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Preface 
 

 
These proceedings contain details on the invited talks and the papers presented at the SIGIR 2010 Workshop on 
Desktop Search (Understanding, Supporting, and Evaluating Personal Data Search), Geneva, Switzerland, 23 July, 
2010. 
 
Despite recent research interest, desktop search is under-explored compared to other search domains such as the 
web, semi-structured data, or flat text.  Even with the availability of several new desktop search tools, users are 
more successful finding information through browsing their personal collections and subsequently show 
preference for this approach. Problems with existing desktop search tools include performance issues, an over-
reliance on good query formulation, and a failure to fit within the user’s work flow or the user’s mental model. As 
the available storage for desktop collections becomes cheaper and more plentiful and new media types continue to 
appear, the size and types of items stored in personal collections is growing rapidly. The need for effective 
methods to integrate the interaction experience between different information types is becoming ever more 
pressing. The aim of this workshop is to bring together people interested in desktop search with the goal of 
fostering collaborations and addressing the challenges faced in this area. 
 
We would like to thank ACM and SIGIR for hosting the workshop. Thanks also go to the program committee, 
invited speakers and paper authors, without whom there would be no workshop. 
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Detecting Contexts on the Desktop Using Bayesian
Networks

Stefania Costache, Julien Gaugaz, Ekaterini Ioannou, Claudia Niederée, Wolfgang
Nejdl

L3S Research Center, Appelstr. 9A, 30169 Hannover, Germany
lastname@l3s.de

ABSTRACT
A good understanding of a user’s (working) contexts pro-
vides the basis for improved desktop information manage-
ment, as well as for personalized desktop and Web search.
We propose to combine a variety of evidences found by an-
alyzing desktop information for inferring the user’s working
contexts, and more specifically infer file-to-context assign-
ment using a Bayesian Network. Our preliminary experi-
ments focus on identifying a good selection of evidences to
use and show that the choice of evidences is coherent with
user assessments for desktop files, as well as the contexts
inferred by the Bayesian Network.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms

Keywords
User Context, Desktop, Bayesian Network, Evidences

1. INTRODUCTION
Recent Personal Information Management (PIM) projects

focused on improving the management of desktop resources
(e.g., files, emails), going beyond the functionality of com-
mercial desktop search engines. Systems such as Haystack
[13], Stuff I’ve Seen [3], and NEPOMUK [10] proved that
automatically extracting and maintaining rich information
describing desktop objects is feasible.

The next step in PIM is to provide better task support on
the desktop, building upon the extracted information. Also,
the borderline between desktop and Web deserves additional
attention, since the personal information is no longer man-
aged on the desktop only, but on the“Virtual Personal Desk-

Copyright is held by the author/owner(s)
SIGIR’10, Workshop on Desktop Search, July 23, 2010, Geneva, Switzer-
land.

top”, an extension of the user’s desktop on the Web. Our
innovative approach for detecting (working) contexts serves
this future PIM direction.

Task solving requires a set of related people, ideas, tools
and resources, which are called working or task context. For
the desktop, we define such a context as the collection of re-
sources that the user uses to solve one task. By processing
these resources we collect time-related similarity evidences.
Also, identifying file similarities using text similarity tech-
niques was found successful in many areas (e.g., [9] build
on them for document classification). Our approach intel-
ligently combines a variety of such evidences (textual and
non-textual) to determine the working context. The result-
ing, improved knowledge about the user’s context can be
used, for example, to facilitate the user with the desktop re-
sources she needs for the current task, as well as for targeted
refinement of user profiles.

More specifically, we focus on identifying evidences sup-
porting possible file-to-context assignments, based on the
content of the files on the desktop, as well as the time con-
nections between them. A Bayesian Network (BN) is con-
structed to model the evidences, the possible file-to-context
assignments, and the interdependencies between them. We
then use the BN to infer which files belong to which contexts.

Our main contributions are in identifying useful evidences
for context detection (Section 3), evaluating their useful-
ness in preliminary experiments (Section 5), and creating a
BN for successfully identifying desktop contexts (Section 4).
Furthermore, we discuss related work in Section 2, and con-
clude with ideas and future work in Section 6.

2. RELATED WORK
For framing our approach, we present related work on the

evidences used for analyzing desktop user behavior. These
evidences mainly come from text analysis and implicit feed-
back about the user’s desktop activities. Such evidences are
used to predict patterns of user behavior, as well as for other
applications on the desktop.

Desktop Usage Analysis. Desktop usage behavior has
been thoroughly analyzed in many studies. For example,
Malone [8] used interviews to analyze the way professional
and clerical office workers organize information in their desks
and offices - the filers and pilers paradigm. This work is
orthogonal to ours, as we also analyze desktop user activity,
but we focus on file access distribution, rather than storage
behavior. Also, [1] suggested that the way information is
used on the desktop should also be the primary determinant
of the way it will be organized, stored and retrieved. We
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rely on the same idea: the user’s way of interacting with
information on the desktop should deliver good evidences
for identifying the user’s contexts.

User Activity & Implicit Feedback. Although im-
plicit feedback is useful for predicting the importance of a
resource for its user, there is almost no work dedicated to
using it to group documents on the desktop, and use them
as working contexts as we do in our approach. [11] discussed
the different types of behavioral patterns that can occur on
the desktop, mainly based on analyzing the time spent on
one resource (reading time durations). A strong correlation
is proven between the reading time and the importance of
a document for the user. This supports our approach, since
we log the focus of windows displaying resources, which we
consider as reading time. They also state that behavior ev-
idences are hardly taken into account in present research,
and even less effort is put into combining this with content-
based representation, the approach we envision. [4] rein-
forced these observations by discovering that they can be
further improved by also logging rare but very meaningful
desktop events, such printing a document indicating special
document importance. [15] analyzed file activities to de-
duce links between files based on temporal locality in access.
These links are used to provide ranking based on different
algorithms, as also used in [5], while we use them for detect-
ing contexts. A good summarization on implicit feedback
measures, categorization and usage can be found in [7].

Text Based Context Detection. [2] used applications
such as word processors to extract keywords representative
for the current user task, and used them for pro-actively
presenting the task-related documents to the user. Scat-
ter/Gather [6] used the Fractionation algorithm to perform
text clustering on search results and automatically organize
them into a given number of topic-coherent groups. This is
related to context detection, since, a cluster of documents
represents a type of a context for the user to find her search
results within. [14] uses clustering based on document term
vectors to help reorganize the desktop and classify new files.
In our approach, we also use text properties for grouping files
but into contexts not into folder structures and we also use
additional evidences from the access behavior of the user.

3. CONTEXT DETECTION EVIDENCES
As presented in Section 2, many approaches focus on iden-

tifying user behavior using evidences gathered from the desk-
top. Our evidences are mainly extracted from user actions
and summarized within behavioral patterns, which can then
be used to model user contexts. We present the different
desktop evidences we collect and show their transformation
into similarity measures which we use to construct the BN.

Textual Properties (T). Many approaches consider group-
ing together files (e.g., clustering) based solely on their tex-
tual properties. We follow [14], which focuses on desktop
resources, and represent each document as a vector of TFx-
IDF coordinates. Cosine similarity (or angle distance) be-
tween such vectors is used to model the similarity of desktop
resources. When the vector similarity is small, we consider
the documents similar, as done in Information Retrieval.

Usage Analysis (UA). Usage analysis refers to informa-
tion when a file is active for a user, along with the file access
times. The collected access times are used to compute the
distance between any two resources using the sequence and
session activity similarities described below.

We need to consider different factors when defining an ac-
tivity similarity between two desktop resources. More specif-
ically, two resources are more similar: (i) if they are mostly
used in a small interval of time, (ii) if their access times are
nearer in an access sequence, and (iii) if they have many
occurrences of close accesses in time or sequence.

According to the above we represent accesses to a desktop
resource as two signals: (1) a continuous signal along time,
and (2) a discrete signal along the sequence dimension. Let
us denote the time signal of resource r as fr(t) and its se-
quence signal as gr(s), where t is the time and s is the steps
where r is accessed in the access sequence. Each time r is ac-
cessed, we add to f a curve following a normal distribution
centered on the time ti at which the resource is accessed.
Similarly, for the sequence signal, we add a curve following
a binomial distribution – which is the discrete equivalent to
a normal distribution – centered on the step si at which the
resource is accessed. If T is the list of all times where r
is accessed, and S the list of all sequence steps where r is
accessed, then the signals for r are:

fr(t) =
∑
ti∈T

Nti,σ(t) =
∑
ti∈T

1

σ
√

2π
e
− (t−ti)

2

2σ2 , and (1)

gr(s) =
∑
si∈S

Bp(s− si) =

∑
si∈S

(
N

s− si

)
ps−si(1− p)N−(s−si) (2)

Thus, the more similar the signals of two resources are, the
more similar the resources themselves are to each other. We
can therefore use the correlation coefficient of the signals
of two resources to measure their similarity. The activity
session similarity between two resources a and b is:

winCC(fa(t), fb(t)) =
cov(fa(t), fb(t))

std(fa(t)) · std(fb(t))
, (3)

and the sequence similarity is:

seqCC(ga(t), gb(t)) =
cov(ga(t), gb(t))

std(ga(t)) · std(gb(t))
, (4)

where cov is the covariance and std the standard devia-
tion of the two signals. Since the correlation coefficients are
bounded in the interval [−1; 1], we define the usage analysis
similarity as:

ua(a, b) =
winCC(fa(t), fb(t)) + 1

2
· seqCC(ga(t), gb(t)) + 1

2
,

and it is bounded in the interval [0, 1].
Files Opened Concurrently (FOC). According to re-

lated studies (Section 2), when several resources are ac-
cessed in parallel at the same time they are (to some ex-
tent) related. UA logs the switching between resources, and
FOC just considers the resources simultaneously accessed
(resources displayed by a window at a given time), informa-
tion not necessarily captured by UA.

In this case we propose to provide the probability that
two resources belong to the same context. Let Oa be the
number of times a is accessed alone, and Ob when b is ac-
cessed alone. Let also Oab be the number of times a and
b are accessed concurrently. We define the FOC similarity
between resources a and b as foc(a, b) = Oab

Oa+Oab+Ob
.

Folder Hierarchy (FH). Directories allow to classify
files, thus enabling the user to later retrieve them by brows-
ing. It is therefore reasonable to consider files residing within
the same directory have a higher probability of being related.
This corresponds to an explicit user defined context.

Note that files sharing a common path prefix are also, in a
restricted sense, in the same folder, i.e., they have a common

4



prefix. The fact that some files are in subdirectories of the
common directory indicates however a lower probability to
belong to the same context.

Figure 1: Hierarchy example (circles are directories
and squares files).

Intuitively, files A and B in Figure 1 have the highest
probability to belong to the same context. Files A and C
are a bit less probable to belong to the same context, since
they don’t have exactly the same path: they are both under
/p0 but C is also under ./p1. And files C and D are less
probable to belong to the same context since they are in two
different subcontexts (i.e., subdirectories) of /p0.

Considering the above we propose to use the shortest path
between two files in the file system, modeled as a tree with
directories as branches and files as leaves. In our example,
files C and D would have a distance of 2. Since in our
approach we need a similarity and not a distance we define
the FH similarity as fh(a, b) = 1/(1 + shortestPath(a, b)).

4. THE CONTEXT BAYESIAN NETWORK
We build a BN based on the evidences gathered from the

user activities on the desktop, but also on direct input from
the user, concretized into an initial user assessment of 100
random files from the desktop which the user had to classify
into several contexts. The respective contexts will then be
filled with other related files – as inferred by the BN. In
addition, related files outside the identified contexts will be
detected, which are a source for new contexts.

The BN is constructed from the following nodes:
- Evidence Nodes describe the type of evidences we have

for each file. They can be text, UA, FOC, or FOH, as de-
scribed in Section 3. These nodes represent the relation of
two files with a specific evidence type.

- Directly Related Nodes describe the relationship be-
tween two files, based on Evidence Nodes. It is an unification
of evidences that can be gathered for two files. Therefore,
direct links between a Directly Related Node and their Ev-
idence Nodes exist (see node ”F1 related F5” in Figure 2).

- Inferred Related Nodes also represent a relation be-
tween two files, but an indirect one. This type of nodes is
suited for pairs of files for which we don’t have direct evi-
dence (text, UA, FOC, or FH), but their relationship can be
transitively inferred from the Directly Related Nodes. For
example, if we have two Directly Related Nodes which ex-
press the relationship between (F1, F2) and (F1, F5) (see
Figure 2), we infer relationship (F2, F5) in this type of node.

- Context Nodes are constructed from the direct feed-
back given by the user for the randomly selected files. They
simply show that a file belongs to a context.

- Inferred Context Nodes also rely on a transitive rela-
tionship inferred when we know there is a relationship (direct
or inferred) between two files – (F1, F5), and we also know
that one file belongs to a context – (F5, C1). Then we can
easily infer that F1 should also belong to the same context
– (F1, C1) (see Figure 2).

Construction of the BN. In order to construct the BN,
we first collect the evidences that we have for the similarity

between files, computed by comparing each two files on the
desktop. Whenever an evidence similarity (text, UA, FOC,
FH) is above a given threshold, we construct an Evidence
Node. Probability tables for these nodes are deducted from
user questionnaires. In these questionnaires, users had to
evaluate how much would such a single evidence influence
the similarity of two files, each evidence by itself.

At the same time, we also add the Directly Related Nodes,
which will be connected to the appropriate Evidence Nodes,
as described above. For example, if we have significant (i.e.,
higher than a threshold) text and FH evidences that F1 is
related to F2, we construct the two Evidence Nodes for text
and FH evidences, but we also construct a Directly Related
Node, which means that F1 and F2 are related, and we also
link this node to the two Evidence Nodes for text and FH.

Once all these nodes are added, we construct the Inferred
Related Nodes – if the Direct Related Nodes referring to F1
related to F2, and F2 related to F3 exist, but the Direct
Related Node implying that F1 is related to F3 does not
exist, we then construct an Inferred Related Node expressing
this relationship between F1 and F3, which will link to the
first two existing Direct Related Nodes.

Figure 2: Small part of our BN.
Next, we construct new nodes based on the user evaluation

on the randomly chosen files from her desktop. The user had
to name contexts and also assign files to them. She could
also express her distrust, like putting a 0 (in a table) if the
respective file is not in a specific context. But, we only took
into account the positive evidences and constructed Context
Nodes. Also, these nodes needed to be linked to the nodes
that express there is a relationship between two files - the
Directly Related Nodes and also the Inferred Related Nodes,
in order to be able to make new inferences: if F1 is related
(directly of inferred) to F2 and if F1 is in context C, then we
should infer that also F2 has to be in context C. Of course,
some restrictions need to be applied: we also check if there
exists negative evidence from the user that F2 should not
belong to context C, or if the Context Node F2 in context C
was not already generated from the evidences from the user.

Inference. When the BN is completed, we determine
the probability of cause nodes (file to context assignment)
given the probability of the observed effect (evidences), and
identify which files belong to each context. This task is per-
formed using Pearl’s probabilistic inference (PI) [12]. At
each step, an activated node N recomputes its own belief
using messages collected from its parents (πN (Pi)) and its
children (λN (Cj)) (see Figure 2). Once the node has its
belief, it sends messages to its parents (λN (Pi)) and its chil-
dren (πCj (N)), which are then used when these nodes are
activated. Once PI finishes, the Inferred Context Nodes pro-
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vide probabilistic information about each file belonging to
a context. Also, the information generated by the Inferred
Related Nodes describes the files about which nothing could
have been inferred relative to them belonging to a context.
This allows us to identify new contexts which the user did
not specifically name in her initial input.

5. EXPERIMENTS
We define a user desktop as all data stored by a user

on a personal machine. This includes personal files (e.g.,
HTML, DOC, PDF, JPG), Web cache history, messenger
history, emails. Upon their full text, standard text prepro-
cessing techniques were performed: tokenization, stop words
removal, stemming. We then computed the similarities for
each pair of desktop resources, as described in Section 3.

We evaluated how the newly introduced activity based
context detection methods perform. The experiments were
performed only on a small scale (i.e., the authors of this
paper). All file accesses (open, create, etc.) on the desktop
were logged during several months of normal activity, with
an installed activity logging tool. The log files were used to
provide the additional similarity measures.

Experimental Results & Comments
True positive evidences. We check if for two files that the
user assessed as being in the same context (i.e., related), the
evidences that we generate also support this fact – their val-
ues are higher than chosen thresholds, and therefore consid-
ered positive evidences. For each two such files, we consider
the fraction of positive evidences from the total of evidences
for a pair of files as the realScore. Then, we count the per-
cent of the pairs of files from all files for which the realScore
is higher or equal to 1, 0.75, 0.66, 0.5, 0.33, as shown in Ta-
ble 1. These first results show that the generated evidences
are correct, since at least 33% of the generated evidences
for related files are shown to be positive, and 89.89% of the
pairs of related files have all evidences positive.

realScore 0.33 0.5 0.66 0.75 1
% from total
number of pairs 100 92.08 90.67 89.89 89.89

Table 1: True positive evidences.
True negative evidences. This measure shows that the

negative evidences (lower than a threshold) about two files
are in correlation with the fact that the user said that two
files are not related – one file is in one context and the other
is not in the same context. We compute for all such pairs,
the number of negative evidences, and divide it to the total
number of evidences for the same pair of files and get again a
realScore. Then, we compute the percentage of the pairs for
which the realScore is higher or equal to 1, 0.75, 0.66, 0.5,
0.33, as shown in Table 2. This again supports the evidences
that we generated, saying that at least 33% of the generated
evidences for unrelated files are negative, and 76.87% of the
pairs of unrelated files have all evidences negative.

realScore 0.33 0.5 0.66 0.75 1
% from total
number of pairs 100 99.49 99.06 76.87 76.87

Table 2: True negative evidences.
BN Performance. The user assessment was split into

three parts, and two thirds were used for training the BN and
one third used for evaluation. Then, the evaluation set was
varied from within the three chunks of the user’s assessment.

For each of the three iterations, precision and recall were
computed for each of the user clusters, and then averaged
over all clusters. The preliminary results are supporting our
ideas – precision was of 77.78% and recall 73.97%. However,
further experiments are required to validate these results in
a higher variety of settings: an increased number of users,
various threshold values for choosing the positive evidences,
as well as different initial probability table assignments in
the BN, or an increased number of assessed files.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented innovative similarity measures

used for detecting user contexts through a BN. Our pre-
liminary experiments show promising results regarding the
choice of evidences with respect to user assessments (both
positive and negative), and also good results regarding the
output of the BN and its capability of inferring user con-
texts. We are currently working on improving the results of
our approach by incorporating additional evidences in the
BN.
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ABSTRACT
We describe LostRank, a project in its formative stage which
aims to produce a way to rank results in re-finding search
engines according to the likelihood of their being lost to the
user. To this end, we have explored a number of ideas, in-
cluding applying users’ temporal document access patterns
to determine the documents that are both important and
have not been recently accessed (indicating greater potential
for loss), understanding users’ topical access patterns to de-
termine the topics that are more unfamiliar and hence more
difficult to re-find documents within, and assessing users’
difficulties in originally finding documents in order to predict
future difficulties in re-finding them. As a position paper,
we use this as an opportunity to describe early work, invite
collaboration with others, and further the case for the use
of temporal access patterns as a source for assisting users’
re-finding of personal documents.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]
General Terms: Human Factors
Keywords: Re-finding, ranking, log analysis

1. INTRODUCTION
Personal document collections grow constantly. Each day

we access a significant number of new web pages, many of
which we will probably never access again. One challenge is
that finding a document within a large collection requires a
specific query to distinguish the file from others in the collec-
tion. As time passes, our recollection of document specifics
– with which we would formulate queries – decays. In other
words, as time goes on, not only does our document col-
lection grow larger – and hence harder to search – but our
ability to issue good queries declines.

One area that deserves attention is the ranking function
for search results, as a strong one can allow desktop search
to produce good results for vague queries on large personal
datasets. Additionally, it allows for a more aggressive ex-
pansion of users’ queries to include topical or syntactic syn-
onyms, as users are more likely to forget key terms (or use
wrong terms) when re-finding documents accessed further
into the past. Ranking is an important subject in re-finding
because it addresses a fundamentally different problem than
search for new information, and limits what can be imported

Copyright is held by the author/owner(s). SIGIR’10, Workshop on Desktop
Search, July 23, 2010, Geneva, Switzerland

from mature domains such as web search. For example, on
the web, algorithms like PageRank or HITS are effective
ranking functions because they promote credible or author-
itative pages, and when users seek answers to new ques-
tions, they desire answers that are most likely to be accu-
rate. Credibility is defined by lots of incoming links from
other credible pages, which has the effect of more highly
ranking pages that are considered more important by the
large community of web authors.

We argue that this is the opposite of what is desired for
re-finding tasks. Though hyperlink structure is not present
on users’ filesystems, consider an analog assessment of im-
portance, such as number of shortcuts, or proximity to the
home or desktop directories. These qualities indicate that
a document is quite important, and yet, they provide evi-
dence that the document is unlikely to be lost, as it is readily
accessible. Lost information tends to be that which is hid-
den within a difficult navigation path, such as within deeply
nested directories or large files.

In our work, we have pursued ways to rank documents
according to their likelihood of being “lost”. In this context,
we define lost documents to be those which a user has previ-
ously accessed, desires to access again, and is unable to find
using traditional search methods, such as text-based desk-
top search. Classifying a document as lost is obviously a
difficult and large endeavor. We have developed a few ideas
which we are beginning to explore and evaluate, including
page access patterns, topic access patterns, and difficulties
surrounding the original document discovery. We describe
these below, but first, let us summarize our use of personal
web log data.

2. WEB LOG DATA AND ABSTRACTIONS
Our goal is to break a user’s document activity into higher-

level abstractions that allow us to better reason about it. In
this work, we focus on web history because it is easy to
extract (e.g., via Firefox), and, since it contains queries, it
allows us to better understand information seeking behav-
ior. We believe this approach could be extended to general
document activity recording systems.

A web history is a time-ordered sequence of events, where
an event is either a query, including query text, or a page
click, including the URL and page contents. We process
it using a two-fold approach: First, the history is sepa-
rated into segments, where segments encompass a sequence
of queries and page visits that occur within 5 minutes of each
other. A segment roughly (though imperfectly) approxi-
mates a single task (e.g., searching for housing). Second,
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the LDA topic detection algorithm [1] is run on the contents
of the pages within these segments. These two approaches
assign to each page a set of tasks and topics – including the
relative strength of relationship between the page and each
of its topics [2].

For each segment, we assign a difficulty assessment, which
is measurement of the apparent difficulty of the information
seeking task. We have selected a number of qualities, in-
cluding number of queries, number of query reformulations
(modifications of unsuccessful search attempts), length of
session, number of queries for which no results are clicked
(indicating poor queries), and average page view time. Pages
within a segment inherit its difficulty score.

3. RANKING COMPONENTS
In this section we describe a few ranking components we

have explored. After independently evaluating them we
hope to combine them into a comprehensive ranking func-
tion. We envision adding more as this project matures.

3.1 Access patterns
As memory decays with time, the likelihood of a document

being lost increases with the time since its last access. How-
ever, time-of-last-access alone is not sufficient to suitably
rank documents. We use look beyond time-of-last-access to
consider larger access patterns. For example, consider two
pages that were last accessed by a user one month ago. Con-
strained to time-of-last-access, we would rank these pages as
equally lost. Let us assume that one of the pages was first
viewed at this time, while the other page has been accessed
once per month for the last 2 years. We might reason that
the latter page is less likely to be lost because its time-of-
last-access is consistent with a larger pattern of access, and
assign it a weaker rank.

Another case is we consider is when documents’ access
patterns change. For example, a page that was very fre-
quently accessed for a period of several months, but then
not accessed at all for a year, has a pattern that we refer to
as dormant. This pattern fits our definition of lost in that
it indicates that the page was once important to the user
(indicating that they may want to eventually use it again),
and that the user’s familiarity with the page has declined
(as evidenced by not being accessed for a long time).

3.2 Topic patterns
We extend the above notion to include topic, with the ob-

servation that users’ revisitation patterns vary according to
topic. For example, queries for code documentation might
frequently be navigation-style queries for which the user has
little difficulty finding relevant answers (e.g., looking up the
Java Set class). Other topics, such as health, may involve
more complex search processes where the answer to a ques-
tion is more vague.

Our current implementation is to determine, for each page,
the most closely linked LDA topics, and record an event for
the topic at that point. This allows us to build an access
pattern for each topic, and associate topical activity to each
page. Pages with more dormant topics may be those which
are more likely to be lost. The advantage of using topic is
that we can reason about pages that the user has not ac-
cessed enough for a reliable pattern to emerge (e.g., the user
only looks up code for Java class String once, but looks
up code for Java classes routinely; it would therefore be as-

signed a weaker rank as the topic pattern indicates it is likely
easily re-found).

3.3 Difficulty before original access
We consider the path a user takes to originally access a

page, using the difficulty assessment described in Section 2.
Repeated navigational queries – web queries that are in-
tended to find a specific page (e.g., “ebay”) – suggest an
easily re-found page. Pages discovered after long trails of
queries and query reformulations indicate that the overar-
ching task may have been more vague, or that the user lacked
prior knowledge before the research task. We hypothesize
that, as the latter are cases where the user’s understanding
of the topic is weaker, the user’s recollection of terms from
pages from difficult tasks will be worse, especially for the
pages accessed later in the task. For example, a research
path that began on energy-efficient buildings may have re-
sulted in research on passive windows, the latter being a
term less easily remembered if the user continues or restarts
the research weeks or months later. Their query formulation
may tend toward their original terminology rather than the
terminology used in pages accessed after the task evolved.

4. CONCLUDING REMARKS
Most of the ideas described in this work originated from

observations on a small number of very large query logs that
volunteers offered for our use. We would like to evaluate
them directly on a larger pool of user data, and invite the
comments and participation of the community. In particu-
lar, we would like to see more research emphasis on person-
alized ranking in the context of re-finding.

There are a number of related works that have inspired
this work. Several systems aim to improve document re-
finding by tracing users’ desktop activity, for example, by
detecting task relationships [3, 4]; our work would benefit
from these systems’ tracing approaches, and allow us to inte-
grate better task representations. The Re:search engine en-
hances web search by integrating previously accessed pages
into search results for queries with similarity to previously
issued queries [5]; we share a common goal, although we fo-
cus on determining which previously accessed pages to show
to users.
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ABSTRACT
With availability of Web 2.0 platforms such as Flickr and
YouTube, personal information is no longer locked within a
user’s desktop, but becomes increasingly distributed and shared
across various online applications. In these settings it is important
to provide a quick glance at the available personal resources and
facilitate their search and selective sharing. This paper describes
the challenges and requirements to be addressed in this context
and presents deskWeb2.0 – an integrated environment which we
currently implement towards this goal. We report the results of a
small user study regarding effectiveness of such integration for
different types of desktop search.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Systems and Software

Keywords
Desktop Search, Social Search, Web 2.0.

1. INTRODUCTION
With availability of Web 2.0 platforms such as Flickr [7],

YouTube [18] and Del.icio.us [5], personal space of information
is no longer locked within a single desktop, but becomes
increasingly distributed and selectively shared across various
online applications. The Web 2.0 applications and social
platforms are famous as convenient tools for sharing personal
information. For example, recent report [10] shows that around
115 million bookmarks were available on the del.icio.us social
bookmarking site alone in 2008. In these settings it is important to
provide a quick glance not only at the user’s files available
locally, but also include resources shared online by the user and
her friends in search results. Whereas each single Web 2.0
application is specialized in a set of predefined tasks, users would
expect a single search interface over the entire set of distributed
personal knowledge resources.

We illustrate this problem with a following example: Alice
organizes her trip to the SIGIR 2010 conference in Geneva. She
needs to retrieve relevant resources stored on her desktop, such as
a sample form to authorize the trip and trip-related e-mail
communication. Also, she would like to see hotel

recommendations from her colleagues and multimedia resources
related to places of interest in Geneva visited by her friends.
Finally, she is interested in links and news shared by the other
conference participants. This task would require performing
search on her desktop and within each relevant social application
such as Youtube, Flickr, and Del.icio.us separately. Alternatively,
Alice can use deskWeb2.0 to retrieve all these resources at once.
Figure 1 presents an overview of deskWeb2.0.

Figure 1. deskWeb2.0 Overview

Majority of the existing desktop search applications do not
support integrated search over shared social resources. A few
applications such as Google Desktop Search [8] try to combine
web and desktop search results, while do not support sufficient
integration of search results obtained from user’s accounts on
social platforms. This lack of integration requires users to perform
search in each social platform separately, which is a tedious task.
In this paper we present deskWeb2.0, an integrated environment
which gives its users a quick glance at the available personal
resources independently of the hosting application. The
contributions of this paper include: (i) a search algorithm over
user’s personal social network; (ii) a small-scale user study to
assess how different desktop search tasks benefit from integration
of social search results.

2. RELATED WORK
So far social search has not been addressed in conjunction

with the desktop search problem. While modern desktop search
applications allow to mix search results from the web and desktop
(Google Desktop [8]) or index information on network drives
(Windows Search [16], Autonomy IDOL Enterprise Desktop
Search [1]), they do not search over user’s Web 2.0 data, as until

Copyright is held by the author/owner(s). SIGIR'10, Workshop on
Desktop Search, July 23, 2010, Geneva, Switzerland.
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now a major part of users’ data was stored locally. Therefore,
previous research in the area of “semantic desktop” is focused on
extracting locally available metadata and storing it into a single
RDF-based repository like in Haystack [13] and Gnowsis [14]
systems. A recent approach implemented in the Beagle++ system
[12] uses both desktop-located resources and external data
proactively fetched from the Web. In contrast, our approach
directly queries resources shared by the user and her friends on
social services.

Social search systems allow searching for resources of
different types, such as URLs, people, tags and their connections
and offer ranking algorithms which take into account the structure
of a social network. Hotho et al. in [9] developed ranking
algorithms such as adapted PageRank and FolkRank which take
network structure into account. Later, Bao et al. [2] presented
alternative algorithms called SocialSimRank and SocialPageRank.
Personalized ranking using social factors was considered by [3,
17]. In the current work we incorporate important ranking factors
of social search to enable top-k processing.

One important task of deskWeb2.0 is to provide an overview
over the available results. To increase novelty of results and
reduce the risk of user dissatisfaction, a number of schemes for
diversifying results of document retrieval and database search
have been proposed (e.g. [6, 15]). To give the user a quick glance
of the available resources, in the current implementation we
simply restrict the total number of results obtained from each
service as well as the number of results retrieved from a particular
user. In future work we plan to investigate alternative methods for
results diversification.

3. CHALLENGES
When a large part of personal resources is distributed among

heterogeneous social services, it becomes extremely difficult to
provide satisfactory desktop search results. In this work we use
the notion of social search to describe the search process over
data gathered from user’s personal networks in Web 2.0
applications, such as social bookmarking systems, blogs, forums,
social network sites (SNSs), and others [3]. To integrate desktop
and social search within deskWeb2.0 we need to address several
challenges discussed below.

Challenge 1: Technical and Semantic Interoperability

Both technical and semantic interoperability is required for
authentication, authorization, sharing and search services of the
connected platforms. Currently, such functionality is partially
supported by the Web 2.0 tools using platform-dependent APIs.
Given a large number of available services and possible software
updates such integration becomes an essential technical problem
and a laborious engineering task. Moreover, as different systems
focus on specific shared data types and support different syntax, it
becomes important to address these differences at a query
transformation step. Finally, resources within social networks
frequently change and require efficient update propagation to
guarantee up-to-date search results. At the moment we address the

integration problem on a purely technical level and prepare a
query for each service by applying service-specific heuristics.

Challenge 2: Ranking and Aggregation of Search Results

Resources from different social platforms differ in their
relevance, quality, and relation to the user significantly.
Furthermore, users often share sequences of similar resources,
such as photo series, such that search results can contain (near-)
duplicates or similar resources in different formats. Following the
ideas developed in social search [4], the relevance of resources
should be influenced by the distance within the personal network,
i.e. resources of closely connected peers should be ranked higher
compared to resources gathered from friend-of-a-friend (FOAF).
Moreover, even if all resources in a sequence have similar
relevance to the query, aggregated search results should rather
provide an overview over the available options. Our initial
implementation of deskWeb2.0 takes into account the distance
within the personal network to facilitate top-k processing and
presents a fixed number of results from each relevant platform. To
this end, search result diversification, which recently attracted a
lot of attention in the context of Web- and database search [6, 15]
can be considered in the future work.

Challenge 3: Privacy – Preserving Resource Sharing

Web 2.0 sharing platforms represent dynamic data sources
and provide up-to-date visual information about locations, people,
cultural events and travelling routes. With an increasing
availability of publishing applications like iPhoto [11] for the
mobile devices, these resources can be almost immediately
uploaded and made available within the personal network of a
user on the social platforms. As such resources can be of highly
private nature, they need to be handled with care. A search system
is required to assist users to automatically determine the level of
privacy for a particular resource. As deskWeb2.0 searches over
resources already accessible to the user and does not store them in
external indices, it does not violate user’s privacy.

4. SEARCH ALGORITHM
To answer a query, deskWeb2.0 gathers user’s personal

resources as well as resources from the user’s social network
available through FOAF relationships. We model an integrated
user’s network as a tree, where each edge represents a friendship
relationship and each node represents a user. The root node is the
querying user. The children of the root node are the direct friends
of the user from each connected platform. To transform a social
network graph into a tree we apply a greedy algorithm which
selects the shortest paths within the graph. To retrieve up-to-date
diverse search results, we implement a query propagation
algorithm presented in Algorithm 1. Algorithm 1 traverses the tree
in a breadth first manner. As a node can possibly contain either
too many or too few results, the goal of Algorithm 1 is to obtain a
balanced result set giving the user an overview over the available
results. To decide on the number of results to be retrieved from a
node n, it weights k in top-k with the relevance of the node n. In
case the node does not contain enough results for a query, it
propagates the remaining number of results to the n’s children.
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getTopk(keywords, root, k, min_relevance, results){
 priorityQueue<relevance> queue;
//compute the max number of results to be returned from the node
root.maxresults=root.relevance * k;
queue.enqueue (root);
while (true)  {

node = queue.dequeue();
//check relevance threshold
if (node.relevance < min_relevance) break;

 node.results=node.query(keywords, node.maxresults);
//collect results from the node
results.add(node.results);
if (results.size()>=k) break;
for (friend: node.friends){
//propagate remaining results to child’s nodes
friend.maxresults=node.maxresults-node.countresults;
queue.enqueue(friend); }} }

Algorithm 1. deskWeb2.0 Search

The relevance of a resource in the integrated social network
of deskWeb2.0 depends not only on the content of the resource,
but also on the global importance of its owner within the network
and the strength of the relationship between the owner and the
querying user. This relevance can be computed using Equation 1:

     ,,..,
),,(

qcontentrrelnrootrelnetworknnrel
qnrrel




(1)

where relevance of the resource r from node n with respect to
query q is the relevance of the node n in the context of its social
network n.network, rel(root->n) is the relevance of the node n
with respect to the querying user root and rel(r.content, q) is the
relevance of the content of r with respect to the query q.
According to Equation 1, each node within user’s network can be
weighted independently of the query which supports efficient top-
k query processing.

5. EVALUATION
To find out how users search personal resources using

currently available tools we carried out a small questionnaire. We
asked 22 graduate students from Computer Sciences department
to tell us which tool they use to find resources on their desktop.
Majority of the Windows users (10 out of 12) use native Windows
Desktop Search tool; 3 participants uses other tools, such as
Spotlight or “find” command for Linux; 9 users do not use
desktop search tools. As our current implementation relies on
Google Desktop Search to retrieve local search results, we had to
limit our user study to few people who installed it.

In our evaluation of deskWeb2.0 we focused on two research
questions: Question 1: Does search over social services
contributes to desktop search with respect to the relevance of
results? Question 2: Which types of desktop search such as
location, people and general information finding benefit from
social search and which do not?

To answer these questions we performed a small user study.
Our participants were five students from Computer Sciences
department, who had Google Desktop Search tool installed. We

selected four tasks for the users to perform, each including three
search types. Each task required the user to retrieve certain
information from the integrated environment of deskWeb2.0:

T1. Collect information for a business trip; T2. Prepare a
tutorial on a topic of interest; T3. Organize a short-distance
weekend trip with friends/family; and T4. Organize a party. Each
task included the following search types: A. Find contact details
of a person; B. Find location information; and C. Find general
information. For each task and search type, we asked users to
issue a keyword query of their choice. For every query, we
presented the user with two lists of results, one containing top-5
results from Google Desktop Search, and another list containing
up to five results from each Web 2.0 service on which the user
had an account. We asked users to rate the results on a 3-point
scale as “relevant”, “less relevant”, or “non-relevant”. The users
had one or two active accounts on social services supported by
our prototype so quantities of desktop and social results were
comparable.

To answer Question 1, we computed the macro-averaged
Normalized Discounted Cumulative Gain (nDCG) in three result
lists: desktop, Web 2.0, and a merged list. To compute NDCG we
ranked each list by TF-IDF scores. On Figure 2 we present the
nDCG values for top-5 results averaged over the participants. As
we can see from Figure 2, although absolute nDCG values of Web
2.0 results is lower than the values obtained by the desktop
search, combination of desktop and social search results increases
the gain of desktop search for all k>2 by about 6% on average.
We also report the results per each task T1 – T4 to see if there are
any specific situations in which social search is useful. For
readability reasons we split these results into two plots i.e. Figure
3 and Figure 4 and present only desktop and merged results. From
the task-wise presentation we observe that tasks T1 and T3, both
related to travelling preparations, only modestly benefit from
merging with social search results. In contrast, task T2 about
tutorial preparation shows stable and significant improvement
over pure desktop search. Finally, party-planning task T4 shows
about double nDCG improvement over regular desktop search.
Therefore, we conclude that Question 1 could be answered
positively and search over social services significantly
complements relevance of the desktop search.

Figure 2. Average nDCG of all Tasks
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Figure 3. Average nDCG for Tasks T1 and T3

Figure 4. Average nDCG for Tasks T2 and T4

To answer Question 2, we considered nDCG in desktop and
merged results for each type of search such as people (A), location
(B) and general information (C) separately. Figure 5 presents
nDCG results averaged over the users and search types. We
observe that both people and general information search profit
from the mixture of desktop and social search. nDCG for people
search improved by about 17% and general information finding
by 10%. On the contrary, nDCG of location search in the merged
list decreased. Since nDCG of the social search results for
location search was much lower than that of the desktop search
their mixture did not provide any extra advantage. This result also
explains the modest improvements in travelling-related tasks T1
and T3 where location search is important.

Figure 5. Average nDCG for three Types of Desktop Search

Our answer for the Question 2 is that general information
search benefits the most from social search, possibly, due to the
low desktop search effectiveness. Desktop search for people
finding is already very effective, but it is also significantly
improved by the Web 2.0 results. Location search degrades when
using social search results, we assume that users did not have
relevant information for this search type in the current networks.

6. CONCLUSION
Nowadays, personal resources are no longer stored within a

single desktop, but are increasingly shared across social platforms.
This work presents the first steps towards integrating desktop
search with social search over shared personal resources. We
identified some challenges to be addressed and developed a
sample deskWeb2.0 application. A small user study demonstrated
that search over social resources increases overall search
accuracy. It also suggests that people finding and search for
general information benefit from such integration, while search
for locations is more effective using desktop search alone. In the
future we plan to perform a larger user study. Also, we would like
to investigate diversification of search results in this context.
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ABSTRACT 

The user‟s memory plays a very important role in desktop 

search. A search query with insufficiently or inaccurately 

recalled information may make the search dramatically less 

effective. In this paper, we discuss three approaches to support 

user‟s memory during desktop search. These include extended 

types of well remembered search options, the use of past search 

queries and results, and search from similar items. We will also 

introduce our search system which incorporates these features.  

Keywords 

Desktop search, memory, suggestive interface, diary study. 

1. INTRODUCTION 
Desktop search refers to information seeking in personal 

archives, which include one‟s emails, documents, visited web 

pages, digital photos, mp3 file, and mobile phone text messages. 

The variety and amount of items in personal archives continues 

to increase with the development of new computing and storage 

technologies. The increased complexity and size of personal 

archives means that more advanced desktop search techniques 

are needed. Since personal archive items are usually 

downloaded, received, created, edited or viewed (read) by the 

individual owning the personal archive, desktop search targets 

are usually what one has encountered previously. Therefore, 

they have some links with one‟s memories associated with the 

items. When one looks for things in one‟s personal archive, the 

approach and queries one uses may depend not only on current 

task context, but also rely on what one can remember about the 

target you are seeking. For example, with windows desktop 

search 1 , one usually needs to recall at least one type of 

information about the target(s), such as the filename, or the last 

visiting date.  

There are usually two stages for desktop search: the first is to 

determine what target to look for, then the second is to look for 

(search for) this target. For example, when I want to look for the 

time of a meeting later this week, I first need to know where I 

can find it, or where I saw such information before. After I recall 

that I encountered this information in an email, I will then need 

to recall information such as when I received this email, who 

sent it to me, or the subject of the email, in order to find it out 

                                                                 

1 http://www.microsoft.com/windows/products/winfamily/deskto

psearch/ 

 

 

 

from my mail inbox. If I can‟t remember any of above 

information it may be very difficult for me to find this email and 

the information. This example indicates the important role of the 

data owner‟s and user‟s memory in performing re-finding tasks.  

In this paper, we describe three memory feature driven 

approaches to assist desktop search (in sections 2, 3 and 4 

respectively). In section 5 we present our desktop search system 

which embeds functions corresponding to these three 

approaches. Finally we give a brief overview of an experiment 

we are undertaking to test these approaches with our desktop 

search system. 

2. USE WELL REMEMBERED 

INFORMATION TO SEARCH 

2.1 Related Works 
While it has been found that people usually prefer using simple 

queries and series of small steps to narrow down the dataset and 

approach a search target [1], entering queries to retrieve the 

results directly is still an important approach. There have been 

several studies looking at utilizing people‟s memory features in 

search (e.g. [2], [3], [4]).  Most of these studies believe that the 

key to using memory features to support desktop search is to 

know which features of the items people tend to remember. 

Enabling users to search with likely remembered features of 

items is of course an important way to improve desktop search 

efficiency. However, this is not all. In fact there is usually 

another step, browsing the retrieved results to locate the target 

or the precise piece of information that is needed. Works 

looking at this aspect include [3, 5, 6], etc. In the study by 

Ringel et al. [6], they enabled users to browse the result on a 

temporal dimension together with items representing personal 

and public important events. They found that search times were 

reduced significantly when the user had access to episodic 

context.  This implies that people‟s memories about their visited 

items (items in their personal archives) are not isolated units 

which are comprised only of the memory of the attributes of 

specific items, but rather that they are associated with the 

episodic context of accessing these items. In preliminary studies 

we also found that a subject had more reliable memory of 

episodic context (e.g. location) than of the target items 

themselves.  Search queries which combined content and 

context information showed greater advantage over long term 

[7]. However, the result of this experiment was only from one 

subject. For this reason, we are conducting a diary study to 

explore what other people remember about their personal 

archive items when they look for them. 
Copyright is held by the author / owner(s) 
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2.2 Diary Study 

2.2.1 Participants 
This is an on-going study. We have so far completed a pilot 

stage with four subjects. Many more participants have agreed to 

participate in this experiment. All the participants were 

university research students majoring in computer science. They 

were invited to participate in person. The details of the diary 

study were explained to them before they signed up. 

2.2.2 Material  
Diary books with printed questionnaires (shown in figure 1) 

were given to each subject. Each of the diary books contains 40 

pages each of which can hold 16 diary entries. The other 8 pages 

include a participating consent form, instructions, and two blank 

pages for comments. On one side of each paper, there is a field 

for description of the target, one big field for free recalled 

details related to target, and multiple choice questions about the 

type of the target if the target field is not filled in because it 

contains private information, the frequency of access, and 

remembered occasions of access. On the back of each page there 

are multiple choices questions asking about their reasons and 

approaches of this re-finding activity, and a group list of 

episodic context features from which to select their remembered 

ones, such as “your location”, “people around you”, “other 

digital items accessed around that time”. This is because people 

may forget to list some information during free recall even 

though they remember the details of them. An electronic version 

of this diary book is also available online.  

2.2.3 Methods 
The participants were asked to fill in a diary entry when they are 

looking for or after they found digital items which they have 

encountered before. One week after they were given the diary 

book, each of them was visited to interview them about the diary 

entries they have written by that time.  This was to check if they 

fully understand the questions, inspire them to recall more 

aspects of the target related information, and encourage them to 

add more high standard diary entries more frequently.  

2.2.4 Results so far 
To date, four participants have completed the study and returned 

the diary book. Due to the small number of participants who 

have so far completed the study, statistical conclusions about 

remembered features cannot be provided for this paper. 

However, the following is a summary of our findings at this 

stage. For 91% of the diary entries, the participants claim to 

remember at least one occasion of interacting with the targets, 

though for 60% of these they only remember a general context. 

For example, one recalled “I was working on it day and night to 

beat the deadline”.  People sometimes also remember why they 

accessed that item previously, associated events or tasks, or 

people involved in those events. This suggests that if their 

remembered episodic information of interacting with the item 

can be recorded, it can be used in subsequent search. Another 

interesting finding is that they claim to remember how they 

found the target previously, sometimes even remembering the 

exact queries used to find the item. This is consistent with 

existing studies which show that we sometimes search for things 

which we have searched for before, and use similar queries [8].  

2.2.5 Discussions 
We believe that enabling users to search with likely remembered 

features of their targets and episodic features of previous access 

of these targets can make desktop search easier for the user. 

Admittedly, not all types of well remembered information can be 

recorded and translated to textual content to perform search. For 

example, what one thinks, smells cannot generally be captured. 

However, searching by these types of information is not 

impossible if past queries and results can be used given they 

searched by these types of information before. In the next 

section, we discuss a search approach using previous search 

queries and retrieval results.  

As for the question of which episodic context information 

should be used, we will further explore this in our diary study 

and a possible follow up survey to statistically investigate the 

most likely remembered features.  

3. USE OF PAST QUERIES AND 

RESULTS  

3.1 Background  
According to the findings of our diary study, people sometimes 

remember how they found information or items last time. We 

propose that an additional background search into a data 

collection of one‟s past desktop search queries using the current 

search query can assist the user to more efficiently retrieve a 

currently sought item, if they remember part of a previous query 

and are looking for the same item this time. This is because 

individuals may use their remembered previous queries to search 

again. Although the same query may bring them exactly same 

result list, they may still need to browse for the exact result in 

the retrieved list. Therefore, each record in this data set should 

include not only the past query, but also the result which was 

found to be relevant with this query. When a matching query is 

found, the corresponding result (item) can be included in the 

result list for the current query. If this happens to be the item 

that the user wants, it can save them the effort to browse for it in 

the list. The Heystaks tool [9] can also serve this function, 

however it focuses on sharing past queries in a social 

community, which is different from personal desktop search. 

Besides, it is limited to only one search field. Desktop search 

usually has many more potential search options. .Moreover, , 

people may not always remember correctly which queries 

brought them the target last time if they tried several queries in 

rapid succession. This is because that when we recall something, 

we actually reconstruct the whole thing or story from atomic 

pieces of associated information [10]. Omitting or misplacing 

any pieces of memory may lead to mismatching queries. Current 

major desktop search tools filter the data collection and return 

results which match all search criteria. Thus, a memory mistake 

of a single feature can cause the search to fail.  We believe that 

Figure 1. Diary Entry pages 

 

. 
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if the search system can provide relevant items which match 

“any” of the multiple search criteria, such memory failure 

causing information retrieval problem can be reduced. This is 

because even if the user recalls a piece of information 

incorrectly for one field, the potential target may still be 

retrieved because it matches other criteria. 

3.2 Solution 
For a similar reason, people may remember how they found 

certain items previously, and may even remember the queries 

they used. However, if someone developed a query iteratively to 

locate the desired target, they may not necessarily remember 

correctly which query actually retrieved the target for them, 

since they generated these queries in almost the same context 

and the queries they used may have equal-strength links to the 

experience of achieving the target, if the person did not intend to 

learn which one is the “right” query.  

Therefore, we believe that to fully utilize memory of previous 

search experiences, and supplement possible memory faults,  not 

only the query which brings a “click” on the results should be 

recorded into the data collection of past queries, but also other 

queries for that same search target should be recorded together 

with the selected target items. 

Also, if the main data collection (index of personal archives) has 

multiple fields and the search system supports queries of 

multiple fields, the index for past queries should be indexed to 

the corresponding fields. Similar to the situation discussed 

earlier when retrieving documents associated with past queries 

and results, items with any matched field should be considered 

in case the user only partially remembers the previous query.  

4. SUGGEST FOGOTTEN TARGETS 
The above methods focus on the second step of desktop search, 

that is, recalling information related to the target to search for 

the target. However, sometimes people do not even remember 

the existence of possible targets, and therefore the generated 

queries may not match any features of these potential targets to 

retrieve them. Or sometimes the image of the potential target 

item is too blurred and the user is unable to describe what this 

item is with any of the provided search options.  

We believe that searching by similar items can assist  people in 

finding these potential targets which are less well remembered 

or even forgotten. For the former type of potential targets which 

are omitted because the user forgot about its existence at the 

time of searching, a re-search by features from an already-found 

target can possibly bring up these items.  

As for the later type, since it is usually much easier for 

familiarity-based  recognition than recalling exact details, it is 

possible that its features can be recognized as those of a 

potential target if they are presented, even if they are displayed 

as features of some other items [11]. In other words, when the 

searcher sees an item which is similar to the target in certain 

respects, these features may be recognized as a target even if the 

searcher is not sure which exact features can be used to generate 

queries to search for the target.  

4.1 Challenges brought by these approaches 
While the above approaches aim to increase the chance of 

retrieving the correct result and improve recall, they may equally 

bring more noise, and reduce the precision of the search. Thus 

they bring the challenge to information retrieval techniques of 

pushing potentially relevant targets to the top of the retrieved 

list. Refined search may also be needed after an initial search. 

The difficulty is how to support users in performing a refined 

search with less noise and possibly better recall, and more 

importantly to improve the precision. One common solution is 

to use filters when browsing results. However, filtering results 

by certain criteria may not significantly reduce the available 

result set. This is because people usually only select information 

they are certain about (possibly well remembered) as filters, so 

they may have used these criteria as a major part of their query 

too. Thus it is very likely that most of the results may satisfy 

these filter criteria. More efforts are needed to design browsing 

functions to facilitate locating information in large result sets.    

5. OUR SEARCH SYSTEM 
In this section we will introduce our search system which 

embeds the memory support functions outlined above. This 

system is primarily designed for accessing extended personal 

archive data collections. Such datasets not only include digital 

items that one has encountered, but also timestamps for 

accessing them, and the physical world context when accessing 

them, such as the person‟s location, or the weather. With this 

system, we can test whether enabling search by these types of 

episodic context information can improve the effectiveness of 

desktop search for users. 

5.1 IR algorithm- multiple fields 
The underlying search algorithm enables search of multiple 

fields with “or” logic as described in section 3.1. An in-house 

developed implementation of BM25 [12] for Lucene was used 

to process these queries. Weighted individual field scores are 

summed to arrive at the overall retrieval score for an item. For 

each individual item field a „should occur‟ query clause (see 

[13] for details) is used on query terms. The retrieval approach 

used means that only one result set will be returned for each 

search action.On the search interface, tags are used to enable 

users quickly jump to wanted search fields and remind them of 

possibly remembered options. 

5.2 Index of past queries 
To make use of our “remembered” past queries (as proposed in 

section 3), the system logs every search query and results 

selected from the search interface. A click on the search button 

is defined as a single search action. A search session includes all 

search actions for the same target(s). Queries for each search 

action are recorded and indexed into a Lucene index as a single 

document. Each document contains a field for task_id, fields for 

each search field, including fields for the title, keywords, item 

type, etc., and a field for the item_ids of targets found during the 

entire search session. 

When a user searches, the query not only searches in the Lucene 

index of the desktop data collection, but also searches in the 

index of past queries The results retrieved from both indexes 

will be presented in an integrated fashion, so that items 

appearing in both lists are merged to reduce the total amount of 

information being presented to the user. Items retrieved from the 

past query index will also be marked so as to give the user an 

indication that this item is likely to be what the user  wants 

selected previously when entering this query. The question of 
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how to rank the results retrieved from the past query index is 

still to be explored.   

5.3 Search by Similar items 
This system is also designed to allow search from result items, 

hoping to bring more potential qualified items according to the 

rationale we explained in section 4.  Users can click the result to 

look for items which are similar in content (file content, author 

of the email or SMS, type, etc.) or adjacent in time (as shown in 

Figure 2). We are also planning to enable search by physical 

context of selected result items, e.g. similar weather, place, 

surrounding people. However, the elements which make the 

physical context look similar may not always be easily 

describable. For example, visual presentations (e.g. a photo) 

may be much more powerful in triggering people‟s memory of 

the physical context of the target item. 

6. CONCLUSION  
In this paper, we proposed three typed of approaches to support 

the user‟s memory imperfectness during desktop search. Firstly, 

based on a review of related work, and the findings in our on-

going diary study, we suggest that episodic context can be 

recorded and exploited in search, and past queries can be 

utilized because people may remember previous queries to 

search again.  The second approach focuses on supplementing 

memory by retrieving from an index of past queries to retrieve 

previously selected targets for the entire search session. This is 

because that people may not necessarily remember exactly 

which query brought the target to them previously. The third 

approach aims at overcoming memory problems at the first step 

of re-finding, that is, identifying the potential target. We 

hypothesized that search from similar items can reduce the 

search problems caused by memory failures at this step.  We 

also introduced our desktop search system features which 

support these approaches. While all these approaches potentially 

enable more effective search for relevant targets, they may 

equally bring more noise. We are currently conducting an 

experiment to explore whether these approaches can improve 

desktop search performance, e.g. retrieve more relevant item, or 

reduce the time and effort spend on each search task. We expect 

to be able to report the results at the workshop. 
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ABSTRACT
During our constant interaction with computers, we gener-
ate large amounts of personal information. However, it is
often hard to find a certain item we are looking for, since
our data is spread throughout several places and applica-
tions. Nevertheless, a meaningful visualization technique
may be the solution to this problem. We present VisMe,
an interactive integrated visualization system for personal
information that allows users to meaningfully navigate and
retrieve their data. Relevant concepts (people, subjects and
documents) are uniformly displayed in interconnected time-
lines. Each of these items can be progressively expanded
into new timelines, allowing relations between them to be
explored in a simple, straightforward way. Several avenues
can be simultaneously explored in context, thus giving users
insights into their digital selves that current tools have a
hard time providing. VisMe goes beyond traditional desk-
top search solutions by allowing not only keywords, but also
the relations between different kinds of personal information
to be used to retrieve personally relevant data.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces (GUI), Interaction styles,
User-centered design; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval—Search pro-
cess

General Terms
Design, Human Factors

Keywords
Personal Information Retrieval, Personal Information Man-
agement, Information Visualization, User-Centered Design
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1. INTRODUCTION
An increasing number of devices, such as laptop comput-

ers and smartphones, have pervaded our daily lives, provid-
ing us with the means to generate and store large amounts
of personal information, from documents to emails. Either
directly or indirectly, this data can help us understand who
we are, what we do, and what we are interested in. ”What
was I doing in January 2005? Where can I find the article
John sent me two months ago?” These are questions that an
effective analysis of our personal information should be able
to answer. This not straightforward. In fact, despite consid-
erable growth in storing capacity over the last years, meth-
ods and applications for managing and retrieving personal
information have not suffered substantial improvements.

Hierarchical organization is one of the prevalent organiza-
tional systems, but it has several shortcomings. Its main dis-
advantage has to do with the effort requested from users to
consistently classify every piece of data. Furthermore, differ-
ent kinds of personal information are managed by different
applications, with little or no links between themselves. A
user’s personal data is, thus, scattered and difficult to find.

A variety of systems have been developed to visualize dif-
ferent kinds of collections and histories, from emails to medi-
cal records, but while some of these systems can successfully
reveal relevant patterns in the information, they are limited
to particular sources. Those that are not, fail to provide a
unified representation of information from different sources.
We still lack an effective global visualization system for all
of our personal information.

We propose a solution, VisMe, in which all relevant per-
sonal information is indexed as a whole. Links lost by appli-
cations, such as between a document in the filesystem and
the email it was attached to, are recreated. Based on that
index we developed a visualization centered on the most rele-
vant autobiographic clues: time, people, and subject. VisMe
allows the exploration of personal information in an efficient
and understandable way. It abstracts from the different data
sources to present semantically relevant information instead,
and it allows several avenues to be explored simultaneously
in context. As such, VisMe provides the means for finding
information and retrieving interrelated items. Furthermore,
by providing a synergistic visualization tool, VisMe allows
users to efficiently navigate their data and helps them find
patterns that are personally relevant.
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2. RELATED WORK
Multiple applications have been developed to manage and

retrieve personal information. Stuff I’ve Seen [3] accesses in-
formation independently of its initial form and the search is
done using a word associated to the data or one of the many
types of properties or metadata. The interface is halfway
between browsing and keyword search. It also combines key-
word and faceted search, making it easier to search for what-
ever criteria users do remember. MyLifeBits [4] stores and
accesses virtually all data of a lifetime, inspired by Bush’s
Memex [1]. Given the quantity and diversity of information,
MyLifeBits stores information and metadata.

Other solutions use information visualization as a way
to search and explore personal data. Several applications
have been created, usually focusing on a single information
source, (email, instant messaging logs, or text documents).
Themail [9] stands out from other email visualizations, by
its simple and attractive interface and by its ability to dis-
play patterns in email content. ChrystalChat [8], an instant
messaging visualization, displays a conversation space in an
interesting three dimensional structure, even though its con-
tent representation, besides the textual display of the actual
messages on demand, is limited to a peripheral mood indica-
tor. There are also systems that allow searching and brows-
ing to visualize information from multiple sources. Mile-
stones in Time [6] takes a familiar list display and couples it
with a timeline filled with landmarks to provide a simple and
appealing interface for multimedia history search and brows-
ing. FacetMap [7], with its facet bubbles, also avoids simple
lists and manages to join a visual representation with the
underlying searching mechanism in a simple and relatively
effective way. Feldspar [2] allows users to interactively and
incrementally construct association queries. Focusing more
on the connections between entities and not on the entities
themselves, it is possible to find things about the individuals
that wouldn’t be found if searching the items separately.

Evidently, none of these visualizations manages to provide
a unified content overview of a heterogeneous collection of
documents. This is the void VisMe attempts to fill: an in-
teractive visualization of personal information taken from
multiple sources which can help search for information and
find relevant patterns while still allowing the micro-data (in-
dividual documents, emails, etc.) to be retrieved in context.

3. PROPOSED SOLUTION
To explore the personal document collection of a user, we

first need a way to gather and index that information. Scribe
[5], an automatic indexing application which is not the focus
of this paper, is used for that purpose. It indexes and in-
terconnects emails, documents, web pages, etc. Above this
indexed data, a layer was developed to facilitate integration
and to provide efficient access to the personal information.
We then developed an interactive graphical user interface
which handles personal information representation. We kept
three goals in mind when designing this interface. First we
wanted it to be simple to understand and manipulate. Sec-
ond, we wanted to allow the data to be explored in context,
as an inter-related whole, rather than seeing the results of
individual queries one at a time. Finally, we wanted to treat
information from different sources and natures in a uniform
way.

The fundamental idea behind our solution is that every

element in the visualization, namely keywords (most signifi-
cant words extracted from each document according to their
tf-idf weight), contacts (authors, senders, or receivers of in-
formation), and documents (files, individual emails, instant
messaging logs, etc.), can be expanded to display the key-
words, contacts, and documents which in turn are related
to them (all documents from an author, all keywords in a
document, all keywords in messages from a person, etc.).
Each element in the visualization is represented by a word
and three buttons from which three timelines can emerge,
one for each facet (Figure 1).

Figure 1: Expanded keywords

The visualization starts with an element representing the
user (”ego”). Placing the cursor over it prompts the display
of three buttons representing keywords, contacts, and doc-
uments (”k”, ”c”, and ”d”). Clicking on one of them creates
a zoomable timeline on which the respective elements are
displayed. The most representative elements appear larger
and closer to the bottom and there is a size threshold un-
der which elements are no longer shown. Timelines can be
zoomed in progressively to display years, months, or days,
by clicking on the desired period. Besides expanding a time-
line perpendicularly with a simple click, users can drag the
timeline out of the icon to whatever position and orienta-
tion they want. Following an expansion, any element in the
timeline can be subjected to the same process as the initial
element – and there is potentially no limit to this. The user
is allowed a progressive exploration of their information on
simple and comprehensive timelines.

Figure 2: Timelines expanded from several elements

VisMe can maintain several expanded elements on the
same canvas (Figure 2), which users can then translate, ro-
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tate, and zoom in and out of using the mouse buttons and
scroll wheel, so that they can observe and interconnect the
various results of their ongoing research. Besides controlling
the view manually, users can also double click on a timeline
to bring it into focus automatically.

When users move the mouse over an element, all its in-
stances become highlighted. This makes it easy to follow
the evolution of an element over time. The color depends
on the position of the mouse over the element, as there is a
gradient from red (left) to blue (right). Left clicking fixes
the color, another left click resets it to black.

To use VisMe as a Desktop Search tool, we provide text
search capabilities. Keeping a minimalistic design, simply
pressing a character on the keyboard prompts the display of
an input box on the top left corner of the screen containing
the text as it is written and icons (”k”, ”c”, and ”d”) to define
the search. As each character in written, the resulting string
is searched and a possible result is shown to the user as grey
text next to the string, together with an indication of the
number of results for the currently selected facet (Figure 3).
Pressing the tab key will complete the string to match the
currently visible result, pressing the up and down keys will
cycle through results.

Figure 3: Searching with VisMe

If the current string appears anywhere on the expanded
timelines, the respective elements will be highlighted. If
there is an element that matches the search string but is not
representative enough to be displayed on the timeline, it will
appear on top the respective column. It will be significantly
larger than the element before it, showing that the element
does not follow the same size convention as the rest of the
timeline. Also, whether or not there is an exact match in
any time period, the respective time will be highlighted at
the bottom of the timeline.

Evidently, there is a limit to how much information can be
displayed. To deal with cluttering, we implemented several
measures. When the mouse is not above a timeline, only the
most representative elements at the bottom are shown. Also,
timelines initially appear in a horizontal state, with the most
representative elements from all time periods. As such, only
relatively thin lines of important elements are seen most of
the time. We also let users reposition or hide existing time-
lines they may consider less relevant. By moving the view
and reorganizing information, the necessary relevant infor-
mation can be kept in view.

4. USER TESTS
Volunteers aged 17 to 29 (x = 23.7, σ = 2.7) and with self

reported high level of experience with computers (x = 3.7,
σ = 0.47, scale of 1 to 4) were asked to perform a series
of tasks using the prototype application over a set of 1004
text documents authored by 102 people. This data set was
crafted based on our insights on personal information spaces
to be representative of a real collection of documents, with
realistic trends and patterns for each tested combination of
facets and enough documents and authors to make it hard
to just stumble upon them without significant help from the
interface. There were eight document recovery tasks, which
consisted of recovering of a document with the knowledge
of one or of a combination of its facets (time, most repre-
sentative keyword, and author, as well as a single task in
which the actual file name was given). For instance, ”Find
a document written by Bob about the Internet that you
read in May of 2009” or just ”Find a document about gui-
tars”. Before being handed the tasks, users were given a five
minute demonstration of the prototype and all its features.
Users were then given another five minutes to experiment
with the interface freely. The order in which tasks were per-
formed was random, in order to prevent result biases. These
tasks were timed and recorded for later analysis. Users were
asked to grade the difficulty of each task in a scale of 1 (very
difficult) to 4 (very easy) upon completion. The time limit
for each task was 150s, after which users would be told to
move on to the next task. There was also a questionnaire
to be answered at the end of the session which focused on
the satisfaction with several general and particular aspects
of the interface using a four point scale.

4.1 Results
Most tasks were completed successfully, (with failures per

task in all twenty sessions x = 1.9, σ = 2.4). On average,
successful tasks were completed in about 52s (x = 52, σ =
27). Users also considered the tasks to be easy (x = 3.4,
σ = 0.899). This provides some evidence that VisMe can
be an effective retrieval tool for documents based on time,
keywords, and authors.

There are, however, two exceptions. Both the tasks in
which users were asked to locate a document based on a
keyword-author combination (and, in one task, also time)
have the greatest number of failures (6 and 5 in 20 sessions),
the highest average completion times (x = 84.5, σ = 27.5
and x = 88.7, σ = 27.6) and were considered to be the most
difficult tasks (x = 2.6, σ = 1.143 and x = 2.55, σ = 0.999).
It is possible to complete these tasks, as the majority of
users did, but evidently it is harder to find documents based
on a combination of two facets other than time.

Completing these tasks requires either expanding docu-
ments from both facets and cross checking the results, or ex-
panding documents from one facet and expanding the other
facet out of each document one by one. Most importantly,
with our data set, the number of documents that matched
one of the facets (or one of the facets plus time) ranged from
only two to a dozen, making it feasible to actually inspect
each individual item or cross check the results of two sepa-
rate timelines. More extensive result sets could have made
these tasks impractical. Some users expressed some frustra-
tion with the fact that timelines were not filtered according
to their hierarchy, as expanding a documents of a keyword
expanded from a contact did not yield a list of documents
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written only by that author about that keyword.
The questionnaire shows that users were generally sat-

isfied with the system (x = 3.35, σ = 0.49). They did not
find it difficult to use for the most part (x = 3.20, σ = 0.69),
but they did find it somewhat difficult to learn (x = 2.75,
σ = 0.85). They also felt at times that the system did not of-
fer sufficient functionalities (x = 2.85, σ = 0.59). Although
users did not generally consider the control over the viewing
area by rotating, scaling, and translating difficult (x = 3.15,
σ = 0.81) we did observe that many users were uncom-
fortable these actions. This may be explained by the short
experience with an unfamiliar and unconventional interface,
but perhaps there is room for improving and smoothing out
the controls, even if only for the sake of novice users.

Finally, although the retrieval times were apparently higher
than those expected from keyword-based desktop search tools,
such tools lack the support for certain, more complex, tasks,
such as the ones required from VisMe’s users. For instance,
to find a document based on the combination of author,
date and subject users have to perform multiple keyword
queries and to interrelate information on their own, greatly
increasing the overall time. VisMe provides explicit support
for those tasks. Although, as described, those are the tasks
where VisMe still performs comparatively worse, task com-
pletion was high, proving that it was helpful, having been
designed precisely to show multiple avenues of exploration
at once and to leverage the user’s memory of the context
surrounding each document. Future improvements to the
interface (see below) will further improve its performance
for these complex tasks.

5. FUTURE WORK
The tests have shown there is a problem with the retrieval

of a document based on the combination of two facets. One
can expect the problem to be even worse if users were to
attempt a combination of several authors and keywords. A
possible solution to this problem lies in filtering. We have
developed a working, although still untested, solution. In
the current prototype, users can simply drag any keyword,
contact, and file name, into any timeline, as many times
and in any combination they want, to filter it. For instance,
clicking and dragging the mouse from a keyword in one time-
line to the space occupied by a second timeline will add the
keyword as a filter to it. Active filters appear to the left
of the timeline and a simple click will remove them. This
has been extended to the search string that appears on the
corner of the screen, which can also be dragged into any
timeline, making it easy to filter a timeline according to any
existing facet that users find through textual search. We are
also planning on modifying the prototype so that filters can
be passed through hierarchies of timelines.

Although it was not made specifically evident in the user
tests (the necessary information on screen for each task was
relatively small), we have also been working on additional
solutions to cluttering. The current idea being worked on is
collision detection with smooth separation of timelines.

6. CONCLUSION
An efficient, integrated, visualization of personal informa-

tion could allow us to search and retrieve files or discover
interesting patterns. We presented our solution, VisMe, an
interactive personal information visualization system. The

main idea behind VisMe is to progressively expand and lay
out over time the information related to one of three facets:
keywords, people, and title. It provides a unified and co-
herent representation of heterogeneous information and it
can display an overview of the entire content of a document
collection in a way that allows for the interrelation and in-
terconnection of several of its elements. Usability tests vali-
dated VisMe’s capabilities as an in-context document search
and retrieval tool but also revealed complications in com-
bining many facets in the same search, something we have
attempted to solve by developing a filtering mechanism that
can leverage the text search and the presence of multiple
timelines on screen. Because the tests we conducted were
not performed with the users’ own information, they do not
fully validate the solution. Ideally, VisMe takes advantage
of a person’s memory of their own information; the con-
text around each document, the history of each contact, etc.
The artificial data also made it impractical to compare doc-
ument search and retrieval performance with traditional ap-
proaches, such as browsing document folders or searching.
Still, the goal of this evaluation was to obtain an early val-
idation of the initial progresses with our prototype, which
we believe we did, and we are planning on performing more
conclusive tests using actual personal information of users
in the near future.
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ABSTRACT
In this paper we promote the idea of automatic task-based
document organisation. To make this possible we present a
simplified task model and evaluate a number of algorithms
for detecting which documents are associated with particu-
lar tasks. Our findings demonstrate the feasibility of such
an approach, but work must be done to improve the perfor-
mance for practical implementation.

1. INTRODUCTION
As people acquire ever more information as a result of per-

sonal and work activities, the management of this informa-
tion becomes a serious problem and an important research
issue [6]. Previous literature suggests that the tasks people
perform and the activities associated with personal infor-
mation plays an important role in how the information will
be managed and re-found [4, 11]. There are also a num-
ber of anecdotal scenarios that highlight the importance of
user task and activities in Personal Information Manage-
ment (PIM) behaviour:

(1) We know that people often multi-task and experience
difficulties when switching between tasks [3]. To support
multi-tasking it would be useful for the user to have access
to resources associated with each task; (2) When restarting
a personal computer, especially after a change in workplace
(i.e. from office to home) a user may need to access the files
related to specific tasks in order to continue his work; (3)
When starting a new task similar to a task already com-
pleted, it may be helpful to access documents associated
with the previous task for reference purposes; (4) When an
experienced user wants to help someone with less experi-
ence complete a task, it is often useful, for demonstration
purposes, to re-find personal documents associated with the
completion of this or a similar activity in the past. (5) When
writing a progress report or summary of work completed, it
is often useful to review completed activities retrospectively
and see which documents have been created, used or modi-
fied.

To support these kinds of scenarios PIM systems need to
be able to associate documents with user activities. Cur-
rently the only way to achieve this is to rely on user an-
notation and filing. Nevertheless, there is a large body of
evidence suggesting that people are not willing or able to
achieve a consistent organization, which meets all of their

Copyright is held by the author/owner(s). SIGIR’10, Workshop on Desktop
Search, July 23, 2010, Geneva, Switzerland .

needs over long-periods of time [8, 9, 13].
It would be very advantageous if tasks were able to be

modelled in such a way that they could be automatically
detected and appropriate documents and data items could
be associated with activities. It is possible, for example,
that such a model could be used to implement a task-based
replacement for or enhancement to the the traditional desk-
top metaphor. Nevertheless, there several challenges that
need to be faced before such as model can be realised.

Firstly, it is difficult to define the concept of a task. Tasks
can be considered at various granularities e.g. a project
could be considered a task at a high-level, but would nat-
urally consist of many sub-tasks and sub-sub tasks. Tasks
can also be of various complexities [2]. Evaluating any model
created or algorithm used to detect tasks is also challenging
because in addition to the many problems associated with
PIM evaluations, such as personalisation and privacy prob-
lems [4], there are no publicly available data sets, nor any
available benchmarks or frameworks for evaluation.

In this paper we present our work in addressing these chal-
lenges. We formally define the concept of a user task and
use the definition as the foundation for a task-based model
for PIM. We also outline our thoughts on evaluation and
describe some early results from experiments performed to
test the performance of various algorithms which associate
resources with tasks.

1.1 Related Work
PIM is the area of research concerned with how people

store, manage and re-find information [6]. It is a multi-
disciplinary field and researchers have been actively trying
understand user behaviour, such as how people interact with
information and tools [9, 13], what psychological factors are
important [1] and how improved tools can support user be-
haviour and needs [10, 5].

A large amount of PIM behaviour is performed on desk-
top computers, where the standard PIM model is based on
the office metaphor of files and folders. Several scholars
have identified the limitations of this model and suggested
moving to other means of interacting with information [7,
5]. One suggested method has been to organise information
based on the activities or tasks the user performs. Studies
have shown the importance of activities and tasks to PIM,
including behavioural strategies to allow tasks to be man-
aged [13] and indicating that while working, people regularly
need to switch between concurrent tasks [3] and have diffi-
culty managing resources as a result. The general consensus
is that the desktop metaphor provides inadequate resources
for task management and switching [11] and as a result,
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several prototype systems have been designed to assist with
these situations, either by visualising resources in different
ways e.g.[11] or making tasks the basis for organisation [12].

The common theme and, in our opinion, the major limi-
tation of the task-based solutions proposed to date is that
they all require the user to indicate which resources are as-
sociated with each task, which places the cognitive burden
on the user in the same way the desktop metaphor does [8].
In this paper we explore methods to automatically associate
resources with tasks. We first present a definition of a task
and a model from which resources can be associated with
tasks and continue propose and evaluate a number of algo-
rithms for automatic association.

2. TASK MODEL
The basic building block for our tasks is a personal data

item (PDI), which we define as an item which has been cre-
ated, accessed or modified by a person and is the result of
user interaction.

According to this definition, a file, an email or a folder
can all be regarded as PDIs. What the definition also makes
explicit is that PDIs only refer to items that the user has
interacted with and that have not automatically been gen-
erated by software. This is important as in this work we
focus on illustrating a task model and methods for identi-
fying tasks based on desktop collections. The aim of any
model would be to exploit user recollections for activities
associated with PDIs and users will not remember any item
with which they have had no explicit interaction.

A task has three basic elements: a goal (i.e. the thing
to be accomplished), process (i.e. the activities performed
to achieve the goal), and time (the period of time taken to
complete the task). Each of these elements must be included
and formalised in the task definition.

User activities with desktop computers can be divided into
two types based on their interactions. Read-only activities
involve only accessing a PDI, and include activities, such
as reading documents, listening to music, etc.. The second
type of activity, creative activities, involve generating new
or updating existing PDIs. Thus, the goal of a creative
activity can be materialized as the set of PDIs modified by
the user. In this paper, our focus is on this second category
of tasks. According the above criteria, a personal task can
be described as follows:

Definition 2.1 (Personal Task). . A personal task
PT is described as a 4-tuple (TD, DI, OL, TL), where TD
represents a written description of the task and is described
as a vector of tokens. DI represents the related data items,
and is denoted as a 2-tuple (GI, RI), where GI (goal items)
is a set of items generated by users during the process of
completing the task, and RI (referenced items) is a set of
items accessed in order to complete the task. OL (opera-
tions list) is a sequential list user operations performed to
complete the task. TL describes the life-cycle of the task and
is denoted as a 2-tuple (TS, TE), where Ts is the start time
of the task and Te is the end time.

Naturally, as mentioned above, tasks can be of varying lev-
els of complexity. For example, notifying colleagues about
an upcoming meeting would be a task requiring the creation
of only one item, i.e. an email. Preparing a grant applica-
tion, on the other hand, could also be considered a task, but

may involve the creation or modification of multiple items.
Consequently we consider two types of tasks: Simple Tasks,
which have a single goal item and Complex Tasks, which
have multiple goal items.

In practical terms, a complex task can be regarded as
the combination of many simple tasks. Therefore, if simple
tasks can be identified then this could form the basis task
identification in general. For this reason we focus here on
identifying simple tasks.

3. IDENTIFYING PERSONAL TASKS
According to the definition above, there are several ele-

ments of a simple task that need to be identified: the task
description, the life-cycle of the task, referenced PDIs and
a task goal PDI. From this list, detecting referenced PDIs
is the most challenging problem. For simple tasks, any cre-
ated or modified PDI could be considered a task goal item.
A task description can be generated by applying techniques,
such as TF-IDF, to the PDI content or utilising a file or
folder name (for non-text-based PDIs). The life-cycle infor-
mation can also be easily attained by taking the created and
modified times of the goal item (GI).

Below, we will outline a number of basic methods for iden-
tifying reference files based on PDI properties and patterns
of user interactions. We evaluate the performance of the
various methods in Section 4.

3.1 Life-cycle based method
A simple method of detecting PDIs associated with tasks

is to take all files accessed within the life-cycle of a task
as its references. This method will achieve perfect recall
i.e. all of the files associated with a task will be detected,
but the fact that people multi-task and continue tasks over
long time periods will inevitably result in very low precision
i.e. many inappropriate files being taken as task references.
Nevertheless, the high recall property makes the approach a
useful baseline algorithm for evaluations.

3.2 Directory-based method
We know from studies of folder organisations that people

often organise their information items based on activity [9,
13]. Thus, a simple approach to associating PDIs with tasks
is to utilise the information implicitly provided by the user
through his folder structure. Given a task goal file, we can
take all files located in the same folder (as well as the folder
itself) as its references. An obvious limitation of the method
is that files can be organised in other ways (e.g. time, people
etc.) so it is likely that in some cases appropriate RIs will be
located across folders – such references will not be detected
using this method.

3.3 Sequential distance-based method
Another assertion we can make regarding user behaviour

is that items accessed and modified within similar time peri-
ods relate to the same task. If this is true then the sequential
distance – the number of items accessed or modified between
two items in a sequential access list – will reflect, to some
degree, the relationship between the items.

This method is simple to implement, but also has limi-
tations. We expect it to work well when the user does not
multi-task, but poorly for multi-tasking situations. Find-
ing an appropriate threshold distance is also a problem. We
assume that a small threshold will lead to higher precision

22



but lower recall and a larger threshold will lead to a low
precision but higher recall. We provide some data regarding
threshold selection in the experimental section below.

3.4 Operational pattern-based method
A further assertion we can make about user-behaviour is

that after referring to a file, the user will modify the goal
item of the task. If this is the case we can expect mod-
ify operations on the goal item to be surrounded by read
operations of reference items for that particular goal item.
Inspection of user interaction logs (see experiment below),
seems evidence this assertion. We can exploit this with the
following algorithm

Algorithm 1 Operational Pattern Based Algorithm

Input: An existing access list L′ = X1, X2, ..., Xn; An ex-
isting task set TS; Latest accessed file Xn+1;
Output: An updated task set TS.

1: procedure Identify Simple Task(L′, TS, Xn+1)
2: if thenXn+1.operation = ”Modify”
3: if then@t ∈ TS ∧ t.goalitem = Xn+1.item
4: Create a new task t
5: Add Xn.item into t.reference
6: else
7: Find a task t where t.goalitem = Xn+1.item
8: Add Xn.item into t.reference
9: Find MSL L′′ = (Xk, Xk+1, ..., Xn+1)

10: Add Xi.item(k + 1 ≤ i ≤ n) into t.references
11: end if
12: end if
13: end procedure

When a modification operation is detected,i.e. a GI is pro-
cessed, the references for that task will be updated. First,
the algorithm will find the latest read operation for the GI
within the access list L′. Following this it checks to see if two
records in L′ exist, which point to the same DI. If not, the ac-
cess list is denoted as a Minimum Sequential Loop(MSL) and
all DIs accessed within this MSL are regarded as references
of the GI. Unlike the sequential distance-based method, here
no threshold value needs to be specified in advance. How-
ever, like the SD method this approach has the disadvantage
that multi-tasking behaviour may negatively affect perfor-
mance.

4. EVALUATING PERFORMANCE
A dataset collected via a naturalistic investigation formed

the basis of our evaluation. By developing and deploying a
custom-designed piece of software built based on APIs for
Microsoft Windows operating system, we captured user file
accesses during the course of normal PC usage. We recorded
two types of operation: “read-operations” where items were
accessed or read and “modify-operations”, where items were
newly created or modified. For each operation we stored the
associated file name, the directory-path and a timestamp.

8 participants (4 male, 4 female, aged between 25 and
40), volunteered to take part over a period of approximately
one year. The participants were all researchers or research
students at a major Chinese university and although they
represent a relatively homogeneous population, they are all
busy people who struggle with multi-tasking and PIM in

general. The data represented their activities with their of-
fice computers.

In total 54,545 operations were recorded (avg per partic-
ipant =6818 st dev =3947 ). 79% of the operations were
reads and and 21% were modify operations.

To create a “gold-standard” from which to compare the
performance of the algorithms, we conducted a second ex-
perimental phase where the same participants were asked
to manually indicate the referenced items for a given set
of goal items. We selected 10 goal items per participant
so that those chosen included both files modified often and
only a few times. To account for the difficulties in retro-
spectively annotating referenced files, the participants used
software, which showed a goal item and a list of potential
referenced items (selected by the life-cycle based method).
The participants had access to meta-data about each of the
items and could also open the files to examine the content
before deciding if it was a referenced file. Additionally, we
asked the participants to explain the relationship between
the item and the goal item. We used these data as a means
to evaluate the algorithms described in Section 3.

5. RESULTS AND DISCUSSION
Figure 1 depicts the performance achieved by the various

algorithms. As these graphs show, it was possible to attain
high recall scores – all of the algorithms achieved average
scores of 0.71 and above. However, precision was harder to
attain with the best performance being achieved by the OP
method (0.43).

The Directory-based approach achieved the lowest recall
(0.71), with some referenced files evidently being stored in
different directories. Figure 1(b) shows that some partici-
pants tended to place task-related items in the same folder
(e.g. user 5) and this allowed high recall to be achieved.
What is also clear from the low precision scores, is that
all of the participants had files in the examined directories,
which they did not consider to be related by task.

Figure 1(f) shows how the sequential distance threshold
(sd) influenced the performance for the SD method. Con-
firming our hypotheses, when the threshold=1, we achieved
the optimum F-score (0.34) and precision (0.27), but as the
threshold is increased, the F-score and precision deteriorated
as recall improved. This result indicates that in a practical
implementation of the algorithm, it would not be necessary
to use a high threshold to achieve best performance.

Figure 1(a-d) shows how the algorithms performed across
users, demonstrating that it was easier to achieve higher
precision with some users e.g. user 6. We hypothesize that
users, for which better performance could be attained, tend
to multi-task less often. If this is true it highlights a paradox-
ical situation where the people most likely to need support
are also the most difficult to provide support for. This is an
obvious weakness in the methods proposed.

What our results do show, however, is that there is po-
tential for algorithms to automatically related items by task.
Our relatively simple algorithms were able to achieve good
recall although improvement is needed in terms of precision.
To achieve this improvement we need to investigate ways
of combining evidence from the various sources exploited
in the basic algorithms presented here. Even with current
performance levels, we believe that, if embedded within an
appropriate user interface, the algorithms could be useful in
assisting users to manually organise their documents. These
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Figure 1: The Performance Achieved by the Various Algorithms

two threads represent our future plans for this work.

6. CONCLUSIONS
In this paper we have used examples from the literature

to demonstrate the potential benefits of a task-oriented ap-
proach to PIM. We suggested that to realise these benefits
tasks should be detected automatically and to achieve this
we proposed a task model and several methods of detecting
resources associated with tasks. Our model abstracts and
simplifies the concept of a task, allowing the performance of
the proposed algorithms to be evaluated. The evaluation re-
sults suggest that it may be feasible to achieve an automatic
means of task-detection, but work must be done to improve
the performance for practical implementation.
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ABSTRACT 
We present a method of data integration and associative retrieval 
using a simple information structure called history structure, 
which is constructed from time, keywords, and URI sets. We 
developed a prototype that generates a user knowledge space from 
various information usages (e.g., web browsing, mail, twitter, 
diaries, and purchases) and helps users explore their desktop data. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Retrieval models. 

General Terms 
Design, Experimentation 

Keywords 
History structure, associative retrieval, knowledge space, 
externalized-memory model, integration 

1. INTRODUCTION 
We are surrounded by various kinds of information. Interest in 
Personal Information Management has increased in recent years 
[1], partly as a reaction to information overload, which is 
becoming a real problem in our daily lives. Much research has 
presented ideas for integrating such information [2, 3]. 

In this paper, we present a new method of data integration and 
associative retrieval by using a simple information structure 
called history structure, which is constructed from time, keywords, 
and URI sets. Our prototype generates a user knowledge space 
from the user's various information usages (e.g., web browsing, 
mail, twitter, diaries, and purchases) and helps users explore 
personal desktop data. 

History structure is simply generated from existing information 
sources. Our approach resembles tagging; however, the manual 
tagging of personal information is time-consuming. We aim to 
automatically generate history structure. 

First, various information is stored in the history structure. Next, 
the system creates knowledge spaces for individuals. Figure 1 
displays an overview of our approach. 

Our approach, which is based on an externalized-memory model 
inspired by a human memory model, is presented in Section 2. 

Web 
browsing

Various kinds of information usage

Time Keywords URI

History structure

Email Twitter Diary Purchases …

User’s knowledge space  
Figure 1. Overview 

2. EXTERNALIZED-MEMORY MODEL 
Externalized-memory is a concept that virtually externalizes and 
stores the contents of human working memory on computers. We 
capture information processed during human cognitive processes 
by working memory. History structure is a kind of externalized 
memory. 
Figure 2 shows an overview of our proposed model. Such 
information processed by the user as browsing the web is 
accumulated into the user’s externalized memory (history 
structure) by a sensory memory and working memory. The 
knowledge space is a simulated visualization of the history 
structure like semantic networks that are generated from the 
history structure. When a user selects a keyword in the 
knowledge-space browser, the system searches through the 
history structure, recalls related information, and displays it in the 
knowledge-space browser.   

Working 
Memory

Sensory 
Memory

Long-term 
Memory

History 
Structure

Knowledge-
space 

browser

Human Memory

 
Figure 2. Externalized-memory model 
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3. ALGORITHMS 
3.1 Generating History Structure 
The basic algorithms for generating history structure extract time, 
keywords, and URIs from various information sources. When a 
URI does not exist, any information can be input by users. The 
details of the algorithms are different among information sources. 
The following is an example of generating history structure from 
a web browsing history: extracting a time from an accessed time, 
extracting keywords from a title of the accessed web page, and 
extracting an URI from the accessed URI. Table 1 shows an 
example of a generated history structure. 

Table 1. Example of generated history structure 

Time Keywords URI Note 

Mon Apr 26 
17:12:02 
JST 2010 

book, digitize, 
scansnap, S1300, 
S1500 

URI of 
accessed 
web page 

web 
browsing 

Mon Apr 26 
17:39:01 
JST 2010 

experiment, 
questionnaire, 
scansnap, maximal 
number 

URI of 
twitter 
logs 

twitter 

3.2 Generating Knowledge Space 
The basic algorithms for generating the knowledge space connect 
the keywords that co-occurred in a history structure. For example, 
in Table 1, scansnap (a scanner’s name) is connected with book, 
digitize, S1300, S1500, experiment, questionnaire, and maximal 
number. We assume that a cognitive process does occur, as shown 
in Figure 2, and consider that memory is activated based on the 
frequency of the stimuli in the working memory. Thus, we change 
the size of the nodes based on the activity level. Keywords that 
occurred frequently in the history structure and that were 
frequently accessed by the operation are displayed as larger. 
The user or the system can generate a knowledge space. The user 
can set the information sources, input or select keywords, and 
explore co-occurred keywords. The system can generate a 
knowledge space by using several algorithms. For example, the 
system can generate a summary of a designated period: a day, a 
month, a year. Frequently occurring keywords are displayed as 
seeds. The order of the information sources can be set prior to 
exploration. 

4. CASE STUDY 
Figure 3 shows Microsoft windows desktop search results of 
folders and files modified on 26/Apr/2010. Questionnaire, 
namecard, Kataoka, Ou, and Senba are folders. Kataoka, Ou, and 
Senba are the names of the user’s students. Files were: completed 
questionnaires (pdf files), purchase receipts (pdf files), and 
records of meetings with students (txt files). 

Questionnaire      Namecard    Kataoka    Ou    Senba
Questionnaire (Bus Econ).pdf    Questionnaire(Creative).pdf    
Questionnaire (Lit)1.pdf    Questionnaire (Lit)2.pdf
Questionnaire (Lit)3.pdf    JAL-member-2000yen.pdf
Jbook-3119yen.pdf    JSAS-registration-1500.pdf
Namecard1004.pdf    Kataoka.txt    Ou.txt    Semba.txt

Figure 3. Folders and files searched by desktop search 
The knowledge-space browser helps users to recall the day’s 
context. 

Figure 4 shows an example screen generated by web browsing 
and book purchase histories, diaries, emails, and twitter logs of a 
day’s summary. Different colors correspond to different 
information sources: aquamarine for Web browsing, purple for 
book purchases, gray for diary, yellow for email, and pink for 
twitter. When the same keywords exist in different information 
sources, the colors of the keywords change based on the last 
operation. 

 
Figure 4. Summary of a day presented in the knowledge-space 

browser 
The user went to a conference called JSAS on April 24 and 25 in 
Tokyo and gave a lecture on computer literacy on April 26. 

Pasmo, scansnap, Suica, and archive were the four most frequent 
keywords in the web browsing history. The user searched for 
information about how to use scansnap on the web. Questionnaire, 
experiment, and maximal number are displayed from twitter logs. 
Computer Literacy is the name of the lecture in which the user 
conducted a questionnaire survey. He wanted to scan the 
completed questionnaires. After coming back from the conference, 
the user searched for information about archives and bought some 
books. Pasmo is a contactless smart card that can be used for train 
fares in the Tokyo area. He searched for information on how to 
buy it for his next business trip to Tokyo. 

Thus users can explore the desktop data themselves (e.g., Web 
browsing history), recall the contexts of files (e.g. he divided 
questionnaires due to the scanner’s page limitations), and recall 
future plans (e.g., buying a Pasmo for his next trip). 

5. SUMMARY 
We presented a method of data integration and associative 
retrieval using a simple information structure called history 
structure, which is constructed from time, keywords, and URI sets. 
We developed a prototype that generates a user knowledge space 
from various information usages and helps users explore desktop 
data. 

REFERENCES 
[1] Jones, W. 2007. Personal information management, ARIST. 
41, 453-504. 
[2] Gemmel, J., Bell, G., Lueder, R., Drucker, S. 2002. 
Mylifebits: Fullfilling the memex vision, Proc. Tenth ACM 
Multimedia. 235-238. 
[3] Cutrell, E., Dumais, S., and Teevan, J. 2006. Searching to 
eliminate personal information management, CACM. 49, 1, 58-64.

26



Copyright is held by the author/owner(s). 

SIGIR'10, Workshop on Desktop Search, July 23, 2010, Geneva, 
Switzerland. 

Improving Re-Finding upon Work Resumption  
Thorsten Prante 

Duisburg-Essen Univ. (ext.) 
Liebfrauenstr. 95 

64289 Darmstadt, Germany 
+49(0)179 108 1679 

thorsten@prante.eu 

Jens Sauer 
Darmstadt Univ. of Technology (stud.) 

Hohemarkstr. 117  
61440 Oberursel, Germany  

+49(0)176 2077 2074 

iri3@gmx.net  

Albrecht Schmidt 
Duisburg-Essen University  

Schützenbahn 70 
45117 Essen, Germany  

+49(0)179 108 9684  

albrecht.schmidt@acm.org 
 
 

ABSTRACT 
This work presents an approach to reducing user efforts when re-
orienting to an interrupted task. We present a time-centric Journal 
view of the user’s information-work activities, which allows 
going back to ‘task states’ for activity resumption. We further 
compute an activity-induced correlation function to reflect infor-
mation coherence, as experienced on the user’s side when ‘using 
information items together’. We thereby investigate the expres-
siveness of easy to understand correlation indicators, such as tem-
poral proximity, window switching, and clipboard use. The work 
most closely to ours is [2],[4]. 

Categories and Subject Descriptors 
H.5.2 [User Interfaces] 

TASK SWITCHING & INTERRUPTIONS 
One of the everyday experiences of information workers is that 
task work must be interrupted and later resumed. This particularly 
applies to complex tasks such as authoring an overview report or 
preparing a presentation. The corresponding activities can only 
seldom be completed within an uninterrupted period of work and 
hence often extend over several days: “Complex, ‘returned-to’ 
tasks comprise a significant portion of an information worker’s 
week, but reacquiring such tasks is considered difficult by users.” 
[3]. The basic prototypical case of task switching is a user inter-
rupting her primary task for a secondary one and later resuming 
the primary task. 
One of the most often reported effects of information workers 
being interrupted in their work, is them losing track of their posi-
tion in the work process. An interruption necessitates a user to 
leave her immersion in task work and to redirect her focus of 
attention to the interruption source. Especially, in the case of un-
anticipated and more or less abrupt interruptions ([1],[3]: 20%), 
this can cause forgetting information, which had just before been 
under conscious control. Forgotten information can mean (at least 
temporarily) not remembering a) what to continue, b) “where” to 
continue. Both phenomena possibly necessitate redundant activi-
ties and hence additional “cost”. 

RESUMING WORK 
As compared to generally orienting oneself about what to do next, 
the case of resuming one of several active tasks requires an in-

formation worker to remember what she did and what thereof is 
still unfinished – together matching (a). Having decided, which 
task to take up, she now needs to re-find the hooks, i.e. informa-
tion items for continuing to work – matching (b).  
These items serve as reminders as well as connection points for 
the to-be continued activities. As the information relevant for 
processing complex tasks are commonly distributed over multiple 
information items, the activities to advance a task often entail 
juggling with several items at once, i.e. during an activity phase. 
Consequently, there might be multiple items relevant for resum-
ing work. Accordingly, we speak of connection sets, where each 
information item might have a specific reminder function. 
One approach for determining connection sets, is re-finding those 
information items, which have been the object/s of a user’s activi-
ties by the time when the interruption occurred (activity-phase 
specific approach).  

REFLACTION JOURNAL 
The ReflAction Journal (RJ) visualization is based on computer-
observable fractions of information work. In fig.1, the doing pane 
shows item-related user activities (uA), which mirror that a user’s 
activities leave traces on those items. Accordingly, an activity 
object is composed of an information item (defining its name), 
and the traces related to the item, where the latter are sets of {fo-
cus, edit/view, visibility} intervals, representing, if so, interrupted 
user activities.  

 
Figure 1.  ReflAction Journal: The Doing-Pane view is rather 
zoomed-in, where the Labeling Pane [5] provides overview. 
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Overall, the RJ provides a representation “from which the user 
can determine what she had been working on (…) which was 
shown to strongly support resumption” [7].  
The RJ user interface allows continuous scrolling and zooming, 
where zooming primarily affects the resolution of the x-axis. The 
information items shown can be accessed, if available.  
For re-finding an interrupted activity phase, represented by a 
collection of activity objects in the RJ, the following ‘index no-
tions’ can be employed for orienteering [6]: 1) Absolute time, 2) 
(name of) any information item involved in the activity phase just 
before interruption, 3) items at which activity was directed before 
or after the interruption. Additionally, 4) the attributions of the 
trace intervals facilitate ‘queries’ like “I remember having looked 
at those pictures I want to re-access now, just before answering 
(and therefore viewing) this Email I have at hand now.” These re-
finding means improve the common user experience that comput-
ers do not well support the “leaving the task (state) as it is” strat-
egy [1], as these means are not hampered by closed windows.  

 
Figure 2.  Employing ReflAction Correlated to view items 
which have been “used together” across activity phases & 

ReflAction Most-Used to jump to an activity (phase). 

CORRELATED & MOST-USED ITEMS 
Consider that a few days have passed since a user extensively 
used some important information sources Si of a presentation (or 
any other) document. Accordingly she still perceives the Si as 
related to her presentation document a. Therefore, we provide a 
uA-related function, which is used to determine correlated items 
within a time frame. Its user interface (fig.2) is an early prototype 
and doesn’t allow convenient control over time scoping yet. 
The intuition behind this function is that information items ‘used 
together’ implicitly gain activity-induced coherence. Let uA-
related(a, b) denote the function mapping (a, b) to the correlation 
strength of b to a. The construction of this function is illustrated 
in fig.3. It is called for all b’s within the provided time frame. So, 
uA-related(a) for ‘today’ yields the list of items presented in fig.2.  
So far, we only tested uA-related(a) for time frames of a few days 
and the results are comprehensible. All variables are still subject 
to experimenting.  
The most-used list also shown in fig.2 provides the main working 
document to a user. It computes the aggregated length of activity 

intervals per item and time frame, where editing has more weight 
than viewing. 

 
Figure 3.  Construction of the uA-related(a, b) function from 

activity-oriented indicators: Window Switching and Clip-
board Use implement a counting of the corresponding events. 

CONCLUSIONS & FUTURE WORK 
Our activity representation fed by the ContextDrive [5] system 
can be considered personal metadata, which allows expressing 
user-experienced correlations also among non-text information 
types. While our current main task is experimenting with the here 
presented indicators and tuning their weights, we will also work 
on including non-text information types, which are currently un-
der-represented. This will allow us to better evaluate and compare 
our work to other means representing relationships among infor-
mation items, such as semantic technologies. 
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ABSTRACT 

During their lifetime, an individual may accumulate millions of 
items in their personal information space. This article outlines 
how maps should be designed to help individuals to find items in 
a large information space. Recommendations are made for the 
layout and visual encoding of information space maps, and how 
such maps could present search results and allow rapid browsing 
within a single, integrated view. 

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: 
User Interfaces – graphical user interfaces (GUI). H.5.4 

[Information Interfaces and Presentation (e.g., HCI)]: 

Hypertext/Hypermedia – navigation. H.3.3 [Information Storage 

and Retrieval]: Information Search and retrieval – search 
process. 

General Terms 

Design, Human Factors. 

Keywords 

Maps, visual encoding, personal information space. 

1. INTRODUCTION 
An individual’s personal collection contains many types of 
information, from documents, pictures and emails, to details of 
web pages the person has visited (e.g., a URL). The quantity of 
each type of information depends on the individual, but varies by 
several orders of magnitude. For example, during a lifetime an 
individual may create 103 documents and take 105 photographs, 
but receive 106 emails and visit 106 webpages. 

Even if all this information is integrated so that it may be accessed 
seamlessly from a single device, finding a particular item can be 
very difficult. The present article recommends how maps should 
be designed, to harness our natural spatial ability and the power of 
advanced search technology, and help individuals to find items in 

personal information spaces. 

2. ORGANIZATION AND ACCESS 
To achieve broad acceptance, any personal information retrieval 
interface needs to support individuals’ preferences for organizing 
and accessing information. The three main methods people use to 
organize information are: (a) don’t (characterized by there being a 
very large number of files or emails in one folder), (b) 
hierarchical, or (c) tags. The main mechanisms for accessing 
information are: (i) browse, (ii) search, and (iii) scan. The 
distinction between browsing and scanning is important because 
browsing refers to a large-scale space, which a person navigates 
through until the desired item of information is found, whereas 
scanning involves a small-scale space (e.g., a list of search results) 
that is inspected to identify the item that is being sought. In the 
real world, large- and small-scale spaces (e.g., a building vs. a 
room) involve fundamentally different cognitive processes [15]. 

Table 1. The main methods people use to organize and access 

information in a personal collection. 

Access method 
Organization 

Browse Search Scan 

Don’t (flat structure)  * * 

Hierarchical * *  

Tags * * * 

 

The relationship between different organization and access 
methods is summarized in Table 1. By definition, if information is 
in a flat structure then browsing is not possible. Instead, a person 
either uses a search engine to reduce the items of information to a 
set of possibles and then scans to identify the item that is sought, 
or just scans a list of the items. In both cases, ordering the 
information (e.g., by name, date or file type) reduces the number 
of items that need to be scanned. Hierarchical structures are 
designed to be browsed, and rely on the person recalling or 
recognizing the correct choice as they navigate from one level of 
the hierarchy to the next. By contrast, use of search bypasses the 
hierarchy and presents the person with a set of possibles that need 
to be scanned. The only link between browse and search displays 
are the names of files and their paths. Tagged information may be 
browsed, searched or scanned, depending on how an interface 
exploits the structure provided by the tags. 

There is clear evidence that people prefer to browse to find 
information within a file system, and only use search as a last 
resort [2]. However, no one has yet developed a way of portraying 
information spaces in a map-like form that aids information 
retrieval. 
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3. MAP DESIGN RECOMMENDATIONS 
Humans are proficient navigators. We quickly learn the layout of 
new environments (e.g., a holiday resort) and, when provided with 
a navigational aid such as a map, are very adept at finding places 
we have never visited before. 

Information spaces (desktop file systems, websites, etc.) are 
harder to navigate than the real world, despite the fact that the 
number of items in an information space is typically smaller than 
the number of buildings in a large city. Therefore, if an effective 
way of mapping information spaces can be developed then those 
spaces should become as navigable as the everyday environments 
in which we live and work. 

3.1 General Benefits of a Map 
There are a number of general reasons why information spaces are 
difficult to navigate. These are outlined below, together with the 
ways in which maps can help: 

a) Sensory information is impoverished. Most real world 
settings contain rich visual detail, which provides a 
multitude of cues to aid navigation. By contrast, each 
view of a given information space (e.g., the contents of 
a desktop folder) has a similar look and feel. This could 
be addressed by annotating each folder’s region on a 
map with a distinctive landmark, echoing the aesthetic 
properties of many historic maps. 

b) Only local spatial information is provided. During 
desktop browsing, the contents in one folder are 
replaced on the screen by the contents in the next folder 
that is selected. A map addresses this by placing each 
folder in a specific position, so an individual’s spatial 
memory for that folder is reinforced every time it is 
viewed. 

c) Information space navigation is like traveling in thick 

fog. In the real world, extended lines of sight (e.g., 
down a street, across many intersections) greatly 
facilitate the process of navigation [7; 11], whereas with 
browsing windows you can only see one step ahead 
(e.g., the contents of your current folder). A map 
complements this by also displaying your surroundings. 

d) Search and browse use entirely separate interfaces. 
However, maps could be used to present search results 
and allow browsing within a single, integrated view. 
This should improve individuals’ memory for the 
location of items within a personal information space. 

3.2 Map Layout Recommendations 
This section recommends how a map of a personal information 
space should be laid out. Key factors are how should the 
information be organized, level of detail, and how should the 
dynamic nature of an information collection be handled? 

Most individuals organize their information to a certain degree 
(e.g., a desktop folder structure). However, these structures tend 
to be flat (broad, but not deep) to reduce the number of clicks 
(hence cost) that are required to browse to a given item of 
information. A fundamental advantage of maps is that they allow 
direct access to any point within a space, so a deeper hierarchy is 

likely to be beneficial, but if the map allows direct manipulation 
of the hierarchy then the choice may be left to each individual 
user. 

Recommendation: Make the map editable, so the user can define 

the structural layout. 

Automated algorithms need to be developed to calculate a map’s 
spatial layout from its structure, for which there are a number of 
approaches. Traditional tree diagrams are not suited to 
information spaces because the large aspect ratio makes poor use 
of display real estate, and folding is not desirable because of the 
large amount of user interaction that is required. Radial diagrams 
(e.g., [5]) have a better aspect ratio (closer to 1:1) than traditional 
trees, but are not readily comprehended by the general public. 
Astronomical (starfield) approaches generate sparse layouts that 
make inefficient use of real estate [6], although the simplicity with 
which regions can be defined by drawing a constellation boundary 
could be incorporated within other approaches. The most compact 
layouts use a space-filling approach, with a tree map [12] being 
the best known automated algorithm and hand-drawn Z-diagrams 
[8] have been proven to help people design information spaces. 

Recommendation: Use a space-filling spatial layout. 

Broadly speaking, people find information in two stages [14]. A 
global stage involves finding the item’s locality (e.g., browsing 
though a space to the region that contains the item information, or 
issuing a suitable search query), and a local stage involves finding 
the item itself (e.g., browse locally, or scan the search results).  A 
map supports the global stage, but research is required to 
determine the level of detail that the map needs to show. Studies 
of web navigation [10] suggest that the map needs to support 
navigation to within one or two steps of the desired item, which 
implies that most (if not all) folders need to be shown. Individual 
files could be displayed in a secondary, local view that fulfills the 
role of current file managers (e.g., Windows Explorer). 

Recommendation: Map shows a folder level of detail, which is 

complemented by a local, file level of detail. 

Research conducted using simulators, shows that maps oriented to 
match your view of the world (“forward-up”) are best for deciding 
where next to travel, but maps with a constant orientation (“north-
up”) are best for learning the overall layout of a space. However, 
the addition of a simple you-are-here marker, which shows your 
momentary position and orientation, produces a map that is near-
optimal for both types of task [1]. Applied to information spaces, 
this means that every item should reside in a fixed position, so a 
user may always find it by looking at the same place on the map. 
The only exception would be if the user deliberately moved the 
item within the file system. 

Recommendation: Use a world-referenced (“north-up”) layout. 

If every item resides in a fixed position, how should the map 
initially be organized so that it can accommodate changes in the 
information a person stores over their lifetime? Research is 
needed to characterize the rate and magnitude of these changes, 
and knowledge techniques from dynamic graph drawing [4] may 
prove useful to generate stable spatial layouts. 

Recommendation: Further research required into stable layouts. 

30



3.3 Visual Encoding 
Visual encoding refers to the graphical attributes (e.g., position, 
size, shape, orientation, hue, brightness and texture) that dictate 
how a given piece of information is rendered onto a display [13]. 
Cartography, the longest established field of visualization, 
exploits combinations of these graphical attributes to display a 
wide variety of information in an easy to comprehend form. 
Careful overloading of the attributes means that categories of 
information often differ in at least two dimensions (e.g., line color 
and width for roads; see Figure 1), so attributes may be reused for 
different categories of information (e.g., red lines for roads and 
paths). 

Figure 1. Ordnance Survey 1:50000 map, using color to code 

classes of road (red, green, orange and yellow lines, of 

different widths) and types of path (dashed red lines, with 

differently shaped symbols), and different symbols to identify 

the types of tree in a wood. © Crown Copyright ED 

100018888. 

All “maps” of information spaces use position to encode the 
relationship (e.g., hierarchical or topic) between items of 
information. Most maps only use two dimensions, but some Z-
diagram examples successfully exploit the third dimension to 
distinguish different levels in an information hierarchy and 
reinforce this using color (e.g., the Nature Neuroscience website 
design [8]). 

In most cases, however, color is used in an ill thought out manner, 
with all three perceptual dimensions (hue, value & chroma) 
varyied simultaneously and colors allocated simply so that 
neighboring items are different (e.g., [3; 9]). The result is a 
kaleidoscope effect, which implies relationships between items of 
information that are actually wholly independent. More 
appropriate use of color has been made to indicate the density of 
documents in a topic and search query relevance [16], and 
standard desktop interfaces (e.g., Windows Explorer) successfully 
combine color with shape to create salient icons that indicate a 
file’s type (e.g., Word vs. PDF). 

A major challenge is to develop a visual encoding scheme for 
information spaces, which is as rich and clear as the schemes used 
in cartography. Clearly this requires substantial further research, 
but we make the following initial recommendations: 

• Position: 3D coding of hierarchy. 

• Size: Object volume on map indicates size of items in a 
folder, which will allow large items to both stand out 
and act as reference points for remembering the location 
of other items. 

• Color: Separate usage of each perceptual dimension. 
One possibility would be chroma and hue for depth and 
branch of a hierarchy, respectively. 

To create a map that allows integrated browsing and searching, 
the following additional information could be encoded. User’s 
main browsing main paths and frequently accessed items should 
be displayed to provide a framework for spatial memory, 
mimicking the role of paths and landmarks in real-world 
navigation. However, unlike the real world or existing file 
browsers, the map would allow users to access any item with a 
minimal number of clicks, thereby saving a substantial amount of 
time during each working day. On the occasions when users still 
needed to search, a traditional textual results list could be 
presented in the context of the map (e.g., marking the location of 
each result and graphically encoding the rank). This would allow 
greater flexibility for results presentation (e.g., category-based 
ranking) and improve users’ knowledge of the location of items so 
more could be accessed rapidly by browsing. 

4. SUMMARY 
This article outlines how information space maps could be 
encoded, to integrate browsing and searching and allow faster 
access to items stored in a personal information space. Our vision 
is that today’s file managers will be replaced by a map-like 
interface that saves time every day for millions of computer users. 
However, major challenges remain to determine how information 
should be encoded on the maps and to develop algorithms that 
automate the process of map generation. 
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ABSTRACT

Desktop search, as commonly implemented, is not capable
of searching many of the web sites and other sources people
use day-to-day. A metasearch model, incorporating desktop
search tools and others into a “single box”, offers a potential
solution. We describe this model and introduce PERS, a
library for building desktop metasearch software.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.4 [Information Storage and

Retrieval]: Systems and Software—distributed systems

1. METASEARCH ON THE DESKTOP
Desktop search is, at least in part, motivated by a desire

to provide a single point of access to all of an individual’s
information. This information could come from any or all
of a variety of sources (Figure 1).

As normally implemented, desktop search relies on a lo-
cal index. Some sources, such as local files, contact lists, or
calendars, are little trouble in this model, but other sources
pose a greater challenge to desktop search: enterprise re-
sources such as proprietary databases, intranet pages, or
LDAP directories require adapters or special processing. Out-
sourced enterprise applications may be accessible only via
limited APIs. The public web, including both pages already
visited (and in the browser’s cache) and pages not yet seen,
is of course too large to process at the desktop. And most
troublesome are the large number of online services which
are private, are not crawlable, or which charge fees for ac-
cess, and are therefore not indexed by public search engines.
These vary from online catalogues, which are not crawlable,
to large fee-for-use databases. Even if there were adapters
for every collection, the size of the collection or the rules
surrounding access would make local indexing impossible in
many cases.

Since it is not feasible—or even possible—to index some
sources locally, this precludes access to these sources from

Copyright is held by the author/owner(s).
SIGIR’10, Workshop on Desktop Search, July 23, 2010, Geneva, Switzer-
land.

Figure 1: Sources we may wish to search, and ap-

proximate coverage of various search technologies.

“Deep” web sites and subscription sites are not

searchable by any of the three technologies here, al-

though they may present their own search interface.

such local-index tools. Similarly, web search engines are lim-
ited to the public web and exclude local or enterprise con-
tent; and enterprise search engines exclude local data or the
public web. Some desktop search products do offer search of
the public web, either through affiliation with a web search
engine or in a very limited sense through a search of visited
or cached web pages. However, none of the three search tech-
nologies cover outsourced enterprise applications, subscrip-
tion services, web sites which require some sort of credential
(e.g. usernames and passwords), or the “deep web”.

Without a single search interface to all of a person’s infor-
mation resources, the amount of time taken to find things
increases at least linearly with the number of search inter-
faces used. For example, finding comprehensive background
on a significant customer may require separate searches of an
employee’s desktop, the corporate email archive, externally
hosted sales database, subscription financial health reports,
and the whole web. There is also a greater chance of missing
something useful or important: if a choice of search inter-
faces is offered, users may simply search in the wrong place.

Metasearch, also known as “distributed” or “federated”
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Figure 2: The PERS desktop interface. Shown are

partial results from a query covering a calendar, a

local file collection, and the public web.

search, offers a way to provide comprehensive, single-search-
interface search. Rather than integrating at the data level
by building a local index, it integrates the results of multiple
search engines, each with their own index.

Desktop metasearch brings its own challenges and oppor-
tunities, and it is not yet clear how many lessons from other
metasearch applications will carry over. Can a system au-
tomatically discover which search engines should be inte-
grated? Can it characterise those engines well enough to
enable intelligent selection which subset of available search
engines should be consulted for each particular query? Does
the query need to be translated prior to transmission to
particular engines? Finally, how can the results sets from
multiple engines be merged into a single high quality set
and presented in a useful way?

In general the metasearch model is unable to rely on any
form of cooperation from the underlying search engines, other
than returning a result set in response to a query. However,
an advantage of the approach is that the metasearcher can
rely on the underlying search engines to deal with problems
such as indexing; access control; thesauri and query expan-
sion; and ranking.

Uncooperative metasearch has been well studied within
artificial test collections [1, 3] but not yet in the desktop
context. This is perhaps surprising as desktop search may be
seen as a“killer app”for metasearch, but is largely because of
difficulties in conducting experiments in this more realistic
setting. The PERS metasearch library may overcome this
difficulty.

2. PERS, A METASEARCH LIBRARY
PERS (http://es.csiro.au/pers/) is a personal search

library for supporting and evaluating metasearch approaches
to desktop search. PERS can handle a wide variety of
data types and scales: prototypes have covered collections
ranging from small personal calendars, through library cat-
alogues, to the entire public web. It implements a “hybrid”
model [2], meaning it can use a combination of existing
search services and its own local indexes to search both local
files and data on any subscription, corporate, or public ser-
vice. A variety of merging and presentation options means it
can present results from all sources in a single interface (Fig-
ure 2).

The PERS library comprises many components for meta-
search at the desktop, including:

• A variety of configurable routines for “uncooperative”
metasearch. This includes characterising search en-
gines (sampling and estimating size); building language
models; selecting sources for a given query; carrying
out searches in parallel; and merging results.

• Search for sources including local files, calendars, ad-
dressbooks, local and remote email, the public web,
particular websites, and anything with a web interface
(which includes most subscription services).

• Filters for a number of file formats including HTML,
PDF, and Microsoft Office.

• GUI and web front-ends.

• Support for experimentation and a range of utility
functions: alternative algorithms can be switched in
or out (often with a single line of code), execution can
be logged, interface actions can be recorded and re-
ported to a central host, etc.

PERS is implemented in C# and has been run under Win-
dows, Linux, and OS X. Simple uses of the library need only
a dozen lines of code.

It is easy to add other routines, other filters, and to har-
ness other search engines. To date PERS has supported
experiments in evaluation, interface design, and server se-
lection, in web and desktop search contexts [e.g. 4, 5].

3. CONCLUSION
There is some indication from brochure sites that leading

commercial desktop systems may be taking tentative steps
down the metasearch path. However, this path is still very
much untrodden. Clearly research is needed, and we hope
that the PERS library will enable and encourage academic
researchers to work on these very interesting problems. Such
research can be undertaken without the need for expensive
infrastructure or access to massive data held by public search
engines. PERS is potentially a valuable way of studying as-
pects of searcher behaviour, in the context of their everyday
search tasks.
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