
Marie Farrell IRCHSS Scholar

 Syntax, semantics, pragmatics

 Mathematical objects to describe the

meanings of expressions

 Only syntactically correct programs

have semantics

Marie Farrell IRCHSS Scholar

 Syntax definition consists of:

› Symbols for building words

› Word structure

› Structure of well formed phrases

› Sentence structure

Marie Farrell IRCHSS Scholar

 Symbols:

› Digits 0-9

› Operators + - x / ()

 Words are numeral built from digits and

operators

 Phrases are usual arithmetic expressions

and the sentences are the phrases

Marie Farrell IRCHSS Scholar

 Symbols:

› Letters, digits, operators, brackets etc.

 Words:

› Identifiers, numerals and operators

 Phrases:

› Identifiers and numerals can be combined with operators to

form expressions

› Expressions can be combined with identifiers and other operators

to form statements e.g. assignments, conditionals and

declarations

 Sentences:

› Statements are combined to form programs – the “sentences” of

Pascal

Marie Farrell IRCHSS Scholar

 Used to specify the internal structure of a

language

 Consists of a set of equations

› Example:

 <digit> ::= 0|1|2|3|4|5|6|7|8|9

 <operator> ::= +|-|x|/

Marie Farrell IRCHSS Scholar

Nonterminals: give

the name of the

structural type

Terminal symbols:

forms that belong to

the structural type are

built from these

symbols

 <numeral> ::= <digit>|<digit><numeral>

 <expression> ::=

<numeral>|(<expression>)|<expression>

<operator><expression>

Marie Farrell IRCHSS Scholar

 (4+24)-1

Marie Farrell IRCHSS Scholar

<expression>

<expression> <operator>

<numeral>

<digit>

<expression> <operator> <expression>

<expression>

<expression>

<numeral>

<digit>
<numeral>

<digit>

<numeral>

<digit>

+ 2

4) - 1
(4

Marie Farrell IRCHSS Scholar

<expression>

<expression> <operator> <expression>

<numeral>

<digit>

<expression> <operator> <expression>

<numeral>

<digit>

<numeral>

<digit>

4 x 2 +

1

<expression>

<expression> <operator>

<numeral>

<digit>

<expression> <operator> <expression>

<expression>

<numeral>

<digit>

<numeral>

<digit>

4 x 2 + 1

•2 different trees

•Ambiguous

 <expression> ::=

<expression><lowop><term>|<term>

 <term> ::= <term><highop><factor>|<factor>

 <factor> ::= <numeral>|(<expression>)

 <lowop> ::= +|-

 <highop> ::= x|/

Marie Farrell IRCHSS Scholar

<term>

<expression>

<term> <lowop>

<numeral>

<digit>

<term>
<highop> <factor>

<expression>

<numeral>

<digit>

<numeral>

<digit>

4

x 2 + 1

<factor>

<factor>

 Describe structure

 Words are the building blocks, terminal

symbols disappear

 Meanings are assigned to entire words,

not to individual sentences

Marie Farrell IRCHSS Scholar

 <expression> ::= <numeral>|<expression><operator><expression>|left-paren<expression>right-paren

 <operator> ::= plus|minus|mult|div

 <numeral> ::= zero|one|two|...|ninety-nine|one-hundred|...

 The structure of arithmetic remains

 The derivation trees have the same structure as before, but the tree’s leaves are the tokens instead of

the symbols

Marie Farrell IRCHSS Scholar

 More abstract view of abstract syntax!

 Each nonterminal in a BNF definition

names the set of those phrases that have

the structure specified by the

nonterminals BNF rule

 But the rule can be discarded: we

introduce syntax builder operations, one

for each form on the right hand side of

the rule

Marie Farrell IRCHSS Scholar

 Sets:
 Expression

 Op

 Numeral

 Operations:
 Make-numeral-into-expression: Numeral → Expression

 Make-compound-expression: Expression x Op x Expression → Expression

 Make-bracketed-expression: Expression → Expression

 Plus: Op

 Minus: Op

 Mult: Op

 Div: Op

 Zero: Numeral

 One: Numeral

 Two: Numeral

Marie Farrell IRCHSS Scholar

Syntax is not tied

to symbols; it is a

matter of structure

 “Syntax Domain” – a collection of values with common syntax structure.

 We specify a language’s syntax by listing its syntax domains and its BNF rules

 Abstact Syntax for a File Editor:

 P ∈ Program-session

 S ∈ Command-sequence

 C ∈ Command

 R ∈ Record

 I ∈ Identifier

 P ::= S cr

 S ::= C cr S|quit

 C::= newfile| open I| moveup| moveback| insert R| delete| close

Marie Farrell IRCHSS Scholar

No BNF rules exist for Identifier or
Record because these are
collections of tokens

 Important to be able to show that all

members of a syntax domain have some

common property – “structural

induction”

 First, mathematical induction:
 Show something works the first time

 Assume it works this time

 Show it works the next time

 Conclusion – it works all the time.

Marie Farrell IRCHSS Scholar

 Use induction to prove:

 1+4+9+...+n² = (n(n+1)(2n+1))/6 where n ∈ ℕ

 Step 1: Show that n=1 holds

 1 = (1(1+1)(2*1+1))/6

 1=1 True

 Step 2: Assume true for n=k

 1+4+9+...+k² = (k(k+1)(2k+1))/6

 Step 3 : Prove true for n=k+1

 1+4+9+...+k² +(k+1)²= (k+1)(k+2)(2k+3))/6

 (k(k+1)(2k+1))/6 +(k+1)² = (k+1)(k+2)(2k+3))/6

 (2k³+9k²+13k+6)/6 = (2k³+9k²+13k+6)/6

 Hence, by the principle of mathematical induction the statement

 1+4+9+...+n² = (n(n+1)(2n+1))/6 where n ∈ ℕ is true.

 Marie Farrell IRCHSS Scholar

 The structure of mathematical induction can be formalised as a BNF rule

 N ::= 0|N+1

 Any natural number is just a derivation tree

 The mathematical induction principle is a proof strategy for showing that

all the trees built by the rule for N posess a property P.

 Step 1 says to show that the tree of depth 0, the leaf 0, has P.

 Step 2 says to use the fact that a tree t has property P to prove that the

tree t+1 has P.

 The mathematical induction principle can be generalized to work upon

any syntax domain defined by a BNF rule – “structural induction”

Marie Farrell IRCHSS Scholar

 Treating the members of a syntax

domain D as trees, we show that all trees

in D have property P inductively:

› 1. Show all trees of depth 0 have P

› 2. Assume that for an arbitrary depth m≥0 all

trees of depth m or less have P

› 3. Show that a tree of depth m+1 must have

P as well.

Marie Farrell IRCHSS Scholar

 For the domain E: Expression and its BNF rule:

 E ::= zero|E1*E2|(E)

› Show that all members of Expression have the same number of left and

right parentheses

› Proof:

 1. zero: This is trivial.

 2. E1*E2: By the inductive hypothesis, E1 has m left parentheses and m right

parentheses. Similarly E2 has n left parentheses and n right parentheses.

Then E1*E2 has m+n left parentheses and m+n right parentheses.

 (E): By the inductive hypothesis, E has m left parentheses and m right

parentheses. Clearly, (E) has m+1 left parentheses and m+1 right

parentheses.

Marie Farrell IRCHSS Scholar

