IRISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinr National University of Ireland Maynooth **EXAMINING REFINEMENT:** THEORY, TOOLS AND **MATHEMATICS**

Maynooth University

Marie Farrell

Supervisors: Dr Rosemary Monahan & Dr James Power

Principles of Programming Research Group

PROBLEM

6

Different formalisms do not integrate well e.g. Event B only models the specification and its proofs are not easily transferable to other formalisms

PROPOSED SOLUTION

me. 3

 Establish a theoretical framework within which refinement steps, and their associated proof obligations, can be shared between different formalisms

 Hypothesis: the theory of institutions can provide this framework and, we will construct an institution based specification of the Event B formalism

REFINEMENT

 In software engineering it is common to model systems at different levels of abstraction

✤ We can map between these different levels of abstraction in a verifiable way through a process known as refinement

STOP

GO

FALSE

THEORIES OF REFINEMENT

- Main theories developed by Carroll Morgan, Ralph Johan Back and Joseph Morris
- All three are based on Dijkstra's language of guarded commands and weakest precondition calculus.
- Morgan takes a very program oriented view whereas Back appears to be much more theoretical with foundations in lattice and category theory. Morris extended Back's work with prescriptions.

MORGAN'S REFINEMENT

- ✤ Weakening the precondition
- Strengthening the postcondition
- Introducing local variables
- * Renaming local variables
- Introducing logical constants
- Eliminating logical constants
- Expanding the frame

- Introducing skip
- ✤ Introducing abort
- Introducing assignment
- Introducing sequential composition
- Introducing alternation
- Introducing iteration

MORGAN'S REFINEMENT

(

(...) . T

The ??

Introducing alternation

 $w: [pre \land (\bigvee i \bullet G_i), post] = \texttt{if} \ (\Box i \bullet G_i \rightarrow w: [pre \land G_i, post]) \texttt{fi}$

BACK'S REFINEMENT

(

Cur) IT

- Similar rules to Morgan's refinement calculus
- ✤ Example

mc.?

- Introduce conditional :
 - $S \subseteq [g_1 \cup \cdots \cup g_n]; \text{ if } g_1 \to S [] \cdots [] g_n \to S \text{ fi}$.

MORRIS REFINEMENT

Extended Back's calculus with prescriptions

Q.C. 3

A prescription P||Q specifies a mechanism that when executed in a state satisfying P will terminate in a state satisfying Q

• P and Q are predicates

 $P||Q \sqsubseteq s_1 \sqsubseteq s_2 \sqsubseteq \cdots \sqsubseteq s$

MORRIS REFINEMENT

620

• Given P||Q there are 6 ways of choosing s such that

 $P||Q \sqsubseteq s$

- 1. Skip
- 2. Assignment

315

- 3. Prescription
- 4. If statement
- 5. Composition
- 6. Block

$$\begin{split} P||Q \sqsubseteq R||S;T||U \ if \ \lceil P \Rightarrow R\rceil, \lceil S \Rightarrow T\rceil \\ and \ \lceil U \Rightarrow Q\rceil \end{split}$$

GENERAL REFINEMENT

 \mathbf{C}

m.C. 9

"The abstract entity **A** is refined by the concrete entity **C** if no user of **A** could observe if they were given **C** in its place"

Liskov Substitution

GENERAL REFINEMENT

- ✤ 3 main components:
 - 1. Set of entities specifications and implementations
 - 2. Set of contexts the environment with which the entities interact
 - 3. A user formalised by defining the set of observations that can be made when an entity is executed in a given context
- Example: an entity as a motor, a context as the car in which the

motor runs and the user as the driver of the car

 $\mathsf{A} \sqsubseteq_{\Xi,O} \mathsf{C} \triangleq \forall x \in \Xi. O([\mathsf{C}]_x) \subseteq O([\mathsf{A}]_x)$

SPECIAL THEORIES

✤ We can view each special model of refinement as a layer in the grand scheme of things each encompassing a set of entities and a refinement relation

This allows us to interpret high level entities as low level entities using a semantic mapping, however, these low level entities cannot interact with the high level ones so the contexts must also be refined

_ =[[Ξ_H, O_H]]_v → R_I

GALOIS CONNECTIONS

Q.C. 9

Mathematically this vertical refinement is a Galois connection between the layers.

★ Given two posets (A, \leq_A) and (B, \leq_B) . A Galois connection between these posets consists of two maps f: A→B and g: B →A, such that for all a ∈ A and b ∈ B, we have

- $a \leq_A f(g(a))$
- $f(g(b)) \leq_B b$

Π -INSTITUTIONS

 Alternative to institution – replacing the notions of model and satisfaction by Tarski's consequence operator

- ✤ Definition:
 - A π -institution is a triple (Sign, φ , { Cn_{Σ} }_{$\Sigma:Sign$}) consisting of
 - 1. A category Sign (of signatures)
 - 2. A functor φ :Sign -> Set (set of formulae over each signature)
 - 3. For each object Σ of Sign, a consequence operator Cn_{Σ} defined in the power set of $\varphi(\Sigma)$ satisfying for each A, B $\subseteq \varphi(\Sigma)$ and $\mu: \Sigma \to \Sigma$
 - $(RQ1) A \subseteq Cn_{\Sigma}(A)$ $(RQ2) Cn_{\Sigma}(Cn_{\Sigma}(A)) = Cn_{\Sigma}(A)$ $(RQ3) Cn_{\Sigma}(A) = \bigcup_{B \subseteq A,B \text{ finite }} Cn_{\Sigma}(B)$ $(RQ4) \varphi(\mu)(Cn_{\Sigma}(A)) \subseteq Cn_{\Sigma'}(\varphi(\mu)(A))$

(Extensiveness) (Idempotence) (Compactness) (Structurality)

6.3

✤ Axiom 1:

m.C. 3

 $|S| \leq \aleph_0$

✤ Axiom 2:

If $X \subseteq S$, then $X \subseteq Cn(X) \subseteq S$

✤ Axiom 3:

If $X \subseteq S$, then Cn(Cn(X)) = Cn(X)

Axiom 4:

If $X \subseteq S$, then $Cn(X) = \sum_{Y \subseteq X \text{ and } |Y| < \aleph_0} Cn(Y)$

Axiom 5:

 $\exists x \in S \text{ such that } Cn(\{x\}) = S$

EVENT B

()

The Event B formal specification language is used in the verification of safety critical systems

Event B models are an instance of the specification

Machine

all 3

variables invariants events Context

carrier sets constants axioms (a) M

JML

✤ JML = Java Modelling Language

Specifications are annotations:

```
/*@ requires array.length>0;
    ensures sorted(array);
    @*/
public int [] sort(int [] array){
    int temp =0;
    for(int j=0;j<array.length-1;j++){</pre>
```

0 0

```
if(array[j]>array[j+1]){
    temp = array[j];
    array[j] = array[j+1];
    array[j+1] = temp;
}
```

```
return array;
```

/*@ requires a.length>0; assignable \nothing; @*/ public boolean sorted(int [] a) boolean valid = true; for(int i=0;i<a.length-1;i++)</pre> if(a[i]>a[i+1]) valid = false; break; } return valid; }

REFINEMENT IN JML

✤ JML supports refinement as specification inheritance

9

//@ public model non_null String name; private /*@ non_null @*/ String fullName; //@ private represents name <- fullName;</pre>

//@ refine "Person.java";

public class Person {
 private /*@ spec_public non_null @*/
 String name;
 private /*@ spec_public @*/
 int weight;

/*@ public invariant !name.equals("")
@ && weight >= 0; @*/

//@ also
//@ ensures \result != null;
public String toString();

//@ also
//@ ensures \result == weight;
public /*@ pure @*/ int getWeight();

/*@ also
 @ requires kgs >= 0;
 @ requires weight + kgs >= 0;
 @ ensures weight == \old(weight + kgs);
 @*/
public void addKgs(int kgs);

/*@ also
 @ requires n != null && !n.equals("");
 @ ensures n.equals(name)
 @ && weight == 0; @*/
public Person(String n);

3

AIM

6

Establish a theoretical framework within which refinement steps, and their associated proof obligations, can be shared between different formalisms

FUTURE WORK

- 1. Specify a π -institution for refinement in at least two formalisms
- 2. Complete refinement case studies in both formalisms

30

3. Use π -institutions to combine proofs in these formalisms