Maynooth
University

B National University

of Ireland Maynooth

| "5.’ IRISH RESEARCH COUNCI

An Chomhairle um Thaighde in Eirin

AN ANALYSIS OF
ENT CALCULI

EFIN.

B
M
| 4

Marie Farrel/

Supervisors: Dr Rosemary Monahan & Dr James Power

Principles of Programming Research Group

“A LOGICAL FRAMEWORK FOR
INTEGRATING SOFTWARE MODELS
VIA REFINEMENT?”

Last PG Seminar Today

ut! % Motivation [% Overview of PhD topic

4
** Formal Methods ** Refinement Calculi
i }f"_’“.-‘:ﬁk::' s o
s Event B i Ll <~ ¢ Event B and JML
** Refinement ** Theoretical Foundations
% Overview of PhD topic
** Some Maths

) Ne r NN

»

* Difficult to combine proofs from different systems

W R S e e

Ast

1Z3 H]p
Ynot == \ (

JSP o

KeY

Stast
ty

{kal

’Z‘
~C
erc

(J”

‘S

‘do
puveri

k&
f'\Q
"—"f

<

t()p)l()()f
simac

EventB ™
g

»/‘L()dL contr act

N
QIq-

(h;l]lcc

——

0q
ole
 bek

counte
ou

-4
oo

slayer

Da‘n

)

,au

~
S’
~

NN\ 4/

PROPOSED SOLUTION

G2

** Provide a theoretical framework for proof sharing

% Mathematically define each formalism

* Including proof requirements

% Mathematically define how to integrate formalisms

% Reason about systems in the integrated formalism

* Sharing proof components

NN\ 4/

HYPOTHESIS

G2

\/
°.<

Institutions

can provide this framework

% Each formalism can be defined by an institution

% Institutions can be combined and components can be shared

NN\ 4/

IT -INSTITUTIONS

G2

< A m-institution is a triple (Sign, ¢, {CNy}5.sign) consisting of

1. A category Sign (of signatures)
2. A functor ¢:Sign -> Set

3. A consequence operator Cng
e X isan object of Sign (i.e. X is in the alphabet)

* (Cny takes a set of axioms A € @(Z) and gives all properties that can be
deduced from A

PROPERTIES OF 11 -
INSTITUTIONS

G2

(RQ1) A € Cny(4) (Extensiveness)

(RQ2) Cny(Cny(A4)) = Cnyx(A4) (Idempotence)
(RQ3) Cny(A) = Ugcap finite Cnx(B) (Compactness)
(RQ4) o(n)(Cny(4)) € Cnyr (o(1)(A)) (Structurality)

5V
£ G
gy The Event B formal specification language 1s used in the verification of

safety critical systems

Event B models are an instance of the specification

Machine Context
variables carrier sets
invariants constants
events axioms

&

\ Event B support{ refinement
&9 | —

»n

EFINEMENT

% We model systems at different levels of abstraction

@®@©9:>

o We can map between these levels using refinement

%* This process can be mathematically verified
Y
97

7 J} =Y \ NN

THEORIES OF
REFINEMENT

G2

% Carroll Morgan, Ralph Johan Back and Joseph Mortis

+* Based on Dijkstra’s language of guarded commands and weakest

precondition calculus.

“The abstract entity A is

refined by the concrete en-

tity C if no user of A could
observe if they were given
Cinits place”

G

NN

T T
5N
d U] J

W/

HRAL R]

G2

%* 3 main components:

Set of
Set of

entities — specifications and implementations

contexts — the environment with which the entities interact

A user — observations of a system

NN\ 4/

SPECIAL TH.

G2

Py

Ch ——Quy

\
E'l.-‘

\
IIQH]] T E[[E|-|~f~“}-|]]1' _"‘RL

NN\ 4/

GALOIS CONNECTIONS

G2

% Mathematically this vertical refinement is a Galois connection between
the layers.

% Given two posets (A, <,) and (B, <). A Galois connection between

these posets consists of two maps f: A—B and g: B —A, such that for all

a € A and b € B, we have

© a3, f(g@)
° flg(b)) =g b

MACHINE
MACHINE mac2

macl RE FINES

macl
VARIABLES SEES

cars_go ctxl
peds_go VARIABLES

INVARTANTS _ cars colour

. peds_colour
invl : cars_go = BOOL i INVART ANTS

inv2 : peds_go € BOOL invl @ peds colour & {red, green}

invd : -(peds_go=TRUE a cars_go=TRUE) invz @ peds_go = TRUE « peds_colour
- - w3 : cars colour £ {red, agreen}

EVENTS invd : cars go = TRUE < cars colour

INITIALTSATION = EVENTS

STATUS
ordinary
BEGIN
actl : cars_go
actz : peds_go
END

set peds _go =
STATUS
ordinary
WHEN
grdl : cars_go
THEN
actl : peds_go
END

set peds_stop
STATUS
ordinary
BEGIN

INITIALISATION =
STATUS
ordimnary
BEGIN
actl : cars colour
act® : peds colour
END

set peds green =
STATUS

ordimnary
REFINES

set_peds_go
WHEM

grdl : cars colour
THEM

actl @ peds_colour
END

set peds red =
STATUS

ordinary

REFINES

set peds stop

BEGIN

actl @ peds_colour

END

JAVA MODELLING
LANGUAGE (JML)

%* Specifications are annotations:

fkf o I rac p—— 1= + A
£ EQU1res a ay. LeENgTn i,

ensures sorted(array);
pigiic int [] sert{int [] array){
int temp =8;
for{int j=8;j<array.length-1;j++){

if(array[jlzarray[j+1]){
temp = array[j];
array[j] = array[j+1];
array[j+1] = temp;
h
b

return arraysy

g g

= R — Tarmot b
I requlires a.lengthnsi,

assignable “\nothing;

EuElic boolean sorted(int [] a)
{
boolean valid = true;
for{int i=8;i<a.length-1;i++)

if{a[i]za[i+1l])
1
valid = false;
break;
}
¥

return valid;

NN

NN\ 4/

EFINEMENT IN JML

G2

o JML supports refinement as specification inheritance

F/@ public model non_null String name;
private /@ non_null &%/ String fullName;
f/@ private represents name <- fullName;

3N A
. - Rt -

package org.jmlspecs.samples. jmltutorial;
/f@ refine "Person.java";

public class Person {
private /+@ spec_public non_null @/
String name;
private /+@ spec_public @/
int weight;

/%@ public invariant !name.equals("")
@ Ek weight »>= 0; @/

f/8 also
/{8 ensures ‘result !s nnll;
public String toString();

/i@ also
//@ ensures ‘\result == weight;
public /#@ pure ®%/ int getWeight();

/+@ also
@ requires kgs >= 0;
@ requires weight + kgs >= (;
@ ensures weight == ‘old{weight + kgs);
@/
public void addgs(int kgs);

/+@ also
@ requires n != null &% !n.equals{"");
@ ensures n.equals(name)
@ kEk weight == 0; @/

public Person(String mn);

G2

** Provide a theoretical framework for proof sharing

% Mathematically define each formalism

* Including proof requirements

% Mathematically define how to integrate formalisms

% Reason about systems in the integrated formalism

* Sharing proof components

7 NN

NN\ 4/

FUTURE WORK

G2

1. Specify a w -institution for refinement in at least two formalisms
2. Complete refinement case studies in both formalisms

3. Use m-institutions to combine proofs in these formalisms

REDUCING
NONDETERMINISM

G2

i L i : : .
EZ =i : Z il ‘; i This one is nondeterministic when

fi a=b

=

ifas<b-a=a—b>b
latb->b:=b—a

fi

This one is deterministic

Classic example: Converting an NFA to a DFA

LA e S e s

»

