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 Syntax, semantics, pragmatics 

 Mathematical objects to describe the 

meanings of expressions 

 Only syntactically correct programs 

have semantics 
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 Syntax definition consists of: 

› Symbols for building words 

› Word structure 

› Structure of well formed phrases 

› Sentence structure 
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 Symbols: 

› Digits 0-9 

› Operators + - x / ( ) 

  Words are numeral built from digits and 

operators 

 Phrases are usual arithmetic expressions 

and the sentences are the phrases 
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 Symbols: 

› Letters, digits, operators, brackets etc. 

 Words: 

› Identifiers, numerals and operators 

 Phrases: 

› Identifiers and numerals can be combined with operators to 

form expressions 

› Expressions can be combined with identifiers and other operators 

to form statements e.g. assignments, conditionals and 

declarations 

 Sentences: 

› Statements are combined to form programs – the “sentences” of 

Pascal 
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 Used to specify the internal structure of a 

language 

 Consists of a set of equations 

› Example: 

 <digit> ::= 0|1|2|3|4|5|6|7|8|9 

 <operator> ::= +|-|x|/ 
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Nonterminals: give 

the name of the 

structural type 

Terminal symbols: 

forms that belong to 

the structural type are 

built from these 

symbols 



 <numeral> ::= <digit>|<digit><numeral> 

 <expression> ::= 

<numeral>|(<expression>)|<expression>

<operator><expression> 
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 (4+24)-1 
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<expression> 

<expression> <operator> 

<numeral> 

<digit> 

<expression> <operator> <expression> 

<expression> 

<expression> 
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<digit> 
<numeral> 

<digit> 

<numeral> 

<digit> 
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<expression> 

<expression> <operator> <expression> 

<numeral> 

<digit> 

<expression> <operator> <expression> 

<numeral> 

<digit> 

<numeral> 

<digit> 

4 x 2 + 

1 

<expression> 

<expression> <operator> 

<numeral> 

<digit> 

<expression> <operator> <expression> 

<expression> 

<numeral> 

<digit> 

<numeral> 

<digit> 

4 x 2 + 1 

•2 different trees 

•Ambiguous  



 <expression> ::= 

<expression><lowop><term>|<term> 

 <term> ::= <term><highop><factor>|<factor> 

 <factor> ::= <numeral>|(<expression>) 

 <lowop> ::= +|- 

 <highop> ::= x|/ 
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<term> 

<expression> 

<term> <lowop> 

<numeral> 

<digit> 

<term> 
<highop> <factor> 

<expression> 

<numeral> 

<digit> 

<numeral> 

<digit> 

4 

x 2 + 1 

<factor> 

<factor> 



 Describe structure 

 Words are the building blocks, terminal 

symbols disappear 

 Meanings are assigned to entire words, 

not to individual sentences 
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 <expression> ::= <numeral>|<expression><operator><expression>|left-paren<expression>right-paren 

 <operator> ::= plus|minus|mult|div 

 <numeral> ::= zero|one|two|...|ninety-nine|one-hundred|... 

 

 The structure of arithmetic remains 

 The derivation trees have the same structure as before, but the tree’s leaves are the tokens instead of 

the symbols 
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 More abstract view of abstract syntax! 

 Each nonterminal in a BNF definition 

names the set of those phrases that have 

the structure specified by the 

nonterminals BNF rule 

 But the rule can be discarded: we 

introduce syntax builder operations, one 

for each form on the right hand side of 

the rule 
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 Sets: 
 Expression 

 Op 

 Numeral 

 Operations: 
 Make-numeral-into-expression: Numeral → Expression 

 Make-compound-expression: Expression x Op x Expression → Expression 

 Make-bracketed-expression: Expression → Expression 

 

 Plus: Op 

 Minus: Op 

 Mult: Op 

 Div: Op 

 

 Zero: Numeral 

 One: Numeral 

 Two: Numeral ..... 
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Syntax is not tied 

to symbols; it is a 

matter of structure 



 “Syntax Domain” – a collection of values with common syntax structure. 

 We specify a language’s syntax by listing its syntax domains and its BNF rules 

 Abstact Syntax for a File Editor: 

 P ∈ Program-session 

 S ∈ Command-sequence 

 C ∈ Command 

 R ∈ Record 

 I ∈ Identifier 

 

 P ::= S cr 

 S ::= C cr S|quit 

 C::= newfile| open I| moveup| moveback| insert R| delete| close  
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No BNF rules exist for Identifier or 
Record because these are 
collections of tokens 



 Important to be able to show that all 

members of a syntax domain have some 

common property – “structural 

induction” 

 First, mathematical induction: 
 Show something works the first time 

 Assume it works this time 

 Show it works the next time 

 Conclusion – it works all the time. 
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 Use induction to prove: 

 1+4+9+...+n² = (n(n+1)(2n+1))/6 where n ∈ ℕ 

 Step 1: Show that n=1 holds 

 1 = (1(1+1)(2*1+1))/6 

 1=1  True 

 Step 2: Assume true for n=k 

 1+4+9+...+k² = (k(k+1)(2k+1))/6  

 Step 3 : Prove true for n=k+1 

 1+4+9+...+k² +(k+1)²= (k+1)(k+2)(2k+3))/6  

 (k(k+1)(2k+1))/6 +(k+1)² = (k+1)(k+2)(2k+3))/6 

 (2k³+9k²+13k+6)/6 = (2k³+9k²+13k+6)/6  

 Hence, by the principle of mathematical induction the statement 

 1+4+9+...+n² = (n(n+1)(2n+1))/6 where n ∈ ℕ is true. 
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 The structure of mathematical induction can be formalised as a BNF rule 

 N ::= 0|N+1 

 Any natural number is just a derivation tree 

 The mathematical induction principle is a proof strategy for showing that 

all the trees built by the rule for N posess a property P. 

 Step 1 says to show that the tree of depth 0, the leaf 0, has P. 

 Step 2 says to use the fact that a tree t has property P to prove that the 

tree t+1 has P. 

 The mathematical induction principle can be generalized to work upon 

any syntax domain defined by a BNF rule – “structural induction” 

 

Marie Farrell IRCHSS Scholar 



 Treating the members of a syntax 

domain D as trees, we show that all trees 

in D have property P inductively: 

› 1. Show all trees of depth 0 have P 

› 2. Assume that for an arbitrary depth m≥0 all 

trees of depth m or less have P  

› 3. Show that a tree of depth m+1 must have 

P as well. 
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 For the domain E: Expression and its BNF rule: 

 E ::= zero|E1*E2|(E) 

› Show that all members of Expression have the same number of left and 

right parentheses 

› Proof: 

 1. zero: This is trivial. 

 2. E1*E2: By the inductive hypothesis, E1 has m left parentheses and m right 

parentheses. Similarly E2 has n left parentheses and n right parentheses. 

Then E1*E2 has m+n left parentheses and m+n right parentheses. 

 (E): By the inductive hypothesis, E has m left parentheses and m right 

parentheses. Clearly, (E) has m+1 left parentheses and m+1 right 

parentheses. 
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