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PROBL.

G2

% Different formalisms do not integrate well e.g. Event B only

models the specification and its proofs are not easily transferable to

other formalisms
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PROPOSED SOLUTION

G2

% Establish a theoretical framework within which refinement steps,
and their associated proof obligations, can be shared between

different formalisms

% Hypothesis: the theory of institutions can provide this framework

and, we will construct an institution based specification of the Event

B formalism




SFINEMENT

G2

% In software engineering it is common to model systems at different

levels of abstraction
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o We can map between these different levels of abstraction in a

Q?‘ verifiable way through a process known as refinement
97
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REDUCING
NONDETERMINISM

G2

i L i : : .
EZ =i : Z il ‘; i This one is nondeterministic when

fi a=b

=

ifas<b-a=a—b>b
latb->b:=b—a

fi

This one is deterministic

Classic example: Converting an NFA to a DFA
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THEORIES OF
REFINEMENT

G2

% Main theories developed by Carroll Morgan, Ralph Johan Back
and Joseph Morris

% All three are based on Dijkstra’s language of guarded commands

and weakest precondition calculus.

% Morgan takes a very program oriented view whereas Back appears
to be much more theoretical with foundations in lattice and

category theory. Morris extended Back’s work with prescriptions.

NN
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MORGAN’S R]

% Weakening the precondition

% Strengthening the postcondition
% Introducing local variables

% Renaming local variables

% Introducing logical constants

% Eliminating logical constants

% Expanding the frame

r

SHFINEM

% Introducing skip

% Introducing abort

% Introducing assignment

% Introducing sequential composition
% Introducing alternation

% Introducing iteration

NN
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MORGAN’S R]

Introducing alternation

w : [pre A (\/ ieG;),post]| = if (ieG; — w: [pre A G;, post]) fi
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BACK’S R

G2

%* Similar rules to Morgan’s refinement calculus

% Example

* Introduce conditional :

SC [gU---Ugnl:ifgr— S --- [lgn — SHi.
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MORRIS R]

G2

% Extended Back’s calculus with prescriptions

% A prescription P||Q specifies a mechanism that when executed in

a state satisfying P will terminate 1n a state satistying Q

* Pand Q are predicates

PllQEs; Es; E -




MORRIS R.

L)

Skip
Assignment
Prescription
If statement
Composition

Block

G2

% Given P||Q there are 6 ways of choosing s such that

PI[QE s

P||Q C R||S:T||U if [P = R).[S =T
and [U = Q]




“The abstract entity A is

refined by the concrete en-

tity C if no user of A could
observe if they were given
Cinits place”
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GENERAL R] CMENT

%* 3 main components:

Set of entities — specifications and implementations
Set of contexts — the environment with which the entities interact

A user formalised by defining the set of observations that can be
made when an entity is executed in a given context

% Example: an entity as a motot, a context as the car in which the

motor runs and the user as the driver of the car

AC=z,C L2Vre EO([C]J‘) C O([A}r)
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SPECIAL THEORII

G2

% We can view each special model of refinement as a layer in the grand
scheme of things each encompassing a set of entities and a refinement
relation

¢ This allows us to interpret high level entities as low level entities using
a semantic mapping, however, these low level entities cannot interact with

the high level ones so the contexts must also be refined
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GALOIS CONNECTIONS

G2

% Mathematically this vertical refinement is a Galois connection between
the layers.

% Given two posets (A, <,) and (B, <). A Galois connection between

these posets consists of two maps f: A—B and g: B —A, such that for all

a € A and b € B, we have

© a3, f(g@)
° flg(b)) =g b




NN\ 4/

IT -INSTITUTIONS

G2

% Alternative to institution — replacing the notions of model and satisfaction by

Tarski’s consequence operator

¢ Definition:
* A m-institution is a triple (Sign, ¢, {Cny}s.sign) consisting of

1. A category Sign (of signatures)

2. A functor @:Sign -> Set (set of formulae over each signature)

3.  For each object X of Sign, a consequence operator Cny defined in the power set of

¢(X) satisfying for each A, B € ¢(X) and p: X -> X

(RQ1) A € Cnyx(4) (Extensiveness)
(RQ2) Cny( Cny(A4) ) = Cnx(A) (Idempotence)
(RQ3) Cnz(A) = Upeas rinite Cx(B) (Compactness)
(RQ4) o(n)(Cnx(A)) € Cny(o(w)(A)) (Structurality)

7 NN




TARSKI’S CONSEQUENCE
OPERATOR

"W,
%  Axiom 1:
IS] < Ry
% Axiom 2:
If XSS, thenX S Cn(X) <SS
< Axiom 3:
If X € S, then Cn(Cn(X)) = Cn(X)

< Axiom 4:

If X € S,then Cn(X) = Z cn(Y)
YCX and |Y|<R,

dx € S such that Cn({x}) =S

7 NN




gx) = ﬂ 7

YCS and XcCn(Y)

Both posets are ordered by set theoretic inclusion
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A2
g The Event B formal specification language is used in the verification of
safety critical systems

S

0 . . .
@ N LEvent B models are an instance of the specification

Q

Machine Context

N\
ao variables carrier sets
[~

P77 _ invariants constants
‘l events axioms




MACHINE
MACHINE mac2

macl RE FINES

macl
VARIABLES SEES

cars_go ctxl
peds_go VARIABLES

INVARTANTS _ cars colour

. peds_colour
invl : cars_go = BOOL i INVART ANTS

inv2 : peds_go € BOOL invl @ peds colour & {red, green}

invd : -(peds_go=TRUE a cars_go=TRUE) invz @ peds_go = TRUE « peds_colour
- - w3  : cars colour £ {red, agreen}

EVENTS invd :  cars go = TRUE < cars colour

INITIALTSATION = EVENTS

STATUS
ordinary
BEGIN
actl : cars_go
actz : peds_go
END

set peds _go =
STATUS
ordinary
WHEN
grdl : cars_go
THEN
actl : peds_go
END

set peds_stop
STATUS
ordinary
BEGIN

INITIALISATION =
STATUS
ordimnary
BEGIN
actl : cars colour
act® :  peds colour
END

set peds green =
STATUS

ordimnary
REFINES

set_peds_go
WHEM

grdl : cars colour
THEM

actl @ peds_colour
END

set peds red =
STATUS

ordinary

REFINES

set peds stop

BEGIN

actl @ peds_colour

END




% JML = Java Modelling Language

%* Specifications are annotations:

. ires gy lenoth 6 e
o requlres array.lengthsw,

Ensures s:’:edia"a;:;

pahiic int [] sert(int [] array){
int temp =8;

for(int j=8;j<array.length-1;j++){

if(array[jl=array[j+1]){
temp = array[j];

array[j] = array[j+1];
array[j+1] = temp;
h
¥

return arraysy

1’w,

G2

EuElic boolean sorted(int [] a)

{

boolean wvalid = true;
for{int i=@;i<a.length-1;i++)
1
if(a[i]=a[i+1l])
{
valid = false;
break;
}
}

return valid;

¥
0 >
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EFINEMENT IN JML

G2

o JML supports refinement as specification inheritance

//@ public model non_null String name;
private /#@ non_null @+/ String fullName;
//® private represents name <- fullName;
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package org.jmlspecs.samples. jmltutorial;
/f@ refine "Person.java";

public class Person {
private /+@ spec_public non_null @/
String name;
private /+@ spec_public @/
int weight;

/%@ public invariant !name.equals("")
@ Ek weight »>= 0; @/

f/8 also
/{8 ensures ‘result !s nnll;
public String toString();

/i@ also
//@ ensures ‘\result == weight;
public /#@ pure ®%/ int getWeight();

/+@ also
@ requires kgs >= 0;
@ requires weight + kgs >= (;
@ ensures weight == ‘old{weight + kgs);
@/
public void addgs(int kgs);

/+@ also
@ requires n != null &% !n.equals{"");
@ ensures n.equals(name)
@ kEk weight == 0; @/

public Person(String mn);




G2

% Establish a theoretical framework within which refinement steps,

and their associated proof obligations, can be shared between

different formalisms
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FUTURE WORK

G2

1. Specify a w -institution for refinement in at least two formalisms
2. Complete refinement case studies in both formalisms

3. Use m-institutions to combine proofs in these formalisms




