
EXAMINING REFINEMENT:

THEORY, TOOLS AND

MATHEMATICS

Marie Farrell

Supervisors: Dr Rosemary Monahan & Dr James Power

Principles of Programming Research Group

PROBLEM

 Different formalisms do not integrate well e.g. Event B only

models the specification and its proofs are not easily transferable to

other formalisms

PROPOSED SOLUTION

 Establish a theoretical framework within which refinement steps,

and their associated proof obligations, can be shared between

different formalisms

 Hypothesis: the theory of institutions can provide this framework

and, we will construct an institution based specification of the Event

B formalism

REFINEMENT

 In software engineering it is common to model systems at different

levels of abstraction

 We can map between these different levels of abstraction in a

verifiable way through a process known as refinement

REDUCING

NONDETERMINISM

Classic example: Converting an NFA to a DFA

This one is deterministic

THEORIES OF

REFINEMENT

 Main theories developed by Carroll Morgan, Ralph Johan Back

and Joseph Morris

 All three are based on Dijkstra’s language of guarded commands

and weakest precondition calculus.

 Morgan takes a very program oriented view whereas Back appears

to be much more theoretical with foundations in lattice and

category theory. Morris extended Back’s work with prescriptions.

 Weakening the precondition

 Strengthening the postcondition

 Introducing local variables

 Renaming local variables

 Introducing logical constants

 Eliminating logical constants

 Expanding the frame

 Introducing skip

 Introducing abort

 Introducing assignment

 Introducing sequential composition

 Introducing alternation

 Introducing iteration

MORGAN’S REFINEMENT

MORGAN’S REFINEMENT

Introducing alternation

BACK’S REFINEMENT
Predicate

Transformer

Category

Predicate

Category

Category of

Truth Values

Relations

Category

State

Transformer

Category

 Similar rules to Morgan’s refinement calculus

 Example

• Introduce conditional :

BACK’S REFINEMENT

MORRIS REFINEMENT

 Extended Back’s calculus with prescriptions

 A prescription 𝑃||𝑄 specifies a mechanism that when executed in

a state satisfying P will terminate in a state satisfying Q

• P and Q are predicates

 Given 𝑃||𝑄 there are 6 ways of choosing s such that

𝑃||𝑄 ⊑ 𝑠

1. Skip

2. Assignment

3. Prescription

4. If statement

5. Composition

6. Block

MORRIS REFINEMENT

GENERAL REFINEMENT

Liskov

Substitution

 3 main components:

1. Set of entities – specifications and implementations

2. Set of contexts – the environment with which the entities interact

3. A user formalised by defining the set of observations that can be

made when an entity is executed in a given context

 Example: an entity as a motor, a context as the car in which the

motor runs and the user as the driver of the car

GENERAL REFINEMENT

SPECIAL THEORIES

 We can view each special model of refinement as a layer in the grand

scheme of things each encompassing a set of entities and a refinement

relation

 This allows us to interpret high level entities as low level entities using

a semantic mapping, however, these low level entities cannot interact with

the high level ones so the contexts must also be refined

GALOIS CONNECTIONS

 Mathematically this vertical refinement is a Galois connection between

the layers.

 Given two posets (A, ≤A) and (B, ≤B). A Galois connection between

these posets consists of two maps f: A→B and g: B →A, such that for all

a є A and b є B, we have

• a ≤A f(g(a))

• f(g(b)) ≤B b

Π -INSTITUTIONS

 Alternative to institution – replacing the notions of model and satisfaction by

Tarski’s consequence operator

 Definition:

• A π-institution is a triple (Sign, φ, {𝐶𝑛Σ}Σ:𝑆𝑖𝑔𝑛) consisting of

1. A category Sign (of signatures)

2. A functor φ:Sign -> Set (set of formulae over each signature)

3. For each object Σ of Sign, a consequence operator 𝐶𝑛Σ defined in the power set of

φ(Σ) satisfying for each A, B ⊆ φ(Σ) and μ: Σ -> Σ

(RQ1) 𝐴 ⊆ 𝐶𝑛Σ(𝐴) (Extensiveness)

(RQ2) 𝐶𝑛Σ(𝐶𝑛Σ(𝐴)) = 𝐶𝑛Σ(𝐴) (Idempotence)

(RQ3) 𝐶𝑛Σ(𝐴) = 𝐶𝑛Σ(𝐵)𝐵⊆𝐴,𝐵 𝑓𝑖𝑛𝑖𝑡𝑒 (Compactness)

(RQ4) φ(μ)(𝐶𝑛Σ(𝐴)) ⊆ 𝐶𝑛Σ′(φ(μ)(𝐴)) (Structurality)

TARSKI’S CONSEQUENCE

OPERATOR

 Axiom 1:

𝑆 ≤ ℵ0

 Axiom 2:

 𝐼𝑓 𝑋 ⊆ 𝑆, 𝑡ℎ𝑒𝑛 𝑋 ⊆ 𝐶𝑛 𝑋 ⊆ 𝑆

 Axiom 3:

𝐼𝑓 𝑋 ⊆ 𝑆, 𝑡ℎ𝑒𝑛 𝐶𝑛 𝐶𝑛 𝑋 = 𝐶𝑛(𝑋)

 Axiom 4:

𝐼𝑓 𝑋 ⊆ 𝑆, 𝑡ℎ𝑒𝑛 𝐶𝑛 𝑋 = 𝐶𝑛(𝑌)

𝑌⊆𝑋 𝑎𝑛𝑑 𝑌 <ℵ0

 Axiom 5:

 ∃𝑥 ∈ 𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐶𝑛 𝑥 = 𝑆

𝑓: A → B

𝑓 𝑥 = 𝐶𝑛(𝑥)

𝑔: B → A

𝑔 x = 𝑌

𝑌⊆𝑆 𝑎𝑛𝑑 𝑋⊆𝐶𝑛(𝑌)

Both posets are ordered by set theoretic inclusion

EVENT B

 The Event B formal specification language is used in the verification of

safety critical systems

 Event B models are an instance of the specification

Gluing Invariant

JML

 JML = Java Modelling Language

 Specifications are annotations:

REFINEMENT IN JML

 JML supports refinement as specification inheritance

AIM

 Establish a theoretical framework within which refinement steps,

and their associated proof obligations, can be shared between

different formalisms

FUTURE WORK

1. Specify a π -institution for refinement in at least two formalisms

2. Complete refinement case studies in both formalisms

3. Use π-institutions to combine proofs in these formalisms

