

IRISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinn

A LOGICAL FRAMEWORK FOR INTEGRATING SOFTWARE MODELS VIA REFINEMENT

Marie Farrell

Supervisors: Dr. Rosemary Monahan & Dr. James Power

MOTIVATION

Therac-25003 Fatalities

Ariane 5 €350,000,000

\$312 BILLION

IRISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinn

BACKGROUND

- Formal software engineering is a set of mathematically grounded techniques for the specification, development and verification of software and hardware systems.
- A formal specification is the exact definition in mathematical notation of what the system is required to do (and not do).

PROBLEM

Different formalisms do not integrate well

SOLUTION

- Establish a theoretical framework within which refinement steps, and their associated proof obligations, can be shared between different formalisms
- Hypothesis: the theory of institutions can provide this framework and, we will construct an institution based specification of the Event B formalism

RESEARCH QUESTIONS

Can the theory of institutions ensure the accuracy of the translation between Event-B and other specification formalisms?

Can this theory allow us to investigate proof obligations generated by Event-B in different formalisms?

EVENT B

The Event B formal specification language is used in the verification of safety critical systems

Event B models are an instance of the specification

Machine	Context
variables	carrier sets
invariants	constants
events	axioms

IRISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinn

REFINEMENT

Refinement provides a way for us to model software at different levels of abstraction

SOCIAL NETWORK

MACHI	NE	
11	nac2	
REFINE	S	
11	nacl	
SEES		
c	txl	
c	x2	
VARIAE	BLES	
р	erson	
17	awcontent	
0	ontent	
0	wher	
v	ewpermission	
INVARIANTS		
i	w : visible \in raycontent \leftrightarrow person	
i	W^2 : viewpermission \in person \leftrightarrow person	
EVENTS		
г	A NOTALISATION	
-	extended	
	STATUS	
	ordinary	
BEGIN		
	$actl : person \coloneqq \emptyset$	
	$act2$: rawcontent := \emptyset	
	act3 : content := \emptyset	
	act4 : owner := \emptyset	
	acto : visible — ϕ	
END	acto : viewpermission - p	
ti	ransmit ≙	
	STATUS	
	ordinary	
REFINES		
ANV	transmit	
	10	
	pe	
WHERE	-	
	grdl ∶ rc ∈ rawcontent	
	grd2 : pe∈person	
	grd3 ∶rc → pe ∉ content	

actl : visible := visible \cup {rc \mapsto pe}

act2 : viewpermission ≔ viewpermission ∪ {owner(rc) ↦ pe}

CATEGORY THEORY / INSTITUTIONS

- Category Theory is a special branch of Mathematics that allows us not only to describe objects but also to investigate the relationships between them
- Institutions are an application of category theory that allow us to relate the syntactic and semantic structures of different formal languages

RISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinn

Π - INSTITUTIONS

Alternative to institution – replacing the notions of model and satisfaction by Tarski's consequence operator

Definition:

• A π -institution is a triple (Sign, φ , { Cn_{Σ} }_{$\Sigma:Sign}) consisting of</sub>$

- A category Sign (of signatures)
- **2.** A functor φ :Sign -> Set (set of formulae over each signature)
- 3. For each object Σ of Sign, a consequence operator Cn_{Σ} defined in the power set of $\varphi(\Sigma)$ satisfying for each A, B $\subseteq \varphi(\Sigma)$ and $\mu: \Sigma \to \Sigma$
 - $(\operatorname{RQ1}) A \subseteq Cn_{\Sigma}(A)$ $(\operatorname{RQ2}) Cn_{\Sigma}(Cn_{\Sigma}(A)) = Cn_{\Sigma}(A)$ $(\operatorname{RQ3}) Cn_{\Sigma}(A) = \bigcup_{B \subseteq A, B \text{ finite }} Cn_{\Sigma}(B)$ $(\operatorname{RQ4}) \varphi(\mu)(Cn_{\Sigma}(A)) \subseteq Cn_{\Sigma'}(\varphi(\mu)(A)$
- (Extensiveness) (Idempotence) (Compactness) (Structurality)

REFINEMENT CALCULUS

- Refinement calculus is a notation and a set of rules for deriving programs from their specifications
- Refinement calculii are an extension of Dijkstra's language of guarded commands and both specification and implementation occur within the same formalism
- There are three main theories of refinement:
 - I. Carroll Morgan
 - 2. Ralph-Johan Back
 - Joseph Morris

MORGAN VS BACK VS MORRIS

- The definition of what constitutes refinement appears to be the same in all calculi
- The rules, however, are slightly different: Morgan is the only one to use miracles
- Back's refinement calculus is much more theoretical that that of Morgan using lattice and category theory as its underlying mathematical basis
- Morris extended Back's refinement calculus to include the notion of prescription
- Since the meaning of what is a valid refinement stays the same then regardless of how it is carried out we should always be able to refine a given specification to an implementation that is semantically consistent across all calculi.

GENERAL THEORY OF REFINEMENT

- REEVES AND STREADER 2008

The general model takes as primitive:

- A set of entities: the specifications and implementations we wish to develop by refinement
- 2. A set of contexts: the environment with which the entities interact
- 3. A user formalised by defining the set of observations that can be made when an entity is executed in a given context
- The general definition of refinement is parameterised by a set E of possible contexts and a function O which determines what can be observed
- The concrete entity C is a refinement of an abstract entity A when no user of A could observe if they were given C in place of A.

DEFINITION

Let Ξ be a set of contexts each of which entities **C** and **A** can communicate privately with, and O be a function which returns a set of traces, each trace being what a user observes of an execution then: $A \sqsubseteq_{\Xi,0} C \triangleq \forall x \in \Xi. O([C]_x) \subseteq O([A]_x)$

Since general refinement has contexts Ξ as a parameter, by changing Ξ we are able to model different types of interaction

This definition of refinement can be further specialised for refinement of specific cases

VERTICAL REFINEMENT

- We can view each special model of refinement as a layer in the grand scheme of things each encompassing a set of entities and a refinement relation
- Mathematically our vertical refinement is a Galois connection between the layers.
- This allows us to interpret high level entities as low level entities using a semantic mapping, however, these low level entities cannot interact with the high level ones so the contexts must also be refined

$$\begin{array}{c} \mathsf{P}_{\mathsf{H}} & \longrightarrow \mathsf{Q}_{\mathsf{H}} - \sqsubseteq_{\mathsf{H}} * vA\llbracket \mathsf{Q}_{\mathsf{H}} \rrbracket_{v} & \sqsubseteq_{\mathsf{H}} \to vA(\mathsf{R}_{\mathsf{L}}) \\ & \sqsubseteq_{v} & \lor_{vA} & \lor_{vA} \\ & & \llbracket \mathsf{P}_{\mathsf{H}} \rrbracket_{v} & \sqsubseteq_{\mathbb{I}} =_{\mathsf{H}}, o_{\mathsf{H}} \rrbracket_{v} * \llbracket \mathsf{Q}_{\mathsf{H}} \rrbracket_{v} - \sqsubseteq_{\mathbb{I}} =_{\mathsf{H}}, o_{\mathsf{H}} \rrbracket_{v} * \mathsf{R}_{\mathsf{L}} \\ & \text{Fig} & \text{Refinement} & \text{within and between layers} \end{array}$$

