The Guarded Command Language (GCL)

The GCL is intended to be a simple, abstract imperative programming language. The constructs here can easily be mapped into C/C++/Java etc.

Let \(S, S_0, S_1, \ldots \) be statements, \(E \) be an expression, \(B, B_0, \ldots \) be boolean expressions, \(x \) be any identifier and \(T \) be any type. Then, the syntax of statements in GCL is defined as follows:

\[
S ::= \begin{align*}
& \text{skip} & \text{no-op} \\
& x := E & \text{assignment} \\
& S_1; S_2 & \text{sequencing} \\
& \text{if } B_0 \rightarrow S_0 \quad \text{if } B_1 \rightarrow S_1 \quad \cdots \quad \text{if } B_n \rightarrow S_n \quad \text{fi} & \text{selection} \\
& \text{do } B \rightarrow S \quad \text{od} & \text{iteration} \\
& \text{[var } x : T ; S \text{]} & \text{block}
\end{align*}
\]

Notes

- We usually assume that the evaluation of an expression \(E \) has no side-effects, so we disallow, for example, pre-increment and post-increment expressions (\(++x \), \(--x \)) etc.

- Often we use logical operators for and/or in boolean expressions (\(B_1 \land B_2 \), \(B_1 \lor B_2 \)). The semantics of these in GCL is strict unlike the standard C/C++/Java non-strict boolean operators: \&\&, \|\|1. Use an if statement in GCL to get the non-strict semantics.

- The assignment statement is sometimes generalised to allow multiple simultaneous assignments:

\[
x_0, x_1, \ldots, x_n := E_0, E_1, \ldots, E_n
\]

which means: evaluate each of \(E_0, E_1, \ldots, E_n \) and then assign the resulting values to \(x_0, x_1, \ldots, x_n \) respectively.

- The if statement above is somewhat generalised - a mix of a normal if and a case statement. The standard if/else construct is represented by:

\[
\text{if } B_0 \rightarrow S_0 \quad \text{if } \neg B_0 \rightarrow S_1 \quad \text{fi}
\]

and the simple if/then construct (i.e. with no else) is

\[
\text{if } B_0 \rightarrow S_0 \quad \text{if } \neg B_0 \rightarrow \text{skip} \quad \text{fi}
\]

- Our version of the if statement is intended to be deterministic, in that we test each of \(B_0, B_1, \ldots, B_n \) in turn. It is also possible to define a version of if that simply executes one of the \(S_i \) corresponding to a true \(B_i \).

- You will often see the iteration construct generalised to look like the if statement; for example:

\[
\text{do } B_0 \rightarrow S_0 \quad \text{do } B_1 \rightarrow S_1 \quad \cdots \quad \text{do } B_n \rightarrow S_n \quad \text{od}
\]

meaning: on each iteration, find the first \(B_i \) that’s true, and execute the corresponding \(S_i \); the loop terminates when none of the \(B_i \) are true. Since this is pretty much the equivalent of putting an if inside our version of the do loop (and since it’s not often used), we’ll stick with the simpler version above.

References

All of the following are in section 005.1 of the NUIM library:

- Programming : the derivation of algorithms by Anne Kaldewaij
- Program derivation : the development of programs from specifications by Geoff Dromey
- The science of programming by David Gries
- A discipline of programming by Edsger Wybe Dijkstra
Hoare Triples

The meaning of a triple of the form: \(\{P\} S \{Q\} \) is that:

All executions of \(S \) starting in a state satisfying \(P \) will terminate in a state satisfying \(Q \).

While we will be using this to prove programs correct, it is also usable as a mechanism for defining the formal semantics of a programming language.

Programming Rules

We assume in what follows that none of the expressions throws an exception when evaluated.

- **no-op**
 \(\{P\} \text{skip} \ {Q} \) is equivalent to \((P \Rightarrow Q) \)

- **assignment**
 \(\{P\} x := E \ {Q} \) is equivalent to \((P \Rightarrow Q[x := E]) \)

- **sequencing**
 \(\{P\} S; T \{Q\} \) is equivalent to saying that:

 a predicate \(R \) exists such that \(\{P\} S \{R\} \) and \(\{R\} T \{Q\} \)

- **selection**
 \(\{P\} \text{if} B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1 \mid \cdots \mid B_n \rightarrow S_n \ \text{fi} \ \{Q\} \) is equivalent to:

 \(P \Rightarrow (B_0 \lor \ldots \lor B_n) \) and

 \(\forall i : N \{0 \leq i \leq n \cdot (P \land \neg(B_0 \land \ldots \land B_{i-1}) \land B_i) \} S_i \{Q\} \)

- **iteration**
 If there exists a loop invariant \(P \) such that:

 (i) \((P \land B) \ S \ (P) \)

 (ii) \((P \land \neg B) \Rightarrow Q \)

 and there is some integer function \(t \) such that:

 (iii) \((P \land B) \Rightarrow (t \geq 0) \)

 (iv) \(\{P \land B \land t = c\} S \ {P \land (t < C)} \)

 then:

 \(\{P\} \text{do} \ B \rightarrow S \text{ od} \ \{Q\} \)

- **block**
 \(\{P\} \text{[var} \ x : T; S \] \ \{Q\} \) is equivalent to \(\{P\} S \ \{Q\} \)

 provided that \(x \) does not occur free in either \(P \) or \(Q \).

Logical Rules

- **No Miracles:**

 \(\{P\} S \{false\} \) is equivalent to \((P \iff false) \)

- **You can always strengthen a precondition:**

 \((P_0 \Rightarrow P) \) and \(\{P\} S \{Q\} \) implies \(\{P_0\} S \{Q\} \)

- **You can always weaken a postcondition:**

 \(\{P\} S \{Q\} \) and \((Q \Rightarrow Q_0) \) implies \(\{P\} S \{Q_0\} \)

- **Putting two postconditions together:**

 \(\{P_1\} S \{Q\} \) and \(\{P_2\} S \{Q\} \) is equivalent to \(\{P_1 \lor P_2\} S \{Q\} \)

- **Putting two preconditions together:**

 \(\{P\} S \{Q_1\} \) and \(\{P\} S \{Q_2\} \) is equivalent to \(\{P\} S \{Q \land Q_2\} \)

- **Hiding a variable**

 If \(P \) is some predicate that uses some local variable \(x \),

 then you can always “hide” this variable by existentially quantifying it.

 Thus \(P \) can be changed to \(\exists x : N \cdot P[x := \hat{x}] \) provided that \(\hat{x} \) is some new variable.