
EXAMINING REFINEMENT:

THEORY, TOOLS AND

MATHEMATICS

Marie Farrell

Supervisors: Dr Rosemary Monahan & Dr James Power

Principles of Programming Research Group

PROBLEM

 Different formalisms do not integrate well e.g. Event B only

models the specification and its proofs are not easily transferable to

other formalisms

PROPOSED SOLUTION

 Establish a theoretical framework within which refinement steps,

and their associated proof obligations, can be shared between

different formalisms

 Hypothesis: the theory of institutions can provide this framework

and, we will construct an institution based specification of the Event

B formalism

REFINEMENT

 In software engineering it is common to model systems at different

levels of abstraction

 We can map between these different levels of abstraction in a

verifiable way through a process known as refinement

REDUCING

NONDETERMINISM

Classic example: Converting an NFA to a DFA

This one is deterministic

THEORIES OF

REFINEMENT

 Main theories developed by Carroll Morgan, Ralph Johan Back

and Joseph Morris

 All three are based on Dijkstra’s language of guarded commands

and weakest precondition calculus.

 Morgan takes a very program oriented view whereas Back appears

to be much more theoretical with foundations in lattice and

category theory. Morris extended Back’s work with prescriptions.

 Weakening the precondition

 Strengthening the postcondition

 Introducing local variables

 Renaming local variables

 Introducing logical constants

 Eliminating logical constants

 Expanding the frame

 Introducing skip

 Introducing abort

 Introducing assignment

 Introducing sequential composition

 Introducing alternation

 Introducing iteration

MORGAN’S REFINEMENT

MORGAN’S REFINEMENT

Introducing alternation

BACK’S REFINEMENT
Predicate

Transformer

Category

Predicate

Category

Category of

Truth Values

Relations

Category

State

Transformer

Category

 Similar rules to Morgan’s refinement calculus

 Example

• Introduce conditional :

BACK’S REFINEMENT

MORRIS REFINEMENT

 Extended Back’s calculus with prescriptions

 A prescription 𝑃||𝑄 specifies a mechanism that when executed in

a state satisfying P will terminate in a state satisfying Q

• P and Q are predicates

 Given 𝑃||𝑄 there are 6 ways of choosing s such that

𝑃||𝑄 ⊑ 𝑠

1. Skip

2. Assignment

3. Prescription

4. If statement

5. Composition

6. Block

MORRIS REFINEMENT

GENERAL REFINEMENT

Liskov

Substitution

 3 main components:

1. Set of entities – specifications and implementations

2. Set of contexts – the environment with which the entities interact

3. A user formalised by defining the set of observations that can be

made when an entity is executed in a given context

 Example: an entity as a motor, a context as the car in which the

motor runs and the user as the driver of the car

GENERAL REFINEMENT

SPECIAL THEORIES

 We can view each special model of refinement as a layer in the grand

scheme of things each encompassing a set of entities and a refinement

relation

 This allows us to interpret high level entities as low level entities using

a semantic mapping, however, these low level entities cannot interact with

the high level ones so the contexts must also be refined

GALOIS CONNECTIONS

 Mathematically this vertical refinement is a Galois connection between

the layers.

 Given two posets (A, ≤A) and (B, ≤B). A Galois connection between

these posets consists of two maps f: A→B and g: B →A, such that for all

a є A and b є B, we have

• a ≤A f(g(a))

• f(g(b)) ≤B b

Π -INSTITUTIONS

 Alternative to institution – replacing the notions of model and satisfaction by

Tarski’s consequence operator

 Definition:

• A π-institution is a triple (Sign, φ, {𝐶𝑛Σ}Σ:𝑆𝑖𝑔𝑛) consisting of

1. A category Sign (of signatures)

2. A functor φ:Sign -> Set (set of formulae over each signature)

3. For each object Σ of Sign, a consequence operator 𝐶𝑛Σ defined in the power set of

φ(Σ) satisfying for each A, B ⊆ φ(Σ) and μ: Σ -> Σ

(RQ1) 𝐴 ⊆ 𝐶𝑛Σ(𝐴) (Extensiveness)

(RQ2) 𝐶𝑛Σ(𝐶𝑛Σ(𝐴)) = 𝐶𝑛Σ(𝐴) (Idempotence)

(RQ3) 𝐶𝑛Σ(𝐴) = 𝐶𝑛Σ(𝐵)𝐵⊆𝐴,𝐵 𝑓𝑖𝑛𝑖𝑡𝑒 (Compactness)

(RQ4) φ(μ)(𝐶𝑛Σ(𝐴)) ⊆ 𝐶𝑛Σ′(φ(μ)(𝐴)) (Structurality)

TARSKI’S CONSEQUENCE

OPERATOR

 Axiom 1:

𝑆 ≤ ℵ0

 Axiom 2:

 𝐼𝑓 𝑋 ⊆ 𝑆, 𝑡ℎ𝑒𝑛 𝑋 ⊆ 𝐶𝑛 𝑋 ⊆ 𝑆

 Axiom 3:

𝐼𝑓 𝑋 ⊆ 𝑆, 𝑡ℎ𝑒𝑛 𝐶𝑛 𝐶𝑛 𝑋 = 𝐶𝑛(𝑋)

 Axiom 4:

𝐼𝑓 𝑋 ⊆ 𝑆, 𝑡ℎ𝑒𝑛 𝐶𝑛 𝑋 = 𝐶𝑛(𝑌)

𝑌⊆𝑋 𝑎𝑛𝑑 𝑌 <ℵ0

 Axiom 5:

 ∃𝑥 ∈ 𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐶𝑛 𝑥 = 𝑆

𝑓: A → B

𝑓 𝑥 = 𝐶𝑛(𝑥)

𝑔: B → A

𝑔 x = 𝑌

𝑌⊆𝑆 𝑎𝑛𝑑 𝑋⊆𝐶𝑛(𝑌)

Both posets are ordered by set theoretic inclusion

EVENT B

 The Event B formal specification language is used in the verification of

safety critical systems

 Event B models are an instance of the specification

Gluing Invariant

JML

 JML = Java Modelling Language

 Specifications are annotations:

REFINEMENT IN JML

 JML supports refinement as specification inheritance

AIM

 Establish a theoretical framework within which refinement steps,

and their associated proof obligations, can be shared between

different formalisms

FUTURE WORK

1. Specify a π -institution for refinement in at least two formalisms

2. Complete refinement case studies in both formalisms

3. Use π-institutions to combine proofs in these formalisms

