
An Institutional Approach to
Modularisation in Event-B

Marie Farrell?, Rosemary Monahan, and James F. Power

Dept. of Computer Science, Maynooth University, Co. Kildare, Ireland

Abstract. This paper presents a formulation of the Event-B formal
specification language in terms of the theory of institutions. Our goal is
to exploit the specification-building operations of this theory to modu-
larise Event-B specifications. A case study of a traffic-light simulation is
presented to illustrate our approach.

Keywords: Event-B; institutions; refinement; formal methods; modular
specification

1 Introduction and Motivation

Event-B is a state-based formalism for system-level modelling and verification,
combining set theoretic notation with event-driven modelling. Event-B ensures
the safety of a given specification via proof-obligation generation and theorem
proving with support for these provided by the Rodin Platform [5, 8].

The main pitfalls of Event-B are that it lacks well-developed modularisation
constructs and it is not easy to combine specifications in Event-B with those
written in other formalisms [7]. Our thesis, presented in this paper, is that the
theory of institutions can provide a framework for defining a rich set of modulari-
sation operations and promoting interoperability and heterogeneity for Event-B.
Examples of formalisms that have been improved by using institutions in this
way are those for UML state machines [9] and CSP [13].

This paper is centered around a case study of a specification in Event-B,
inspired by one in the Rodin Handbook [8], and we use this to give an overview
of Event-B and related work in Section 2. To use the specification-building oper-
ators provided by institutions we define an institution for Event-B in Section 3.
This allows us to re-cast our case study in modular form. We address refinement
in Section 4 since this is of central importance in Event-B, and show how this
too can be modularised using institutional specification building operations. We
summarise our contributions and outline future directions in Section 5.

2 Event-B

Event-B machines are used for modelling the dynamic part of a systems spec-
ification [2]. Figure 1 presents an Event-B machine for a traffic lights system

? This project is funded by the Irish Research Council, email: mfarrell@cs.nuim.ie

with one light signalling cars and one signalling pedestrians [8]. The goal of the
specification is to ensure that it is never the case that both cars and pedestrians
receive the “go” signal at the same time (represented by boolean flags on line 3).
In general, machine specifications can contain variable declarations (lines 2-3),
invariants (lines 4-7) and event specifications (lines 8-33).

Figure 1 specifies five kinds of event (including a starting event called Init-

ialisation (lines 9-13)). Each event specification has a guard part, specifying
when it can be activated, and an action part, specifying what happens when
the event is activated. For example, the set peds go event as specified on lines
14-19, has one guard expressed as a boolean expression (line 16), and one action,
expressed as an assignment statement (line 18). In general an event can contain
many guards and actions, though a variable can only be assigned to once (and
assignments occur in parallel).

In addition to machine specifications, contexts in Event-B can be used model
the static properties of a system (constants, axioms and carrier sets). Figure 2
provides a context giving a specification for the data-type COLOURS and uses
the axiom on line 7 to explicitly restrict the set to only contain the constants
red, green and orange.

A central feature of Event-B is its support for refinement, allowing a devel-
oper to write an abstract specification of a system and gradually add complexity
through a series of refinement steps [3, 11]. Figure 3 shows an Event-B ma-
chine specification for mac2 which refines the machine mac1 from Figure 1. This
machine is refined first by introducing the new context on line 3 and then by
replacing the truth values used in the abstract machine with new values from
the carrier set COLOURS. During refinement, the user typically supplies a glu-
ing invariant relating properties of the abstract machine to their counterparts
in the concrete machine [8]. The gluing invariants shown in lines 8 and 10 of
Figure 3 define a one-to-one mapping between the concrete variables introduced
in mac2 and the abstract variables of mac1. As specified in lines 7 and 9, the
new variables (peds colour and cars colour) can be either red or green, thus
the gluing invariants map true to green and false to red.

Event-B permits the addition of new variables and events - buttonpushed on
line 5 and press button on lines 44-46. Also, the existing events from mac1 are
renamed to reflect refinement; for example, on lines 18-19 the event set peds-

green is declared to refine set peds go. This event has also been altered via
the addition of a guard (line 22) and an action (line 25) which incorporate the
functionality of a button-controlled pedestrian light.

This example highlights features of the Event-B language, but notice how, in
Figure 1 the same specification has to be provided twice. The events set peds go

and set peds stop are equivalent, modulo renaming of variables, to set cars go

and set cars stop. Ideally, writing and proving the specification for these events
should only happen once. Also, the invariants in Figure 1 (lines 6,7,8) are con-
cerned with typing. It is superfluous to check typing as often as invariant preser-
vation. In an ideal world, these fundamental details would be dealt with else-
where.

2

1 MACHINE mac1
2 VARIABLES
3 cars go, peds go
4 INVARIANTS
5 inv1: cars go ∈ BOOL
6 inv2: peds go ∈ BOOL
7 inv3: ¬ (peds go = true ∧ cars go = true)
8 EVENTS
9 Initialisation

10 begin
11 act1: cars go := false
12 act2: peds go := false
13 end
14 Event set peds go =̂
15 when
16 grd1: cars go = false
17 then
18 act1: peds go := true
19 end
20 Event set peds stop =̂
21 begin
22 act1: peds go := false
23 end
24 Event set cars go =̂
25 when
26 grd1: peds go = false
27 then
28 act1: cars go := true
29 end
30 Event set cars stop =̂
31 begin
32 act1: cars go := false
33 end
34 END

Fig. 1: Event-B machine specification for
a traffic system, with cars and pedestrians
controlled by boolean flags.

1 CONTEXT ctx1
2 SETS
3 COLOURS
4 CONSTANTS
5 red, green, orange
6 AXIOMS
7 axm1: partition(COLOURS, {red}, {green},
{orange})

8 END

Fig. 2: Event-B context specification for
the colours of a set of traffic lights.

1 MACHINE mac2
2 refines mac1
3 SEES ctx1
4 VARIABLES
5 cars colour, peds colour, buttonpushed
6 INVARIANTS
7 inv1: peds colour ∈ {red, green}
8 inv2: (peds go = TRUE) ⇔ (peds colour =
green)

9 inv3: cars colour ∈ {red, green}
10 inv4: (cars go = TRUE)⇔ (cars colour =

green)
11 inv5: buttonpushed ∈ BOOL
12 EVENTS
13 Initialisation
14 begin
15 act1: cars colour := red
16 act2: peds colour := red
17 end
18 Event set peds green =̂
19 refines set peds go
20 when
21 grd1: cars colour = red
22 grd2: buttonpushed = true
23 then
24 act1: peds colour := green
25 act2: buttonpushed := false
26 end
27 Event set peds red =̂
28 refines set peds stop
29 begin
30 act1: peds colour := red
31 end
32 Event set cars green =̂
33 refines set cars go
34 when
35 grd1: peds colour = red
36 then
37 act1: cars colour := green
38 end
39 Event set cars red =̂
40 refines set cars stop
41 begin
42 act1: cars colour := red
43 end
44 Event press button =̂
45 begin
46 act1: buttonpushed := true
47 end
48 END

Fig. 3: A refined Event-B machine spec-
ification for a traffic system, with cars
and pedestrians controlled by a button-
activated set of pedestrian lights.

3

2.1 Related Work on modularisation for Event-B

The Event-B formalism lacks modularisation constructs which will improve its
scalability for use in industrial projects [7]. One suggested method of providing
modularity for Event-B specifications is model decomposition, originally pro-
posed by Abrial and later developed as a plugin for the Rodin Platform [3, 17].

Two methods of model decomposition were addressed by Abrial: shared vari-
able and shared event. Shared variable partitions the model into subcomponents
based on events sharing the same variables. The shared event method partitions
the model based on variables participating in the same events. An event that
uses variables from different subcomponents must be split into partial versions
of the non-decomposed event (restricted to only parameters, guards and actions
referring to the relevant variable). To use the plugin the user selects the machine
to be decomposed and defines the subcomponents to be generated. They then
select the style of decomposition to use and can opt to decompose the contexts
in a similar fashion. The tool generates the subcomponents which can undergo
further refinement and be recomposed [17]. The moment in development where
decomposition takes place is important: decomposing early may yield an overly
abstract sub-component that cannot be refined without knowledge of the oth-
ers; decomposing late may mean that the already concrete model will not benefit
from the decomposition. In addition, this approach is quite restrictive in that
it is not possible to refer to the same element across subcomponents. Also, it
is impossible to select which invariants are allocated to each subcomponent,
currently, only those relating to variables of the subcomponent are included.

Another approach is the modularisation plugin for Rodin [7], which is based
on the shared variable method outlined above. Here, modules split up an Event-B
component and are paired with an interface describing conditions for incorpo-
rating the module into another. Module interfaces list the operations contained
in the module. These are similar to machines but they may not specify events.
The events of a machine which imports an interface can see the visible constants,
sets and axioms, call the imported operations, and the interface variables and
invariants are added to the machine. These imported interface variables may be
referred to in invariants/guards and actions but may not be directly updated in
an action.

Although similar to the shared variable approach proposed by [3] this method
is less restrictive, as invariants can be included in the module interface. This
provides a mechanism for modularity in Event-B but there are a large number
of different components that the user needs to utilise and it is unclear how a
model developed using these constructs might be translated into/combined with
a different formalism. It does not improve the overall scalability of Event-B as a
formalism but rather increases modularity within Event-B only [7].

By providing an institution for the Event-B formalism, we increase the the
modularity of Event-B specifications via the use of specification building op-
erators [14]. Furthermore, our approach provides scope for the interoperability
of Event-B and other formalisms. The development of EVT , our institution for
Event-B, has been closely based on UML, the institution for UML state ma-

4

chines [9]. Both institutions describe state-based formalisms and, therefore, by
keeping UML in mind during the development of EVT , it should be possible to
design meaningful signature morphisms between these formalisms in the future.
UML-B (Rodin plugin) provides a way of moving from UML models to Event-B
code, but this was not developed with institutions in mind [18]. Our Hets im-
plementation of EVT takes inspiration from that of CSPCASL in Hets which
uses CASL to specify the data parts of CSP processes [12]. This will become
clearer when we discuss separating out Event-B specifications in Section 3.

An attempt has already been made to provide an institution and correspond-
ing morphisms for Event-B and UML [4]. However, the definition of Event-B
sentences and models are vague, making it difficult to evaluate their semantics
in a meaningful way. Also, the models described more closely resemble the set-
theoretic foundations of B specifications, whereas we concentrate on event-based
models in EVT . While it is always possible to describe formalisms to some ex-
tent using institutions, the presentation of a case study in both Event-B and its
modular, institutional version is an important element of developing this work.

An institution exists for CSP in which models are described as traces [13].
The main issue in developing meaningful morphisms between EVT and CSP
arises from the fact that CSP is a much richer language than Event-B (and thus
EVT). This means that although it appears easy to move from EVT to CSP,
the opposite direction will be more difficult. That said, the work of Schneider
et al. provides a basis for such a translation by contributing a CSP semantics of
Event-B [15].

Other related work includes various plugins that translate between different
formalisms and Event-B; however thus far none use institution theory to do so.

3 Institutions

The theory of institutions, originally developed by Goguen and Burstall in a
series of papers originating from their work on algebraic specification, was ulti-
mately generalised to include multiple formalisms [6]. The key observation is that
once the syntax and semantics of a formal system have been defined in a uniform
way, using some basic constructs from category theory, then a set of specification
building operators can be defined that allow you to write, modularise and build
up specifications that can be defined in a formalism-independent manner [14].
Institutions have been defined for many logics and formalisms, most notably
algebraic specification and variants of first-order logic, but also programming-
related formal languages relevant to Event-B such as UML state machines [9],
CSP [13] and Z specifications [10].

Definition(Institution) Formally, an institution INS for some given for-
malism will consist of definitions for

Vocabulary: a category Sign of signatures, with signature morphisms σ : Σ →
Σ′ for each signature Σ, Σ′ ∈ |Sign|.

5

Syntax: a functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences for
each signature Σ and a function Sen(σ) : Sen(Σ)→ Sen(Σ′) which translates
Σ-sentences to Σ′-sentences for each signature morphism σ.

Semantics: a functor Mod : Signop → Cat giving a category Mod(Σ) of
Σ-models for each signature Σ and a functor Mod(σ) : Mod(Σ′)→Mod(Σ)
which translates Σ′-models to Σ-models (and Σ′-morphisms to Σ-morphisms)
for each signature morphism σ : Σ → Σ′.

Satisfaction: a satisfaction relation 〈|=INS,Σ⊆ |Mod(Σ)| × Sen(Σ)〉, deter-
mining satisfaction of Σ-sentences by Σ-models for each signature Σ, such that
for any signature morphism σ the translations Mod(σ) of models and Sen(σ)
of sentences preserve the satisfaction relation:

M ′ |=INS,Σ′ Sen(σ)(φ) iff Mod(σ)(M ′) |=INS,Σ φ

for any φ ∈ Sen(Σ) and M ′ ∈ |Mod(Σ′)| [14].

3.1 Defining EVT , an institution for Event-B

EVT , our formalisation of Event-B in terms of institutions is based on splitting
an Event-B specification into two parts:
– A data part, which can be defined using some standard institution such as

that for algebra or first-order logic. We have chosen FOPEQ, the institution
for first order predicate logic with equality [14], since it most closely matches
the kind of data specification needed.

– An event part, which defines a set of events in terms of formula constraining
their before- and after- states. Our specification here is closely based on
UML, an institution for UML state machines [9].
While we do not have space to present the details fully formally here, they are

not more complex than those normally used for first-order logic, with appropriate
assignments for the free variables named in the event specification variables.

A signature in EVT is a tuple Σ, where Σ = 〈S,Ω,Π,E, V 〉 with 〈S,Ω,Π〉
a standard first-order signature consisting of a set of sort, operation and predicate
names, the latter two indexed appropriately by sort and arity. E is a set of event
names which must contain the event name Initialisation. V is a set of sort-
indexed variable names. Signature morphisms respect arities, sort-indexing and
initialisation events.

For any Σ = 〈S,Ω,Π〉 in FOPEQ, a Σ-sentence is a set of closed first-order
formulae built out of atomic formulae using (∧,∨,¬,⇒, ⇐⇒ ,∃,∀). Formulae
are algebraic term equalities (〈S,Ω〉-terms) over the predicates, variables and,
true and false.

In the Rodin Platform Event-B sentences are presented (with suitable syn-
tactic sugaring) as:

I(x)
Event e =̂

when
guard-name: G(x)

then

6

act-name: A(x, x′)
end

where I(x) and G(x) represent the invariant(s) and guard(s) respectively
over the set of variables x. In Event-B, actions are interpreted as before-after
predicates i.e. x := x + 1 is interpreted as x′ = x + 1. Therefore, A(x, x′)
represents the action(s) over the sets of variables x and x′. Here x′ is the same
set of variables as x but with all of the names primed. We use an appropriate
bijective renaming function ι to do this.

Based on this we can define sentences over EVT . Taking Σ = 〈S,Ω,Π,E, V 〉,
we define two types of sentences over EVT :

• This represents the invariant(s) in an Event-B specification. It consists of
pair 〈inv, φ〉 where inv is some keyword for invariant sentences and φ is a
FOPEQ sentence with a tuple of free variables x ⊆ V .

• This represents the event in an Event-B specification. It consists of a pair
〈e, φ〉 where e ∈ E and φ is a FOPEQ predicate sentence over x and x′,
the free variables in V . φ is a sentence in FOPEQ. Pairing φ with an event
name e provides a definition for event e.

Invariants are represented as a special kind of sentence for simplicity. A
sentence defines a single event or an invariant (which is a FOPEQ sentence).
As invariants in Event-B are defined outside events we separate their definition
from 〈e, φ〉. Including them as part of 〈e, φ〉 would localise them to each event.

One option was to index the events by their invariants, where global invari-
ants would be indexed by all events in the signature, giving one uniform sentence
type. However, if we were to take this approach we would encounter problems
with amalgamation in EVT , since such invariants projected into a larger signa-
ture would no longer be global for that signature. Thus, to ensure that invariants
remain global for a signature, we have opted to syntactically differentiate such
invariants.

Given Σ = 〈S,Ω,Π,E, V 〉, Mod(Σ) provides a category of models where a
model over Σ is composed of a FOPEQ-model paired with a relation R. For
each event/variable name pair (e, v), R contains a (e, v-indexed) relation over
the carrier set of the corresponding variable’s sort. For example, given event
name inc with integer variable x and boolean variable y where inc increments x
by 1 and sets y to false, a model is:〈

A,R =
{
{..., 〈1, 2〉, 〈2, 3〉, ...}inc,x, {〈false, false〉, 〈true, false〉}inc,y

}〉
where A is a standard first-order model over 〈S,Ω,Π〉 providing semantics for
the sorts, operations and predicates in the usual way for first-order logic.

Intuitively, a model over Σ maps each pair (e, v), consisting of an event and
variable name, to a relation over the sort carrier set of v, of which each tuple
is a pair with the first element corresponding to a before value and the second
an after value for v when used in event e. For simplicity we refer to the first
element of the tuple as be,v and the second as ae,v, and curry these to get the
corresponding variable-to-value mappings be and ae.

7

Satisfaction for EVT : The satisfaction relation for sentences over EVT is
broken into two parts: satisfaction of invariant sentences and satisfaction of event
sentences.

First, consider invariant sentences: Given a Σ-model 〈A,R〉 and some invari-
ant sentence 〈inv, φ〉 over EVT , we define 〈A,R〉 |=EVT 〈inv, φ〉 if and only if
for each event e we have

A |=FOPEQ φ[x/be] ∧ φ[x/ae]

where φ[x/ae] (resp. φ[x/be]) denotes the evaluation of φ using the variable-to-
value mapping given by ae (resp. be).

Next, consider event sentences: Given a Σ-model 〈A,R〉 and some event
sentence 〈e, φ〉 over EVT we define 〈A,R〉 |=EVT 〈e, φ〉 if and only if

A |=FOPEQ φ[x/be][ι
−1(x′)/ae]

where ι−1 un-primes the variable names, and thus φ is evaluated using the
variable-to-value mapping given by ae and then be as above.

3.2 Pragmatics of specification-building in EVT

In our approach an Event-B specification, such as that for mac1 in Figure 1, is
represented as a presentation over EVT . A presentation over a signature is a set
of sentences, which are satisfied in a model if the conjunction of the sentences is
satisfied in the usual way. Note that this implicitly merges different specifications
for the same event name (models must satisfy all the formulae). This incorporates
the standard semantics of the extends operator for events in Event-B where the
extending event implicitly has all the parameters, guards and actions of the
extended event but can have additional parameters, guards and actions [3].

An interesting aspect is that if a variable is not assigned to in an action
then, in theory, they may be assigned any arbitrary value even though they
have not been updated. This forces us to impose a kind of frame condition
when indicating that no other variables may be changed so that they don’t get
inadvertently assigned to. This is a problem when combining specifications in
the presentation. For example, to combine two events of the same name the
sensible thing to do is combine their respective actions. But imposing the frame
condition doesn’t allow these actions be combined because no other variables are
allowed to change and the addition of an action will violate this. Therefore, we
assume that the default be that the frame condition is disabled thus facilitating
the combination of specifications. This frame condition is somewhat analogous
to the free operator that will be discussed later.

Another point is that we have not defined the models down to the detail of
sequential execution of events, thereby not requiring that the Initialisation

event happen first which is the norm in Event-B. We have left this to future
work and it will be handled when devising an appropriate entailment system for
EVT in Hets.

At first we considered that the relationship between FOPEQ and EVT be
that of a duplex institution formed from a restricted version of EVT (EVT res)

8

1 spec TwoBools over FOPEQ
2 Bool
3 then
4 ops
5 i go, u go : Bool
6 preds
7 ¬ (i go = true ∧ u go = true)

25 spec mac1 over EVT
26 (LightAbstract with σ1)
27 and (LightAbstract with σ2)
28 where
29 σ1 = {i go 7→ cars go, u go 7→ peds go,
30 set go 7→ set cars go,
31 set stop 7→ set cars stop}
32 σ2 = {i go 7→ peds go, u go 7→ cars go,
33 set go 7→ set peds go,
34 set stop 7→ set peds stop}

8 spec LightAbstract over EVT
9 TwoBools

10 then
11 Initialisation
12 begin
13 act1 : i go := false
14 end
15 Event set go =̂
16 when
17 grd1: u go = false
18 then
19 act1: i go := true
20 end
21 Event set stop =̂
22 then
23 act1: i go := false
24 end

Fig. 4: A modular institution-based presentation corresponding to the abstract ma-
chine mac1 in Fig 1.

and FOPEQ where EVT res is the institution EVT but does not contain any
FOPEQ signature items. This approach would allow us to constrain EVT res
by FOPEQ and thus facilitate the use of FOPEQ sentences in an elegant way.
However, our intent is to implement EVT in Hets where duplex institutions
are not supported [12]. For this reason we opt for a comorphism embedding the
simpler institution FOPEQ into the more complex institution EVT [14].

The comorphism ρ : FOPEQ → EVT consists of the following: ρSign :
Sig[FOPEQ]→ Sig[EVT] includes signatures and morphisms in FOPEQ into
the category of EVT signatures by equipping them with empty sets of event and
(sort-indexed) variable names. Each FOPEQ sentence is mapped to an invariant
sentence in EVT . For any FOPEQ signature Σ, ρMod

Σ : ModEVT (ρSign(Σ)) →
ModFOPEQ is a functor mapping EVT models to FOPEQ models. It achieves
this by forgetting about the relation part of the EVT model.

In order to ensure the institution EVT has good modularity properties,
pushouts must exist and the institution must have the amalgamation property
(all pushouts in Sign exist and every pushout diagram in Sign admits amal-
gamation) [14]. These amalgamation properties are also a prerequisite for good
parameterisation behaviour (section 4.3) [13].

3.3 An Example of specification-building in EVT

Defining EVT , an institution for Event-B, allows us to restructure Event-B spec-
ifications using the standard specification building operators for institutions [14].
Thus EVT provides a means for writing down and splitting up the components
of an Event-B system, facilitating increased modularity for Event-B specifica-
tions. Figure 4 is a presentation over the institution EVT corresponding to the
Event-B machine mac1 defined in Figure 1. The presentation in Figure 4 consists
of three specifications:

9

Lines 1-7: The specification TwoBools, technically in EVT , can be presented
as a pure specification over FOPEQ, declaring two boolean variables con-
strained to have different values.

Lines 8-24: LightAbstract is a specification over EVT for a single traf-
fic light that extends TwoBools (then). It contains the events set go and
set stop, with a constraint that a light can only be set to “go” if its opposite
light is not.

Lines 25-34: The specification mac1 combines (and) two versions of LightAb-
stract each with a different signature morphism (σ1 and σ2) mapping the
specification variables and event names to those in the Event-B machine.

Notice that the specification for each individual light had to be explicitly
written down twice in the Event-B machine in Fig 1. In our modular institution-
based presentation it is only necessary to have one light specification and simply
supply the required variable and event mappings. In this way, EVT adds much
more modularity than is currently present in Event-B.

4 Refinement in the EVT institution

Event-B supports three forms of machine refinement: the refinement of event
internals (guards and actions) and invariants; the addition of new events; and
the decomposition of an event into several events [5, 8]. It is therefore essential
that any formalisation of Event-B be capable of capturing these concepts.

In general for institutions, a refinement from an abstract specification A to
some concrete specification C is defined as |Mod|C ⊆ |Mod|A when Sig[A] =
Sig[C]. This definition is credible, as new variable or event names cannot be
added if the signatures stay the same. This provides only one option: strengthen
the formulae in event definitions, which will result in at most the same number
of models. This accounts for the first form of refinement in Event-B.

The second and third forms of refinement in Event-B cause the signatures
to change because the set of event names E will get larger when adding or de-
composing events. We address this using the specification building operator hide
via σ which allows the definition of a signature morphism from the abstract to
the concrete specification [14]. In this way we interpret the concrete specifica-
tion over the same signature as the abstract specification and thus translate the
models accordingly. This method of reasoning is supported by Schneider’s work
on a CSP semantics for Event-B [16].

4.1 A modular, refined specification

Figure 5 contains a presentation over EVT corresponding to the main elements
of the Event-B specification mac2 presented in Figures 2 and 3. Here, we present
three data specifications over FOPEQ and three event specifications over EVT .
Lines 1-11: We specify the Colours data type with a standard data specifi-
cation, as can be seen in Figure 2. The specification TwoColours describes
two variables of type Colours constrained not both be green at the same time.

10

1 spec Colours over FOPEQ
2 then
3 sorts
4 Colours free with red|green|orange

5 spec TwoColours over FOPEQ
6 Colours
7 then
8 ops
9 icol, ucol : Colours

10 preds
11 ¬(icol = green ∧ ucol = green)

12 spec LightRefined over EVT
13 TwoColours
14 then
15 Initialisation
16 begin
17 act1: icol := red
18 end
19 Event set green =̂
20 when
21 grd1: ucol = red
22 then
23 act1: icol := green
24 end
25 Event set red =̂
26 then
27 act1: icol := red
28 end

29 spec BoolButton over FOPEQ
30 Bool
31 then
32 ops
33 button : Bool

34 spec ButtonSpec over EVT
35 BoolButton
36 then
37 Event gobutton =̂
38 when
39 grd1: button = true
40 then
41 act1: button := false
42 end
43 Event pushbutton =̂
44 then
45 act1: button := true
46 end

47 spec mac2 over EVT
48 (LightRefined with σ3)
49 and (LightRefined and (ButtonSpec with σ5)with σ4)

50 where
51 σ3 = {i col 7→ cars colour, u col 7→ peds colour,
52 set green 7→ set cars green, set red 7→ set cars red}
53 σ4 = {i col 7→ peds colour, u col 7→ cars colour,
54 set green 7→ set peds green, set red 7→ set peds red}
55 σ5 = {gobutton 7→ set peds green}

Fig. 5: A modular institution-based presentation corresponding to the refined machine
mac2 specified in Fig 3.

This corresponds to the gluing invariants on lines 8 and 10 of Figure 3. The
specification modularisation constructs used in Figure 5, allow these properties
to be handled distinctly and in a manner that facilitates comparison with the
TwoBools specification on lines 1-7 of Figure 4.

Lines 12-28: A specification for a single light is provided in LightRefined
which uses TwoColours to describe the colour of the lights. As was the case
with LightAbstract in Figure 4, the specification makes clear how a single
light operates. An added benefit here is that a direct comparison with the
abstract specification can be done on a per-light basis.

Lines 29-46: The specifications BoolButton and ButtonSpec account for
the part of the mac2 specification that requires a button. These details were
woven through the code in Figure 3 (lines 5, 11, 22, 25, 45) but the specification-
building operators allow us to modularise the specification and group these
related definitions together, clarifying how the button actually operates.

Lines 47-56: Finally, to tie this all together we must combine a copy of LightRe-
fined with a specification corresponding to the sum (and) of LightRefined
and ButtonSpec with appropriate signature morphisms. This second specifi-
cation combines the event gobutton in ButtonSpec with the event set green

in LightRefined thus accounting for set peds green in Figure 3. One small
issue involves making sure that the name replacements are done correctly, and
in the correct order, hence the bracketing on lines 48-49 is important.

11

1 constructor κ0 : Sig[Colours]⇒Sig[Bool]
2 sorts
3 Bool = Colours
4 ops
5 true = green
6 false = red

7 constructor κ1 : Sig[TwoColours]⇒Sig[TwoBool]
8 K0
9 ops

10 i go = icol
11 u go = ucol

12 constructor κ2 : Sig[mac2]⇒Sig[mac1]
13 ops
14 set peds go = set peds green
15 set peds stop = set peds red
16 set cars go = set cars green
17 set cars stop = set cars red

18 constructor κ3 : Sig[empty]⇒Sig[mac2]
19 mac2
20

Fig. 6: Constructors defining the modularised refinement relationship between the con-
crete and abstract presentations.

The combination of these specifications involves merging two events with
different names: gobutton from ButtonSpec with the event set green from
LightRefined. To ensure that these differently-named events are combined into
an event of the same name we use the signature morphism σ5 to give gobutton

the same name as set green before combining them. By ensuring that the events
have the same name, and combines both events’ guards and actions and the
morphism σ4 names the resulting event set peds go. The resulting specification
will also contain the event pushbutton.

Note that the labels given to guards/actions are syntactic sugar to make the
specification aesthetically resemble the usual Event-B notation for guards/actions.

4.2 Specification refinement with constructors

In the case when the signatures are different, which they are in our specifications,
then A is refined to C when we have κ(Mod[C]) ⊆ (Mod[A]) for a suitably
defined constructor κ : Sig[C] ⇒ Sig[A]. This restricts the concrete model to
only contain elements of the abstract signatures via the appropriate mappings.

Figure 6 splits up the specification of the concrete machine mac2 into con-
structors specifying each of the three separate forms of refinements:
Lines 1-6: κ0 defines the refinement of Bool into Colours, with an appropriate
mapping for the values. Note that the lack of a mapping for the colour orange
at this point implicitly hides it in the specification.

Lines 7-11: κ1 defines the refinement of the two boolean variables into their
corresponding variables of type Colour. In combination with κ0, this corre-
sponds to lines 8 and 10 of Fig. 3.

Lines 12-17: κ2 defines the refinement relation between the four events: this
corresponds to the refines statements on lines 19, 28, 33 and 40 of Fig. 3.

Finally the constructor κ3 ties this together (lines 18-19), adding nothing else
to the specification mac2. The specification empty over the initial signature Σ∅
has no axioms and one model empty. Intuitively, reaching Empty means that
there are no more unresolved parts of the specification to be constructed. By
including it here, we are signalling that the refinement is complete at this point.
The full system refinement can be written as (κ2+κ1)(κ3(empty)), where +
takes the amalgamated union of the constructors κ1 and κ2.

12

4.3 An alternative construction using parameterisation

Parameterised specifications both take specifications as parameters and return
specifications. These parameter and return specifications correspond to (user-
defined) specification building operators. Parameterisation provides a more gen-
eral way of combining specifications than that of the specification building op-
erators providing λ-abstraction for user-defined abbreviations where variables in
β-reduction now range over specifications [14].

For example, we could replace lines 8 and 9 of Figure 4 with:
spec LightAbstract over EVT = λX : Spec(Sig[TwoBools]) • X

thus giving a parameterised version of LightAbstract that takes as parameter
a specification over the signature of TwoBools (which can be seen in Figure
4). It is now possible to define
spec LightRefined over EVT = LightAbstract(TwoColours hide via σ) with σ

where σ is the morphism from Sig[TwoBools] to Sig[TwoColours] such that
σ = {Bool 7→Colours, i go 7→ icol, u go 7→ucol}.

Here, TwoColours hide via σ takes a specification over TwoColours as
its parameter and hiding maps the sorts and operations in TwoColours to
those in TwoBools giving a specification over TwoBools. Applying with σ
maps elements of Sig[TwoBools] to elements of Sig[TwoColours] to produce
the refined light specification.

5 Conclusion and Future Work

The Heterogeneous Tool-Set Hets provides a framework for heterogeneous spec-
ifications where each formalism is represented as a logic and understood in the
theory of institutions. A logic is represented as an entailment system which con-
sists of a category of signatures with corresponding morphisms, a set of sentences
with corresponding translation maps and an entailment relation between sets of
sentences and sentences for each signature [12]. Our logic for EVT utilises the al-
ready existing institution CASL [1] to account for the FOPEQ parts of the EVT
institution thus taking advantage of the interoperability/heterogeneity supplied
by Hets. CASL provides sorts and predicates like those written in Figure 4
lines 4-7. Our Hets implementation of EVT uses CASL formulae to represent
the components of EVT sentences that require predicates1.

Currently we can parse, statically analyse and combine specifications written
over EVT . Future work includes developing comorphisms to translate between
EVT and other logics in Hets as well as integrating with the provers currently
available in Hets (e.g. Isabelle). Comorphisms between these theorem provers
and EVT will allow us to prove our specifications correct in Hets. We envisage
that development should take place here to fully take advantage of the prospects
for interoperability. A translation from Event-B to EVT in the future will enable
us to fully utilise both tools.

1 Supplementary information is available at: http://www.cs.nuim.ie/∼mfarrell/

13

References

1. Casl reference manual. In P. D. Mosses, editor, The Complete Documentation of
the Common Algebraic Specification Language, volume 2960 of LNCS. 2004.

2. J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA, 1996.

3. J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundamenta Informaticae, 77(1-2):1–28,
2007.

4. A. Achouri and L. Jemni Ben Ayed. UML activity diagram to Event-B: A model
transformation approach based on the institution theory. In Information Reuse
and Integration, pages 823–829, Aug. 2014.

5. K. Damchoom, M. Butler, and J.-R. Abrial. Modelling and proof of a tree-
structured file system in Event-B and Rodin. In Formal Methods and Software
Engineering, volume 5256 of LNCS, pages 25–44. 2008.

6. J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, 1992.

7. A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic,
and T. Latvala. Supporting reuse in Event-B development: Modularisation ap-
proach. In Abstract State Machines, Alloy, B and Z, volume 5977 of LNCS, pages
174–188. 2010.

8. M. Jastram and M. Butler. Rodin User’s Handbook: Covers Rodin V.2.8. CreateS-
pace Independent Publishing Platform, USA, 2014.

9. A. Knapp, T. Mossakowski, M. Roggenbach, and M. Glauer. An institution for
simple UML state machines. In Fundamental Approaches to Software Engineering,
volume 9033 of LNCS, pages 3–18. 2015.

10. D. Lucanu, Y.-F. Li, and J. S. Dong. Institution morphisms for relating OWL and
Z. In Software Engineering and Knowledge Engineering, pages 286–291, 2005.

11. C. Morgan, K. Robinson, and P. Gardiner. On the Refinement Calculus. Springer,
1988.

12. T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, Hets. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 4424
of LNCS, pages 519–522, 2007.

13. T. Mossakowski and M. Roggenbach. Structured CSP - a process algebra as an
institution. In Recent Trends in Algebraic Development Techniques, volume 4409
of LNCS, pages 92–110. 2007.

14. D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

15. S. Schneider, H. Treharne, and H. Wehrheim. A CSP approach to control in Event-
B. In Integrated formal methods, volume 6396 of LNCS, pages 260–274, 2010.

16. S. Schneider, H. Treharne, and H. Wehrheim. The behavioural semantics of Event-
B refinement. Formal Aspects of Computing, 26:251–280, 2014.

17. R. Silva, C. Pascal, T. S. Hoang, and M. Butler. Decomposition tool for event-b.
Software: Practice and Experience, 41(2):199–208, 2011.

18. C. Snook and M. Butler. UML-B: Formal modeling and design aided by UML.
ACM Trans. on Software Engineering and Methodology, 15(1):92–122, 2006.

14

