

RISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinn

A LOGICAL FRAMEWORK FOR INTEGRATING SOFTWARE MODELS VIA REFINEMENT

Marie Farrell

Supervisors: Dr. Rosemary Monahan & Dr. James Power

MOTIVATION

Therac-25 3 Fatalities

Ariane 5 €350,000,000

\$312 BILLION

BACKGROUND

- Formal software engineering is a set of mathematically grounded techniques for the specification, development and verification of software and hardware systems.
- A formal specification is the exact definition in mathematical notation of what the system is required to do (and not do).

EVENT B

The Event B formal specification language is used in the verification of safety critical systems

Event B models are an instance of the specification

Machine	Context
variables	carrier sets
invariants	constants
events	axioms

REFINEMENT

Refinement provides a way for us to model software at different levels of abstraction

SOCIAL NETWORK

MACHINE	
mac2	
REFINES	
macl	
SEES	
etxl	
etx2	
VARIABLES	
person	
rawcontent	
content	
visible	
viewpermission	
INVARIANTS	
inv1 : visible \in rawcontent \leftrightarrow person	
$inv2$: viewpermission \in person \leftrightarrow person	
EVENTS	
INITIALISATION	
extended	
STATUS	
ordinary	
BEGIN	
act1 : person $\coloneqq \emptyset$	
$act2$: rawcontent := \emptyset	
acts : content := φ	
acti + owner := p	
act6 : viewpermission = Ø	
END	
transmit ≙	
STATUS	
ordinary	
REFINES	
transmit ANV	
10	
pe	
WHERE	
grd1 ∶ rc ∈ rawcontent	
grd2 : pe∈ person	
grd3 ∶ rc ↦ pe ∉ content	
THEN	

actl : visible := visible \cup {rc \mapsto pe}

act2 : viewpermission ≔ viewpermission ∪ {owner(rc) ↦ pe}

END

PROBLEM

Different formalisms do not integrate well e.g. Event B models the specification it does nothing for the implementation and its proofs are not easily transferable to other formalisms

SOLUTION

- Establish a theoretical framework within which refinement steps, and their associated proof obligations, can be shared between different formalisms
- Hypothesis: the theory of institutions can provide this framework and, we will construct an institution based specification of the Event B formalism

CATEGORY THEORY / INSTITUTIONS

- Category Theory is a special branch of Mathematics that allows us not only to describe objects but also to investigate the relationships between them
- Institutions are an application of category theory that allow us to relate the syntactic and semantic structures of different formal languages

ALFRED TARSKI 1901 - 1983

- Polish mathematician/logician
- Born Alfred Tajtelbaum
- Travelled to the USA in 1939
- Harvard, City College of New York, Princeton and University of California at Berkely

"Snow is white" is true if and only if snow is white

The concept of truth in formalized languages

P is true if and only if P

UBER EINIGE FUNDAMENTALE BEGRIFFE DER METAMATHEMATIK

ON SOME FUNDAMENTAL CONCEPTS OF METAMATHEMATICS

- Formalized deductive disciplines form the field of research of metamathematics
- These disciplines are regarded as sets of sentences
- The set of all sentences is denoted by 'S'
- From the sentences of an set X certain other sentences can be obtained using rules of inference
- These sentences are called the 'consequences' of X
- The set of all consequences is denoted by 'Cn(X)'

ON SOME FUNDAMENTAL CONCEPTS OF METAMATHEMATICS 1930

Axiom 2:

If $X \subseteq S$, then $X \subseteq Cn(X) \subseteq S$

Axiom 3:

If $X \subseteq S$, then Cn(Cn(X)) = Cn(X)

Axiom 4:

If $X \subseteq S$, then $Cn(X) = \sum_{Y \subseteq X \text{ and } |Y| < \aleph_0} Cn(Y)$

Π - INSTITUTIONS

Alternative to institution – replacing the notions of model and satisfaction by Tarski's consequence operator

Definition:

• A π -institution is a triple (Sign, φ , { Cn_{Σ} }_{$\Sigma:Sign$}) consisting of

- . A category Sign (of signatures)
- **2.** A functor φ :Sign -> Set (set of formulae over each signaure)
- 3. For each object Σ of Sign, a consequence operator Cn_{Σ} defined in the power set of $\varphi(\Sigma)$ satisfying for each A, B $\subseteq \varphi(\Sigma)$ and $\mu: \Sigma \to \Sigma$

 $(\operatorname{RQ1}) A \subseteq Cn_{\Sigma}(A)$ $(\operatorname{RQ2}) Cn_{\Sigma}(Cn_{\Sigma}(A)) = Cn_{\Sigma}(A)$ $(\operatorname{RQ3}) Cn_{\Sigma}(A) = \bigcup_{B \subseteq A, B \text{ finite }} Cn_{\Sigma}(B)$ $(\operatorname{RQ4}) \varphi(\mu)(Cn_{\Sigma}(A)) \subseteq Cn_{\Sigma'}(\varphi(\mu)(A)$

(Extensiveness) (Idempotence) (Compactness) (Structurality) Tarski: Axioms 2, 3 &4

CONCLUSION

> Tarski provided the foundations for π -institutions

- Work to date:
 - Denotational Semantics
 - Communicating Sequential Processes (Hoare)
 - Tarski
 - Consequence
 - Category Theory/Institutions/π-institutions

