A LOGICAL FRAMEWORK FOR INTEGRATING SOFTWARE MODELS VIA REFINEMENT

Marie Farrell

Supervisors: Dr. Rosemary Monahan & Dr. James Power
MOTIVATION

Ariane 5 €350,000,000

Therac-25 3 Fatalities

$312 BILLION
Formal software engineering is a set of mathematically grounded techniques for the specification, development and verification of software and hardware systems.

A formal specification is the exact definition in mathematical notation of what the system is required to do (and not do).
PROBLEM

- Different formalisms do not integrate well
SOLUTION

- Establish a theoretical framework within which refinement steps, and their associated proof obligations, can be shared between different formalisms.
- Hypothesis: the theory of institutions can provide this framework and, we will construct an institution based specification of the Event B formalism.
RESEARCH QUESTIONS

1. Can the theory of institutions ensure the accuracy of the translation between Event-B and other specification formalisms?

2. Can this theory allow us to investigate proof obligations generated by Event-B in different formalisms?
EVENT B

- The Event B formal specification language is used in the verification of safety critical systems

- Event B models are an instance of the specification
Refinement provides a way for us to model software at different levels of abstraction.
MACHINE mac1
SEES ctx1
VARIABLES person rawcontent content owner
INVARs
inv1 : person \subseteq PERSON
inv2 : rawcontent \subseteq RAWCONTENT
inv3 : content \in rawcontent \leftrightarrow person
inv4 : owner \in rawcontent \rightarrow person
EVENTS
INITIALISATION \triangleq
STATUS ordinary
BEGIN
act1 : person := \emptyset
act2 : rawcontent := \emptyset
act3 : content := \emptyset
act4 : owner := \emptyset
END
transmit \triangleq
STATUS ordinary
ANY
rc
pe
WHERE
grd1 : rc \in rawcontent
grd2 : pe \in person
grd3 : rc \mapsto pe \notin content
THEN
act1 : content := content \cup \{rc \mapsto pe\}
END
END

MACHINE mac2
REFINES mac1
SEES ctx1 ctx2
VARIABLES person rawcontent content owner visible viewpermission
INVARs
inv1 : visible \in rawcontent \leftrightarrow person
inv2 : viewpermission \in person \leftrightarrow person
EVENTS
INITIALISATION \triangleq
extended
STATUS ordinary
BEGIN
act1 : person := \emptyset
act2 : rawcontent := \emptyset
act3 : content := \emptyset
act4 : owner := \emptyset
act5 : visible := \emptyset
act6 : viewpermission := \emptyset
END
transmit \triangleq
STATUS ordinary
REFINES transmit
ANY
rc
pe
WHERE
grd1 : rc \in rawcontent
grd2 : pe \in person
grd3 : rc \mapsto pe \notin content
THEN
act1 : visible := visible \cup \{rc \mapsto pe\}
act2 : viewpermission := viewpermission \cup \{owner(rc) \mapsto pe\}
END
Category Theory is a special branch of Mathematics that allows us not only to describe objects but also to investigate the relationships between them.

Institutions are an application of category theory that allow us to relate the syntactic and semantic structures of different formal languages.
Π - INSTITUTIONS

- Alternative to institution – replacing the notions of model and satisfaction by Tarski’s consequence operator

- Definition:
 - A π-institution is a triple \((\text{Sign}, \phi, \{Cn_{\Sigma}\}_{\Sigma:\text{Sign}})\) consisting of
 1. A category \(\text{Sign}\) (of signatures)
 2. A functor \(\phi: \text{Sign} \to \text{Set}\) (set of formulae over each signature)
 3. For each object \(\Sigma\) of \(\text{Sign}\), a consequence operator \(Cn_{\Sigma}\) defined in the power set of \(\phi(\Sigma)\) satisfying for each \(A, B \subseteq \phi(\Sigma)\) and \(\mu: \Sigma \to \Sigma\)
 (RQ1) \(A \subseteq Cn_{\Sigma}(A)\) (Extensiveness)
 (RQ2) \(Cn_{\Sigma}(Cn_{\Sigma}(A)) = Cn_{\Sigma}(A)\) (Idempotence)
 (RQ3) \(Cn_{\Sigma}(A) = \bigcup_{B \subseteq A, B \text{ finite}} Cn_{\Sigma}(B)\) (Compactness)
 (RQ4) \(\phi(\mu)(Cn_{\Sigma}(A)) \subseteq Cn_{\Sigma}(\phi(\mu)(A))\) (Structurality)
Refinement calculus is a notation and a set of rules for deriving programs from their specifications.

Refinement calculi are an extension of Dijkstra’s language of guarded commands and both specification and implementation occur within the same formalism.

There are three main theories of refinement:

1. Carroll Morgan
2. Ralph-Johan Back
3. Joseph Morris
The definition of what constitutes refinement appears to be the same in all calculi.

The rules, however, are slightly different: Morgan is the only one to use miracles.

Back’s refinement calculus is much more theoretical than that of Morgan using lattice and category theory as its underlying mathematical basis.

Morris extended Back’s refinement calculus to include the notion of prescription.

Since the meaning of what is a valid refinement stays the same then regardless of how it is carried out we should always be able to refine a given specification to an implementation that is semantically consistent across all calculi.
The general model takes as primitive:
1. A set of entities: the specifications and implementations we wish to develop by refinement
2. A set of contexts: the environment with which the entities interact
3. A user formalised by defining the set of observations that can be made when an entity is executed in a given context

The general definition of refinement is parameterised by a set Ξ of possible contexts and a function O which determines what can be observed

The concrete entity C is a refinement of an abstract entity A when no user of A could observe if they were given C in place of A.
Let Ξ be a set of contexts each of which entities C and A can communicate privately with, and O be a function which returns a set of traces, each trace being what a user observes of an execution then:

\[A \subseteq_{\Xi,0} C \triangleq \forall x \in \Xi. O([C]_x) \subseteq O([A]_x) \]

Since general refinement has contexts Ξ as a parameter, by changing Ξ we are able to model different types of interaction.

This definition of refinement can be further specialised for refinement of specific cases.
VERTICAL REFINEMENT

- We can view each special model of refinement as a layer in the grand scheme of things each encompassing a set of entities and a refinement relation.
- Mathematically our vertical refinement is a Galois connection between the layers.
- This allows us to interpret high level entities as low level entities using a semantic mapping, however, these low level entities cannot interact with the high level ones so the contexts must also be refined.
Any questions?