
REFINEMENT AND 

INSTITUTIONS 

Marie Farrell 

Supervisors: Dr Rosemary Monahan & Dr James Power 

Principles of  Programming Research Group 



PROBLEM 

 Difficult to combine proofs from different systems 



 Provide a theoretical framework for proof  sharing 

 Mathematically define each formalism 

• Including proof  requirements 

 Mathematically define how to integrate formalisms 

 Reason about systems in the integrated formalism 

• Sharing proof  components 

 

PROPOSED SOLUTION 



 Institutions can provide this framework  

 Each formalism can be defined by an institution  

 Institutions can be combined and components can be shared 

 

HYPOTHESIS 



Π -INSTITUTIONS 

 A π-institution is a triple (Sign, φ, {𝐶𝑛Σ}Σ:𝑆𝑖𝑔𝑛) consisting of 

1. A category Sign (of  signatures) 

2. A functor φ:Sign -> Set  

3. A consequence operator 𝐶𝑛Σ  

• Σ is an object of  Sign (i.e. Σ is in the alphabet) 

• 𝐶𝑛Σ  takes a set of  axioms A ⊆ φ(Σ) and gives all properties that can be 

deduced from A 



REFINEMENT 

 We model systems at different levels of  abstraction 

 

 

 

 We can map between these levels using refinement 

 This process can be mathematically verified 



REDUCING 

NONDETERMINISM 

Classic example: Converting an NFA to a DFA 

This one is deterministic 



THEORIES OF 

REFINEMENT 

  Carroll Morgan, Ralph Johan Back and Joseph Morris  

 Based on Dijkstra’s language of  guarded commands and weakest 

precondition calculus.  

 



 Weakening the precondition 

 Strengthening the postcondition 

 Introducing local variables 

 Renaming local variables 

 Introducing logical constants 

 Eliminating logical constants 

 Expanding the frame 

 Introducing skip 

 Introducing abort 

 Introducing assignment 

 Introducing sequential composition 

 Introducing alternation 

 Introducing iteration 

MORGAN’S REFINEMENT 



𝑤: 𝑝𝑟𝑒 ∧ ⋁𝑖 ∙ 𝐺𝑖 , 𝑝𝑜𝑠𝑡  

⊑ 

𝑖𝑓(□𝑖 ∙ 𝐺𝑖 → 𝑤: 𝑝𝑟𝑒 ∧ 𝐺𝑖 , 𝑝𝑜𝑠𝑡 )𝑓𝑖 

MORGAN’S REFINEMENT 

Introducing alternation 



Figure: The Refinement Calculus Hierarchy 

BACK’S REFINEMENT 



BACK’S REFINEMENT 

 Similar rules to Morgan’s refinement calculus 

 Example 

• Introduce conditional : 

 
𝑆 

⊑ 

𝑔1 ∪⋯∪ 𝑔𝑛 ; 𝑖𝑓 𝑔1 → 𝑆 □…□𝑔𝑛 → 𝑆 𝑓𝑖 



GENERAL REFINEMENT 

 3 main components: 

1. Set of  entities – specifications and implementations  

2. Set of  contexts Ξ – the environment with which the entities interact 

3. A user – observations of  a system O 

 

 

 

 

Liskov 

Substitution 

𝐴 ⊑ 𝐶 

=  

∀𝑥 ∈ Ξ. 𝑂 𝐶 𝑥 ⊆ 𝑂( 𝐴 𝑥) 

 



LAYERS OF REFINEMENT 



LAYERS OF REFINEMENT 



GALOIS CONNECTIONS 

 Mathematically this vertical refinement is a Galois connection between 

the layers. 

 Given two posets  (A, ≤A) and (B, ≤B). A Galois connection between 

these posets consists of  two maps f: A→B and g: B →A, such that for all  

a є A and b є B, we have 

• a ≤A f(g(a))   

• f(g(b)) ≤B b  

  

 

 

 



 

Gluing Invariant 



 

REFINEMENT IN JML 

Data 

Refinement 



REFINEMENT IN JML 

extends 

Specification Inheritance 



FUTURE WORK 

1. Specify a π -institution for refinement in at least two formalisms 

2. Complete refinement case studies in both formalisms 

3. Use π-institutions to combine proofs in these formalisms 



 


