mac1 defined in Figure 1.

Our Contributions

Modularity: Representing Event-B in this way provides us with a
mechanism for combining and parameterising specifications. Most
importantly, these constructs are formally defined, a crucial issue
for a language used in formal modelling.

Interoperability: Institution comorphisms can be defined enabling us to
move between different institutions, thus providing a mechanism
by which a specification written over one institution can be
represented as a specification over another. Devising meaningful
institutions and corresponding morphisms to/from Event-B
provides a mechanism for not only ensuring the safety of a
particular specification but also, via morphisms, a platform for
integration with other formalisms and logics.

1 MACHINE mac1
2 VARIABLES
3 cars go, peds go
4 INVARIANTS
5 inv1: cars go ∈ BOOL
6 inv2: peds go ∈ BOOL
7 inv3: ¬ (peds go = true ∧ cars go = true)
8 EVENTS
9 Initialisation

10 act1: cars go := false
11 act2: peds go := false
12 Event set peds go =̂
13 when grd1: cars go = false
14 then act1: peds go := true
15 Event set peds stop =̂
16 act1: peds go := false
17 Event set cars go =̂
18 when grd1: peds go = false
19 then act1: cars go := true
20 Event set cars stop =̂
21 act1: cars go := false

Fig. 1: Event-B machine specification for a traffic
system, with each light controlled by boolean flags.

1 spec TwoBools over FOPEQ
2 Bool then
3 ops i go, u go : Bool
4 preds ¬ (i go = true ∧ u go = true)
5 spec LightAbstract over EVT
6 TwoBools then
7 Initialisation
8 act1 : i go := false
9 Event set go =̂

10 when grd1: u go = false
11 then act1: i go := true
12 Event set stop =̂
13 then act1: i go := false
14 spec mac1 over EVT
15 (LightAbstract with σ1) and (LightAbstract with σ2)
16 where
17 σ1 = {i go 7→ cars go, u go 7→ peds go,
18 set go 7→ set cars go, set stop 7→ set cars stop}
19 σ2 = {i go 7→ peds go, u go 7→ cars go,
20 set go 7→ set peds go, set stop 7→ set peds stop}

Fig. 2: A modular institution-based presen-
tation corresponding to the abstract machine
mac1 in Fig 1.

tics for Event-B but we gain access to an array of generic specification building
operators [5]. EVT provides us with a mechanism for combining, parameterising
and modularising specifications using formally defined constructs. In Fig 2 we
recast mac1 from Fig 1 in modular form using the specification building opera-
tors. Notice that the specification for each individual light had to be explicitly
written down twice in Fig 1. In our modular institution-based presentation it
is only necessary to have one light specification and simply supply the required
variable and event mappings. Devising meaningful institutions and correspond-
ing comorphisms to/from Event-B provides a platform for integration with other
formalisms and logics. By embedding the simpler institution FOPEQ into the
more complex institution EVT , the relationship between them is a comorphism.

In conclusion, we have successfully specified an institution for the Event-
B formalism and proved the required properties to utilise the modularisation
constructs. Our current task is that of implementation using the Heterogeneous
Tool-Set, Hets [4]. A significant future challenge is the integration of proofs for
Event-B, provided by the Rodin Platform, into the Hets environment.

References

1. A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic, and
T. Latvala. Supporting reuse in Event-B development: Modularisation approach.
In ABZ, volume 5977 of LNCS, pages 174–188. 2010.

2. M. Jastram and P. M. Butler. Rodin User’s Handbook: Covers Rodin V.2.8. Cre-
ateSpace Independent Publishing Platform, USA, 2014.

3. A. Knapp, T. Mossakowski, M. Roggenbach, and M. Glauer. An institution for
simple UML state machines. In FASE, volume 9033 of LNCS, pages 3–18. 2015.

4. T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, Hets. In
TACAS, volume 4424 of LNCS, pages 519–522, 2007.

5. D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

6. R. Silva and M. Butler. Shared event composition/decomposition in Event-B. In
FMCO, volume 6957 of LNCS, pages 122–141. 2012.

[1] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic, and T. Latvala. Supporting reuse in Event-B development: Modularisation approach. In Abstract State Machines, Alloy, B and Z, volume 5977 of LNCS, pages 174–188. 2010.
[2] M. Jastram and P. M. Butler. Rodin User’s Handbook: Covers Rodin V.2.8. CreateSpace Independent Publishing Platform, USA, 2014.
[3] D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal Software Development. Springer, 2012.

http://www.cs.nuim.ie/~mfarrell

