Submitted to the JOSES: Java Optimization Strategies for Embedded Systems

Some Measurements of Java-to-bytecode Compiler
Performance in the Java Virtual Machine

Charles Daly Computer Applications, Dublin City University, Dublin 9, Ireland.

Jane Horgan Computer Applications, Dublin City University, Dublin 9, Ireland.

James Power Dept of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland.

John Waldron Department of Computer Science, Trinity College, Dublin 2, Ireland.

ABSTRACT

In this paper we present a platform independent analysis
of the dynamic profiles of Java programs when executing
on the Java Virtual Machine. The Java programs selected
are taken from the Java Grande Forum benchmark suite,
and five different Java-to-bytecode compilers are analysed.
The results presented describe the dynamic instruction usage
frequencies.

These results, presenting a picture of the actual (rather
than presumed) behaviour of the JVM, have implications
both for the coverage aspects of the Java Grande benchmark
suites, for the performance of the Java-to-bytecode compil-
ers, and for the design of the JVM.

KEYWORDS

Java Virtual Machine Interpreter

1 INTRODUCTION

The Java paradigm for executing programs is a two stage
process. Firstly the source is converted into a platform in-
dependent intermediate representation, consisting of byte-
code and other information stored in class files. The second
stage of the process involves hardware specific conversions,
perhaps by a JIT compiler for the particular hardware in
question, followed by the execution of the code. The prob-
lem addressed by this research is that while there exist static
tools such as class file viewers to look at this intermediate
representation, there is currently no easy way of studying the
dynamic behaviour at this point in the program. This re-
search therefore sets out to perform dynamic analysis at the

©2001, Charles Daly, Jane Horgan, James Power and John
Waldron

E-mail address for correspondence:
John.Waldron@cs.tcd.ie

1

platform independent level and investigate whether or not
useful results can be gained. In order to test the technique,
the Java Grande Forum’s Benchmark suite was used.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the background to this work, including the
rationale behind bytecode-level dynamic analysis, and the
test suite used. Sections 3 and 4 summarise the profiles of
each of the Grande programs studied. In particular, sec-
tion 3 presents a method-level view of the dynamic profile,
while section 4 presents a more detailed bytecode-level view.
Section 5 discusses the influence of compiler choice on dy-
namic analysis, and describes the variances caused by five of
the most common Java compilers. Section 7 concludes the

paper.

2 BACKGROUND

The increasing prominence of internet technology, and the
widespread use of the Java programming language has given
the Java Virtual Machine (JVM) a unique position in the
study of compilers and related technologies. To date, much
of this research has concentrated on the performance of the
bytecode interpreter, yielding techniques such as Just-In-
Time (JIT) and hotspot-centered compilation.

However, the production of bytecode for the JVM is no
longer limited to a single Java-to-bytecode compiler. Not
only is there a variety of different Java compilers available,
but there are also compilers for extensions and variations of
the Java programming language, as well as for other lan-
guages such as Eiffel and Scheme, all targeted on the JVM.
In previous work we have studied the impact of the choice
source language on the dynamic profiles of programs running
on the JVM [2]. In this paper we examine the impact of the
choice of Java compiler on the dynamic execution of JVM
bytecodes, and analyse the degree to which the Java Grande
[1] applications can fulfill the role as a standard test suite
for these and other aspects of the JVM.

2.1

The output of a dynamic bytecode analysis will therefore be
important for the design of both Java to bytecode and Just-
In-Time bytecode to native compilers. Of particular interest
also is the instruction set used by an intermediate repre-
sentation to implement platform independence. By dynami-

Dynamic Bytecode-Level Analysis

Accepted for the Workshop on Java Optimization Strategies for Embedded Systems
University of Genova, Italy, 1 April, 2001

mol methods freq
java/lang/Math.sqrt 19.4
moldyn/particle.velavg 18.8
moldyn/particle.mkekin | 18.8
moldyn/particle.force 18.8
moldyn/particle.domove | 18.8
moldyn/random.update | 1.4
moldyn/random.seed 0.6
java/lang/Math.log" 0.6
sea methods freq
search /Game.wins 46.5
search/SearchGame.ab 10.3
search/Game.makemove 10.3
search /Game.backmove 10.3
search /TransGame.hash 9.3
search /TransGame.transpose | 5.3
search /TransGame.transtore | 4.0
search /TransGame.transput 4.0

eul methods frequency
java/lang/Math.abs 24.5
java/lang/Object.<init> 19.6
euler/Statevector.<init> 19.5
euler/Statevector.svect 19.2
java/lang/Math.sqrt 11.5
euler/Vector2.dot 1.8
euler /Vector2.magnitude 14
java/lang/Math.pow' 0.3
ray methods frequency
raytracer/Vec.dot 47.0
raytracer/Vec.sub2 23.2
raytracer/Sphere.intersect 22.8
java/lang/Math.sqrt! 1.6
java/lang/Object.<init> 1.3
raytracer/Vec.<init> 0.7
raytracer/Vec.normalize 0.6
raytracer /Isect.<init> 0.6

Table 1: Dynamic method execution frequencies for the most heavily used methods for the Grande application including native

methods, indicated by t.

cally analysing the Java bytecodes, lessons may be drawn to
facilitate construction of more efficient intermediate repre-
sentations for both procedural object-oriented programming
languages like Java and programming languages from differ-
ent categories.

Speed comparisons of the Java Grande benchmark suite
using different Java Platforms have been performed [1] and
differences in execution times have been found, but it has
not been known whether the resulting differences measured
have been due to the Java compiler, the JIT compiler or the
virtual machine implementation on the particular underly-
ing operating system and hardware architecture. This paper
shows, by means of the dynamic bytecode analysis technique,
that the bytecodes executed by a particular Grande appli-
cation are very similar for a wide variety of Java compilers,
implying compiler choice is not the main explanation of ex-
ecution speed variations for these programs. In addition, it
is possible to study how representative of Grande programs
those chosen for the benchmark suite are.

In order to study dynamic bytecode usage it was necessary
to modify the source code of a Java Virtual Machine. Kaffe
[3] is an independent implementation of the Java Virtual
Machine which was written from scratch and is free from
all third party royalties and license restrictions. It comes
with its own standard class libraries, including Beans and
Abstract Window Toolkit (AWT), native libraries, and a
highly configurable virtual machine with a JIT compiler for
enhanced performance. Kaffe is available under the Open
Source Initiative and comes with complete source code, dis-
tributed under the GNU Public License. Version: 1.0.5 was
used for these measurements.

2.2 Grande Programs Measured

A Grande application is one which uses large amounts
of processing, I/O, network bandwidth or mem-

Charles Daly, 12. January 2000

2

ory. The Java Grande Forum Benchmark Suite
(http://www.epcc.ed.ac.uk/javagrande/) is intended to
be representative of such applications, and thus to provide
a basis for measuring and comparing alternative Java
execution environments. It is intended that the suite should
include not only applications in science and engineering
but also, for example, corporate databases and financial
simulations.

e The moldyn benchmark is a translation of a Fortran
program designed to model the interaction of molec-
ular particles. Its origin as non object-oriented code
probably explains its relatively unusual profile, with few
methods which make intensive use of fields within the
class, even for temporary and loop-control variables.
This program may still represent a large number of
Grande type applications that will initially run on the
JVM

e The search benchmark solves a game of connect-4 on
a 6 x 7 board using alpha-beta pruning. Intended to be
memory and numerically intensive, this is also the only
application to demonstrate an inheritance hierarchy of
depth greater than 2.

e The euler benchmark solves a set of equations using a
fourth order Runge-Kutta method. This suite demon-
strates a considerable clustering of functionality in the
Tunnel class, as well as a comparatively high percentage
of methods with very large local variable requirements.

e The raytracer measures the performance of a 3D ray
tracer rendering a scene containing 64 spheres. It is
represented using a fairly shallow inheritance tree, with
functionality (as measured in methods) fairly well dis-
tributed throughout the classes.

JOSES-2001

Accepted for the Workshop on Java Optimization Strategies for Embedded Systems
University of Genova, Italy, 1 April, 2001

Program Total API % API
methods native %
mol 5.45e+05 22.0 20.0
sea 7.12e4+07 0.0 0.0
eul 3.34e+07 58.0 12.6
ray 4.58e+08 | 3.1 1.6
average 1.41e+08 20.8 8.6

Table 2: Measurements of total number of method calls in-
cluding native calls by Grande applications. Also shown is
the percentage of the total which are in the API, and per-
centage of total which are in API and are native methods.

e The montecarlo benchmark is a financial simulation
using Monte Carlo techniques to price products derived
from the price of an underlying asset. Its use of clas-
sical object-oriented get and set methods accounts for
the relatively high proportion of methods with no tem-
porary variables and 1 or 2 parameters (including the
this-reference).

3 DYNAMIC METHOD EXECUTION
FREQUENCIES

In this section we present our first dynamic profile of the
Grande programs studied. Here we partition the execution
profiles based on methods, since these provide both a log-
ical level of modularity at source-code level, as well as a
likely unit of granularity for hotspot analysis. It should be
noted that these figures are not the usual time-based analy-
sis, which will vary considerably between different computer
configurations and architectures, but are based on the more
platform-independent bytecode frequency analysis.

As Kaffe and the JVM are not yet mature technologies
for Grande applications, some programs in the suite fail to
compute the correct result. It was decided to exclude the
montecarlo benchmark from this study as it failed by a large
amount when interpreted, but raytracer was included as the
error in the result was very small.

Table 1 shows dynamic method execution frequencies for
the most heavily used methods for the Grande applications
including native methods. It can be seen that virtually all
execution time is spent in at most five methods for these
applications.

Table 2 shows measurements of the total number of
method calls including native calls by Grande applications.
For the programs studied, on average 8.6% of methods are
API methods which are implemented by native code. As
the benchmark suite is written in Java it is possible to con-
clude that any native methods are in the API. This paper is
confined to studying how the Java methods execute.

Table 3 shows measurements of the Java method calls ex-
cluding native calls. With the exception of the eul bench-
mark, Java method execution time is virtually all in the
non-API bytecodes of the programs. This is a significant
difference from traditional Java applications such as applets
or compiler type tools which spend most of the time in the
API [4]. Mixed compiled interpreted systems which precom-
pile the API methods to some native format will therefore

Charles Daly, 12. January 2000

3

Program Java method calls bytecodes executed
number | % in API | number | % in API
mol 4.36e+05 2.5 7.60e+09 0.0
sea 7.12e+07 0.0 7.39e+09 0.0
eul 2.92e+07 51.9 1.58e+10 20.9
ray 4.50e+08 1.5 1.18e+10 0.8
average 1.38e+4-08 14.0 1.06e+10 5.4

Table 3: Measurements of Java method calls excluding native
calls made by Grande applications.

Program || io | lang | net | text | util
mol 40 | 747 | 1.1 | 04 | 19.8
sea 49 | 684 | 1.5 | 0.0 | 25.2
eul 24| 975 | 0.0 | 0.0 | 0.0
ray 0.0 | 100.0 | 0.0 | 0.0 | 0.0

Table 4: Breakdown of Java API method dynamic usage per-
centages by package for Grande applications. None of the ap-
plications used methods from the applet, awt, beans, math,
security or sql packages.

not be as effective at speeding up Grande applications like
these. The finding that API usage is very low may imply
that the benchmark suite may not be fully representative of
a broad range of Grande applications (see Table 4). It is
also possible to observe that since 51% of Java methods are
API for the eul benchmark, but only 21% of the bytecodes
executed, that the API methods are smaller in size than the
Grande program’s methods. All measurements in this paper
were made with the Kaffe API library, which may differ from
other Java API libraries.

Table 4 shows dynamic measurements of the Java API
package method percentages. As would be expected for the
programs considered, the applet and awt packages are not
used at all as graphics has been removed from the bench-
marks. Of major interest is that the math package is not
used by the benchmarks which implies either the benchmarks
are not representative of numerical programs or the math
package is not in fact of much use to such programs which
simply use the java.lang.Math class. A Grande application
should use large amounts of processing, I/O, network band-
width or memory, yet it is interesting to note how little of
the API packages are dynamically used by this benchmark
suite.

4 DYNAMIC BYTECODE EXECU-
TION FREQUENCIES

In this section we present a more detailed view of the dy-
namic profiles of the Grande programs studied by consider-
ing the frequencies of the different bytecodes used. These
figures help to provide a detailed description of the nature
of the operations being performed by each program, and
thus give a picture of the aspects of the JVM actually be-
ing tested by the suite. This also provides an alternative to
typical time-based analysis, which, while useful for efficiency
analysis, can be considerably influenced by the underlying
architecture’s proficiency in dealing with different types of

JOSES-2001

Accepted for the Workshop on Java Optimization Strategies for Embedded Systems
University of Genova, Italy, 1 April, 2001

mol sea, eul ray
dload 33.3 || iload 13.2 || iload 19.7 || getfield 26.1
iload 7.0 aload_0 8.6 aaload 18.2 || aload-0 16.1
dstore 6.8 || getfield 7.3 || getfield 16.2 || aload_1 10.9
dcmpg 5.5 iaload 5.4 aload_0 8.3 dmul 6.5
dsub 4.7 istore 5.3 dmul 4.1 dadd 4.7
dmul 4.3 || ishl 4.3 || dadd 4.0 || dsub 3.7
getstatic | 4.3 bipush 3.8 putfield 3.3 putfield 3.1
getfield 4.3 || iload-1 3.6 || iconst_1 3.2 || aload_2 2.8
aaload 4.2 iand 3.5 dload 2.8 || dreturn 1.9
dneg 4.1 iadd 3.5 || isub 2.0 || invokevirtual | 1.9
dcmpl 4.1 iload_2 2.6 daload 2.0 invokestatic 1.9
ifge 4.1 iload_3 2.5 || dup 1.7 || dload2 1.9
ifle 4.1 ior 2.3 aload-3 1.5 iload 1.8
dadd 3.4 iconst_1 2.3 dsub 1.4 aload 1.3
iinc 14 iconst_2 2.1 aload 1.3 dload 1.1
ifgt 14 || dup 2.0 || aload-2 1.3 || dconst0 1.0
if icmplt | 1.4 iinc 1.7 || ldc2w 1.1 dcmpg 1.0
dload-1 1.0 || ifeq 1.6 || iload-3 1.1 || ifge 1.0
putfield 0.1 iastore 1.5 iadd 1.1 return 1.0
aload_0 0.1 if_icmplt 14 dstore 1.0 dstore 1.0
nop 0.0 iconst_4 14 ddiv 0.6 iinc 0.9
isub 0.0 iconst_5 1.4 dconst_0 0.4 || ificmplt 0.9
Isub 0.0 if_icmple 1.3 aload-1 0.4 areturn 0.9
fsub 0.0 || invokevirtual | 1.0 || iinc 0.3 || arraylength 0.9
imul 0.0 dup2 1.0 if_icmplt 0.3 ifnull 0.9
Imul 0.0 isub 0.9 dload-1 0.3 aconst_null 0.9
fmul 0.0 || ificmpgt 0.9 || dload-3 0.3 || aaload 0.9
idiv 0.0 ldcl 0.8 dstore_1 0.2 astore 0.9
I1div 0.0 istore_3 0.8 dstore_3 0.2 dstore_2 0.9
Iconst_1 0.0 imul 0.7 dastore 0.2 dload-1 0.2
fdiv 0.0 ifne 0.7 || dneg 0.1 ddiv 0.1
ddiv 0.0 putfield 0.7 || dcmpg 0.1 dcmpl 0.1
irem 0.0 iconst_0 0.7 || ifge 0.1 ifle 0.1
Irem 0.0 || istore_1 0.7 || ificmpge | 0.1 || goto 0.1
frem 0.0 if_icmpne 0.6 if_licmple 0.1 invokespecial | 0.1

Table 5: Total (API and non-API) dynamic bytecode usage frequencies by Grande applications compiled using SUN’s javac
compiler, Standard Edition (JDK build 1.3.0-C) The top 35 instructions are presented.

bytecode instructions.

Table 5 shows total (API and non-API) dynamic byte-
code usage frequencies by Grande applications. The JVM
instruction set has special efficient load and store instruc-
tions for the first four local variable array entries, and less
efficient generic instructions for higher local variable array
positions. The first thing that stands out from Table 5 is
that for mol, sea and eul the highest frequency instruction is
a generic load, rather than an efficient load from one of the
first four elements of the local variable array. For mol one
third of instructions are a single load of this type.

Although the Java to bytecode compiler does not have
access to dynamic execution data, it should be able to put
the most heavily used local variable into one of the efficient
slots most of the time (see also Table 8). Alternatively, if the
compiler just assigns the local variables in the order they are
declared, the application programmer might be able to alter
the sequence to increase efficiency in some cases, but not if
the compiler always puts the parameters first and there are
a large number of these.

Charles Daly, 12. January 2000

The mol benchmark has the same number of getfield
as getstatic instructions, uses a much smaller set of in-
struction than the other benchmarks, and does not have
method invocations in its high frequency instructions, sug-
gesting it may not have been designed in an object-oriented
fashion. The comparison instruction dcmpl is also at very
high frequency in mol relative to the other benchmarks, sug-
gesting something different is happening in the structure
of the code involving a high number of dynamic decisions.
invokevirtual does not appear at all in the high frequency
instruction for eul or mol, and is at 1% for sea and 1.9% for
ray suggesting that worries about the inefficiencies of vir-
tual method invocation in the Java language may have been
overstated for Grande applications. Of course, the execu-
tion time for the invokevirtual instruction will be much
higher than for ordinary instructions on any hardware plat-
form. ray seems to be the most object-oriented program,
using getfield as its most frequent instruction, followed by
aload_0 to access the this-reference.

In order to study overall bytecode usages across the pro-

JOSES-2001

Accepted for the Workshop on Java Optimization Strategies for Embedded Systems
University of Genova, Italy, 1 April, 2001

Compiler mol eul sea ray

kopi 7599606497 | 12475753926 | 7388409738 | 11706547525
pizza 7704747144 | 11431095142 | 7311241755 | 11919084828
gcj 7704740202 | 12540807644 | 7527673585 | 11810849733
jdk13 7599606435 | 11394409844 | 7103719939 | 11706547247
borland 7705054344 | 11431120742 | 7324210788 | 11919084856

Table 6: Total Non-API dynamic bytecode usage counts for Grande Applications using different compilers. For gcj, a minor
alteration to the sea program source was needed to get it to compile.

grams, it is possible to calculate the average bytecode fre-

quency
n

1 100 x Cik
fi=— 256
n ; Z'L:l Cik

where ¢;;, is the number of times bytecode ¢ is executed dur-
ing the execution of program k and n is the number of pro-
grams averaged over. f; is an approximation of that byte-
code’s usage for a typical Grande program.

5 COMPARISONS OF DYNAMIC
BYTECODE USAGES ACROSS
DIFFERENT COMPILERS

In this section we consider the impact of the choice of Java
compiler on the dynamic bytecode frequency figures. Java is
relatively unusual (as compared to, say, C or C++) in that
optimisations can be implemented in two separate phases:
first when the source program is compiled into bytecode,
and again when this bytecode is executed on a specific JVM.
‘We consider here those optimisation which are implemented
at the compiler level, and thus may be considered to be
platform independent, and which must be taken into account
in any study of the bytecode frequencies.

For the purposes of this study we used five different Java
compilers, from the following development environments:

kopi KOPI Java Compiler Version 1.3C
http://wuw.dms.at/kopi

pizza Pizza version 0.39g, 15-August-98
http://wuw.cis.unisa.edu.au/"pizza/

gcj The GNU Compiler for the Java Programming Lan-
guage version 2.95.2
http://sources.redhat.com/java/

jdk13 SUN'’s javac compiler, Standard Edition (JDK build
1.3.0-C)

borl Borland Compiler 1.2.006 for Java

The figures for the Java compiler from 1.2 of SUN’s JDK,
as well as version 1.06 of the IBM Jikes Compiler were also
computed, but since the code produced was almost identical
to that produced by the compiler from version 1.3 of the
JDK we do not consider them further here.

Table 6 shows total Non-API dynamic bytecode counts
for the Grande programs using different compilers. The API
was not recompiled and those bytecodes were excluded from
the dynamic comparisons. While it is difficult to draw direct

Charles Daly, 12. January 2000

5

conclusions based on these figures, two facts are at least ap-
parent. First, examining each column of Table 6, it can be
seen that there are significant differences between the byte-
codes executed for a single application between the different
compilers. Second, this variance is not consistent through
all four applications, and it is clear that a more detailed
analysis is necessary to account for these differences.

Ideally, the optimisations implemented by each compiler
should be described in the corresponding documentation; re-
grettably this is not the case in reality. Also, since each of
the applications produces significantly large bytecode files,
a static analysis of the differences between these files is not
practical. Further, a bytecode-level static analysis would not
be sufficient for determining those differences which resulted
in a significant variance in the dynamic profiles.

Instead, a detailed analysis of the dynamic bytecode exe-
cuted frequencies was carried out. The raw statistics are pre-
sented in Table 7, Table 8, Table 9 and Table 10, which show
the top 35 most executed instructions for each application.
In order to analyse these tables, the differences in each row
were selected, and the relevant sections of the corresponding
source code was then examined. Below we summarise the
main differences exhibited in these tables.

5.1 Main Compiler Differences

There were three main differences between the optimisations
implemented by the compilers:

Loop Structure The figures show a difference in the use
of comparison and jump instructions between the compilers.
For each usage of the if_cmplt instruction by kopi and jdk18
there is a corresponding usage of goto and if_cmpge by pizza,
gc¢j and borland. This can be explained by the implementa-
tion of loop structures. for example, a loop of the form:
while (ezpr) { stats }
is implemented by the different compilers as follows:

kopi/jdk13 pizzaf gcj/ borland
beg: expr
goto end if_cmpge end
beg: stats stats
end: expr goto beg
if_cmplt beg end:

A simple static analysis would regard these as similar im-
plementations, but the dynamic analysis clearly shows the
savings resulting from the kopi/jdk13 approach.

Specialised load Instructions Table 8 and Table 9 high-
light an important difference between the compilers in their

JOSES-2001

Accepted for the Workshop on Java Optimization Strategies for Embedded Systems
University of Genova, Italy, 1 April, 2001

Instruction | kopi | pizza | gcj | jdk13 | borl fi Instruction kopi | pizza | gcj | jdk13 | borl fi

dload 33.3 | 32.8 | 32.8 | 33.3 | 32.8 | 33.0 aaload 21.6 | 19.8 | 21.5 | 19.9 | 19.8 | 20.5
iload 7.0 6.9 6.9 7.0 6.9 6.9 iload 224 | 20.7 5.4 20.8 | 20.7 | 18.0
dstore 6.8 6.7 6.7 6.8 6.7 | 6.7 getfield 173 | 17.0 | 174 | 170 | 17.0 | 17.1
dcmpl 9.7 4.1 4.1 4.1 4.1 5.2 aload-0 10.0 9.0 10.1 9.0 9.0 9.4
dsub 4.7 4.7 4.7 4.7 4.7 4.7 dadd 3.8 4.1 3.8 4.1 4.1 4.0
dmul 4.3 4.3 4.3 4.3 4.3 4.3 dmul 3.7 4.1 3.7 4.1 4.1 3.9
dcmpg 0.0 5.4 5.4 5.5 5.4 4.3 iconst_1 2.7 2.9 2.7 2.9 2.9 2.8
getstatic 4.3 4.2 4.2 4.3 4.2 4.2 putfield 2.6 2.8 2.6 2.8 2.8 2.7
getfield 4.3 4.2 4.2 4.3 4.2 4.2 dload 2.5 2.7 2.9 2.7 2.7 2.7
aaload 4.2 4.2 4.2 4.2 4.2 4.2 iload-3 1.3 14 7.7 14 14 2.6
dneg 4.1 4.1 4.1 4.1 4.1 4.1 isub 1.7 1.9 1.7 1.9 1.9 1.8
ifge 4.1 4.1 4.1 4.1 4.1 4.1 iload-2 0.0 0.0 9.1 0.0 0.0 1.8
ifle 4.1 4.1 4.1 4.1 4.1 4.1 aload-3 1.7 1.9 1.7 1.9 1.9 1.8
dadd 3.4 3.4 3.4 3.4 3.4 3.4 daload 1.6 1.8 1.6 1.8 1.8 1.7
iinc 14 14 14 14 14 14 dup 0.1 2.0 0.1 2.0 2.0 1.2
ifgt 14 14 14 14 14 14 dstore 1.0 1.1 14 1.1 1.1 1.1
dload-1 1.0 1.0 1.0 1.0 1.0 1.0 dsub 0.9 1.0 0.9 1.0 1.0 1.0
ificmpge 0.0 14 1.4 0.0 1.4 0.8 ldc2w 1.0 1.1 0.7 1.1 1.1 1.0
goto 0.0 1.4 1.4 0.0 1.4 0.8 iadd 1.0 1.0 0.9 1.0 1.0 1.0
if icmplt 1.4 0.0 0.0 14 0.0 0.6 ddiv 0.6 0.7 0.6 0.7 0.7 | 0.7
putfield 0.1 0.1 0.1 0.1 0.1 0.1 aload_2 0.3 0.4 0.3 0.4 0.4 0.4
aload_0 0.1 0.1 0.1 0.1 0.1 0.1 iinc 0.3 0.3 0.3 0.3 0.3 0.3
nop 0.0 0.0 0.0 0.0 0.0 0.0 iload-1 0.0 0.0 1.4 0.0 0.0 0.3
isub 0.0 0.0 0.0 0.0 0.0 0.0 dconst_0 0.2 0.2 0.2 0.2 0.2 0.2
Isub 0.0 0.0 0.0 0.0 0.0 0.0 if_icmpge 0.0 0.3 0.3 0.0 0.3 0.2
fsub 0.0 0.0 0.0 0.0 0.0 0.0 goto 0.0 0.3 0.3 0.0 0.3 0.2
imul 0.0 0.0 0.0 0.0 0.0 0.0 dload-1 0.2 0.3 0.0 0.3 0.3 0.2
Imul 0.0 0.0 0.0 0.0 0.0 0.0 dload-3 0.2 0.2 0.0 0.2 0.2 0.2
fmul 0.0 0.0 0.0 0.0 0.0 0.0 aload-1 0.2 0.2 0.2 0.2 0.2 0.2
idiv 0.0 0.0 0.0 0.0 0.0 0.0 dstore_1 0.2 0.2 0.0 0.2 0.2 0.2
1div 0.0 0.0 0.0 0.0 0.0 0.0 dstore_3 0.2 0.2 0.0 0.2 0.2 0.2
Iconst_1 0.0 0.0 0.0 0.0 0.0 0.0 dastore 0.2 0.2 0.2 0.2 0.2 0.2
fdiv 0.0 0.0 0.0 0.0 0.0 0.0 if_icmplt 0.3 0.0 0.0 0.3 0.0 0.1
ddiv 0.0 0.0 0.0 0.0 0.0 0.0 invokespecial | 0.1 0.1 0.1 0.1 0.1 0.1
irem 0.0 0.0 0.0 0.0 0.0 0.0 new 0.1 0.1 0.1 0.1 0.1 0.1

Table 7: Non-API dynamic bytecode usage frequencies for
mol using different compilers. The top 35 instructions are
presented.

Table 8: Non-API dynamic bytecode usage frequencies for
eul using different compilers. The top 35 instructions are
presented.

treatment of specialised iload instructions. gcj gives a sig-
nificantly lower usage of the generic iload instruction rela-
tive to all other compilers, and a corresponding increase in
the more specific iload_2 and iload_3 instructions showing
that this compiler is attempting to optimise the programs
for integer usage.

However, it is interesting to note the failure of this ap-
proach as demonstrated by Table 7 and Table 10, where the
differences in iload instructions are not significant. This can
be explained directly by the nature of the programs involved
- mol and ray make greater use of doubles and objects re-
spectively, and gcj makes no attempt to optimise the stack
positions for these types.

Usage of the dup Instruction There is a dramatic
difference in the use of dup instructions show in Table
8 and, to a lesser extent, in Table 9, with kopi and
gcj having a much lower usage than the other compilers.
(dup instructions do not account for a significant propor-

Charles Daly, 12. January 2000

6

tion of bytecode usage in the other applications). This
can be explained by the usage of the shorthand arith-
metic instructions (such as +=) in the source Java code.
For example, the eul suite contains lines of the form:

r[il[jl.a += ...
A simple translation of this line to the longer form
rlil[jl.a = r[il1[jl.a + ...

results in code which references the expression r[i][j].a
twice.

The pizza, jdk18 and borland compilers optimise for the
first form by duplicating the value of the expressions. The
other two compilers do not, and show a corresponding in-
crease in the usages of aload, aaload and getfield instruc-
tions.

The presence of the line in what is evidently a program
hotspot gives particular relevance to this compiler optimisa-
tion in this case.

JOSES-2001

Accepted for the Workshop on Java Optimization Strategies for Embedded Systems
University of Genova, Italy, 1 April, 2001

Instruction kopi | pizza | gcj | jdk13 | borl fi Instruction kopi | pizza | gcj | jdk13 | borl fi

iload 13.4 | 129 | 124 | 132 | 12.8 | 12.9 getfield 26.3 | 25.8 | 26.0 | 26.3 | 25.8 | 26.0
aload_0 9.6 8.3 8.9 8.6 8.3 8.7 aload-0 16.2 | 15.8 | 16.0 | 16.1 | 15.8 | 16.0
getfield 7.9 7.1 7.6 7.3 7.1 7.4 aload-1 10.9 | 10.7 | 10.8 | 10.9 | 10.7 | 10.8
iaload 5.2 5.2 5.1 5.4 5.2 5.2 dmul 6.6 6.5 6.5 6.6 6.5 6.5
istore 5.1 5.2 5.2 5.4 5.2 5.2 dadd 4.7 4.6 4.7 4.7 4.6 4.7
ishl 4.1 4.2 4.1 4.3 4.2 4.2 dsub 3.7 3.6 3.7 3.7 3.6 3.7
bipush 3.6 3.7 4.3 3.8 3.6 3.8 putfield 3.0 3.0 3.0 3.0 3.0 3.0
iadd 4.2 34 4.1 3.5 34 3.7 aload_2 2.8 2.7 2.8 2.8 2.7 2.8
iand 3.3 34 4.1 3.5 34 3.5 invokestatic 1.9 1.9 1.9 1.9 1.9 1.9
iload-1 3.8 3.5 2.8 3.6 3.5 34 dreturn 1.9 1.8 1.8 1.9 1.8 1.8
iload-2 2.5 2.6 3.3 2.6 2.5 2.7 invokevirtual | 1.9 1.8 1.8 1.9 1.8 1.8
iload-3 2.7 2.5 3.3 2.5 2.5 2.7 iload 1.9 1.8 1.8 1.9 1.8 1.8
ior 2.2 2.3 2.2 2.3 2.3 2.3 dload 1.1 1.1 2.9 1.1 1.1 1.5
iconst_1 2.0 2.2 2.0 2.3 2.2 2.1 dload-2 1.9 1.8 0.0 1.9 1.8 1.5
iconst_2 2.0 2.0 2.0 2.1 2.0 2.0 aconst_null 0.9 1.7 0.9 0.9 1.7 1.2
dup 1.5 1.9 1.8 2.0 1.9 1.8 aload 1.2 1.2 1.2 1.2 1.2 1.2
iinc 1.7 1.7 1.6 1.7 1.7 1.7 dstore 1.0 1.0 1.8 1.0 1.0 1.2
iconst_5 1.8 14 1.7 14 1.4 1.5 ifge 1.0 1.0 1.0 1.0 1.0 1.0
iconst_0 0.7 2.5 0.7 0.7 2.6 1.4 iinc 0.9 0.9 0.9 0.9 0.9 0.9
iastore 14 14 14 1.5 14 14 dconst_0 0.9 0.9 0.9 0.9 0.9 0.9
iconst_4 1.4 1.4 1.4 1.4 1.4 14 areturn 0.9 0.9 0.9 0.9 0.9 0.9
if_icmpgt 0.9 1.7 14 0.9 1.7 1.3 return 0.9 0.9 0.9 0.9 0.9 0.9
goto 0.8 1.5 1.5 0.5 1.5 1.2 arraylength 0.9 0.9 0.9 0.9 0.9 0.9
ifeq 1.2 0.1 1.9 1.6 0.1 1.0 aaload 0.9 0.9 0.9 0.9 0.9 0.9
invokevirtual | 1.0 1.0 0.9 1.0 1.0 1.0 astore 0.9 0.9 0.9 0.9 0.9 0.9
isub 0.9 0.9 0.8 0.9 0.9 0.9 dcmpg 0.0 1.0 1.0 1.0 1.0 0.8
if_icmple 1.3 0.6 0.8 1.3 0.6 0.9 dstore_2 0.9 0.9 0.0 0.9 0.9 0.7
if icmpeq 0.2 1.7 0.2 0.2 1.7 0.8 goto 0.1 0.9 1.0 0.1 0.9 0.6
if_icmplt 1.3 0.5 0.5 14 0.5 0.8 if_icmpge 0.0 0.9 0.9 0.0 0.9 0.5
ldcl 0.8 0.8 0.8 0.8 0.9 0.8 ifnull 0.9 0.0 0.9 0.9 0.0 0.5
istore_3 0.8 0.8 0.8 0.8 0.8 0.8 if_icmplt 0.9 0.0 0.0 0.9 0.0 0.4
imul 0.6 0.7 0.6 0.7 0.7 0.7 if_acmpeq 0.0 0.9 0.0 0.0 0.9 0.4
if_icmpge 0.1 1.1 0.9 0.1 1.1 0.7 dcmpl 1.1 0.1 0.1 0.1 0.1 0.3
putfield 0.7 0.7 0.7 0.7 0.7 0.7 dload-1 0.2 0.2 0.2 0.2 0.2 0.2
dup2 0.1 1.0 0.3 1.0 1.0 0.7 ddiv 0.1 0.1 0.1 0.1 0.1 0.1

Table 9: Non-API dynamic bytecode usage frequencies for
sea using different compilers. The top 35 instructions are
presented. For gcj, a minor alteration to the program source
was needed to get it to compile.

5.2 Minor compiler differences

Some minor differences between the frequencies can also be
noted as follows:

Comparisons with 0 and null As well as generic com-
parison instructions for each type, Java bytecode has two
specialised instructions for comparison with zero: ifeq and
ifne. As can be seen from Table 9, the frequencies for these
instructions for both the pizza and borland compilers is lower
than the other compilers, and a price is paid in a correspond-
ingly higher use of iconst_0 and if_icmpeq instructions.
As before, this variance is shown to differing degrees de-
pendent on the application: none of the other three programs
rate this difference as significant. However, Java bytecode
also has a specialised instruction for comparing object refer-
ences with null, ifnull. The object-intensive program ray
(Table 10) exhibits the results of the pizza and borland com-

Charles Daly, 12. January 2000

7

Table 10: Non-API dynamic bytecode usage frequencies for
ray using different compilers. The top 35 instructions are
presented.

pilers not using this instruction, with a corresponding in-
crease in aconst_null and if_acmpeq instructions.

The Decrement Instruction There are two approaches
to decrementing an integer value. Either you can push mi-
nus 1 and add (iconst_ml, iadd), or push 1 and subtract
(icomnst_1, isub). Only the kopi and gcj compilers choose
the former, and so Table 9 shows an increase in the use of
iadd instructions, along with a corresponding drop in the
use of iconst_1 instructions.

Constant Propagation The gc¢j compiler does not do as
much constant propagation as the other compilers and this
is evidenced in Table 8. The eul application has a number
of constant fields, and this is reflected by a drop in 1dc2w
instructions, and a corresponding increase in the number of
getfield instructions.

JOSES-2001

Accepted for the Workshop on Java Optimization Strategies for Embedded Systems
University of Genova, Italy, 1 April, 2001

Comparison operations A minor variation is shown in
Table 7 for the usages of dempl and dempg instructions, with
the kopi compiler showing a strong preference for the for-
mer; the dependent statement blocks in the corresponding
if-statements are reorganised accordingly.

6 CONCLUSIONS

This paper set out to investigate platform independent dy-
namic Java Virtual Machine analysis using the Java Grande
Forum benchmark suite as a test case. This type of analy-
sis, of course, does not look in any way at hardware specific
issues, such as JIT compilers, interpreter design, memory
effects or garbage collection which may all have significant
impacts on the eventual running time of a Java program, and
is limited in this respect. It has been shown above however
that useful information about a Java programs can be ex-
tracted at the intermediate representation level, which can
be partly used to understand their ultimate behaviour on
a specific hardware platform. The technique has also been
shown to help in the design of Java to bytecode compilers.

Although the Java to bytecode compiler does not have ac-
cess to dynamic execution data, it should be able to put the
most heavily used local variable into one of the efficient slots
most of the time, yet only the gcj compiler seems to make
a significant attempt at this. A more common optimisation
was in the translation of loop constructs, where each success-
ful iteration involves executing two branching instructions,
a potential branch if the condition is false and a backward
goto (unconditional branch) at the end of the loop for the
pizza, gcj and borland compilers, whereas the other compil-
ers combine both of these into a single conditional branch at
the end of the loop.

Overall, this study raises questions about the balance of
optimisation work between Java compilers and the inter-
preter component of the JVM. One possibility is that com-
piler writers are trying to produce as closely as possible the
bytecodes produced by the original SUN compiler so as to
avoid incompatibility with the runtime bytecode verifier. If
this is so, it may explain why various other efficiency im-
provements have not been used by different compilers.

Clearly, run-time optimisation techniques will always be
essential within the JVM, because of both the potential un-
reliability of the compiler, and the extra information about
the run-time architecture available to the JVM. However, it
is not obvious that Java compilers are putting much effort

Charles Daly, 12. January 2000

8

into generating efficient bytecode, and it is arguable that the
JVM may be bearing an unreasonable part of the burden of
performing these optimisations.

Platform independent dynamic analysis has been shown
to be a useful tool for the studying the Grande benchmark
suite. For Grande applications Java method execution time
is shown to be virtually all in the non-API bytecodes of
the programs. This is a significant difference from tradi-
tional Java applications such as applets or compiler type
tools which spend most of the time in the API. Since a
Grande application should use large amounts of processing,
I/0, network bandwidth or memory, it is interesting to note
how little of the API packages are dynamically used by this
benchmark suite. Precompiling the API to some native rep-
resentation therefore will not yield significant speedup.

As would be expected for the programs considered, the
applet and awt packages are not used at all as graphics
has been removed from the benchmarks. Of major interest
is that the math package is not used by the benchmarks
which implies either the benchmarks are not representative
of numerical programs or the math package is not in
fact of much use to such programs which simply use the
java.lang.Math class.

REFERENCES

[1] Bull M, Smith L, Westhead M, Henty D and Davey R.
Benchmarking Java Grande Applications, Second In-
ternational Conference and Exhibition on the Practi-
cal Application of Java, Manchester, UK, April 12-14,
2000.

[2] J. Waldron, Object Oriented Programs and a Stack
Based Virtual Machine, Journal of South African Com-
puter Society, In press.

[3] T.J. Wilkinson, KAFFE, A Virtual Machine to run
Java Code, <www.kaffe.org> URL last accessed on
20/10/2000

[4] J. Waldron, C. Daly, D. Gray and J. Horgan, Compar-
ison of Factors Influencing Bytecode Usage in the Java
Virtual Machine, Second International Conference and
Exhibition on the Practical Application of Java, Manch-
ester, UK, April 12-14, 2000.

JOSES-2001

Accepted for the Workshop on Java Optimization Strategies for Embedded Systems
University of Genova, Italy, 1 April, 2001

