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Abstract: An effective technique for generating instances of a metamodel should quickly and automatically generate

instances satisfying the metamodel’s structural and OCL constraints. Ideally it should also produce quanti-

tatively meaningful instances with respect to certain criteria, that is, instances which meet specified generic

coverage criteria that help the modelers test or verify a metamodel at a general level. In this paper, we present

an approach consisting of two techniques for coverage oriented metamodel instance generation. The first

technique realises the standard coverage criteria defined for UML class diagrams, while the second technique

focuses on generating instances satisfying graph-based criteria. With our approach, both kinds of criteria are

translated to SMT formulas which are then investigated by an SMT solver. Each successful assignment is then

interpreted as a metamodel instance that provably satisfies a coverage criteria or a graph property. We have

already integrated this approach into our existing tool to demonstrate the feasibility.

1 Introduction

A model provides a representation of aspects of a

system. This can include design models such as UML

class or sequence diagrams, or implementation mod-

els, such as source code in a programming language.

A metamodel is a model that is used to describe the

structure of other models, modelling languages or do-

main specific languages. Each instance of a meta-

model is then a model that can be regarded as a test

case. These test cases are important not just for val-

idating a metamodel itself, but also useful for testing

the tools and frameworks that process the models de-

fined by that metamodel such as model transofrma-

tion.

For example, given a domain specific language L,

say, a metamodel would usually define the abstract

syntax and static semantics of the language. A typical

representation of the metamodel would be as a UML

class diagram (using a subset of the constructs) with

constraints specified using the Object Constraint Lan-

guage (OCL). A set of instances of this metamodel

would be programs written in language L, and would

allow language engineers to check that they had spec-

ified the relevant constructs correctly.

A number of approaches and tools have already

provided a way of generating these instances (Ehrig

et al., 2009; González Pérez et al., 2012; Cabot et al.,

2014). However, these instances are not measured

via any criteria. At least, meeting some criteria such

as standard coverage criteria for UML class diagram

would help users to increase their confidence in de-

signing or validating metamodels. Furthermore, users

may also wish to generate instances that possess cer-

tain coverage metrics for other testing purposes such

as using depth of inheritance tree for testing inher-

itance relationships. Thus, naively generating in-

stances from a metamodel without taking account of

coverage criteria or other properties is not very ade-

quate.

This paper addresses the issue of generating meta-

model instances satisfying coverage criteria. More

specifically, this paper makes the following contribu-

tions:

• A technique that enables metamodel instances to

be generated so that they satisfy partition-based

coverage criteria.

• A technique for generating metamodel instances

which satisfy graph properties.

Both two techniques that encode coverage criteria and

graph properties into a set of SMT formulas. These



formulas are then combined with the formulas gener-

ated from our previous work, and solved by using an

external SMT solver (Wu et al., 2013). Each success-

ful assignment for the formulas is interpreted as an in-

stance. We have already automated this process into

a tool to demonstrate the feasibility of this approach.

2 Background

In this section, we briefly review the standard cov-

erage criteria defined for UML class diagram, nota-

tions we use for expressing a metamodel as a graph,

and basic SMT encodings from our previous work.

Formally, we consider all metamodels in this paper as

being presented as UML class diagrams, and repre-

sented as graphs.

2.1 Metamodel Coverage Criteria

A metamodel is a structural diagram and can be de-

picted using the UML class diagram notation. Thus,

the coverage criteria defined for UML class diagram

can also be borrowed for metamodels. In particular,

we focus on the coverage criteria presented in (An-

drews et al., 2003) (Ghosh et al., 2003), especially the

work focused on testing the structural elements of a

UML class diagram. These coverage criteria are stan-

dard criteria for testing a UML class diagram and they

are defined as follows:

• Generalisation coverage (GN) which describes

how to measure inheritance relationships.

• Association-end multiplicity coverage (AEM)

which measures association relationships defined

between classes.

• Class attribute coverage (CA) which measures the

set of representative attribute value combinations

in each instance of class.

AEM and CA are partition-based testing criteria

which means that testing results depend on the choice

of a representative value from each partition (Ostrand

and Balcer, 1988). Therefore, the value domain is

partitioned into several equivalence classes, and each

value from an equivalent class is expected to have the

same results. The partitions can also be decided using

domain knowledge-based partitioning.

For example, to satisfy the CA criterion for the

metamodel in Figure 1, we may assume a user could

choose a representative value of 18 1, and this allows

1A user may choose a different representative value, this
depends on the knowledge about a specific domain.

the attribute age in the abstract class Person to be di-

vided into 3 partitions which are 18 < age, age = 18

and age > 18. The hypothesis is that any single value

from one of the three partitions is expected to have the

same results for all other values from that partition

(Myers and Sandler, 2004). Similarly, to satisfy the

AEM criterion, the binary association (employees) in

the metamodel can also be divided into two partitions:

a Department that has no Manager or a Department

that has multiple Managers. The multiple number

of Managers can be a boundary value chosen by a

user. For example, it can be the maximum value that

an integer can hold or 5 if it is determined by spe-

cific domain knowledge about the model. Finally, to

satisfy the GN criterion, the inheritance relation can

be covered by ensuring the creation of an instance of

Manager.

In this paper, we focus on generating instances

meeting CA and AEM criteria by providing a general

SMT encoding. For GN, it has already been incorpo-

rated into our previous work. Our previous work takes

a metamodel, presented as a class diagram with OCL

constraints, augmented with quantitative constraints,

and uses an SMT solver to generate instances. Our

earlier work also supports a subset of OCL, this in-

cludes: constraints on an attribute, navigation over an

association, and nested quantifiers over a collection of

instances (Wu et al., 2013). To facilitate the transfor-

mation from class diagrams with OCL constraints to

SMT formulas we use a bounded typed graph as an

intermediate representation.

2.2 Bounded Typed Graphs

Our previous work considered classes in a metamodel

as nodes, and relationships between classes are edges

linking one node to another (Wu et al., 2013). Thus,

we can formally define a graph, namely typed graph

(TG) as: T G = (VT ,ET ), where VT and ET represents

a set of nodes (classes) or edges (associations and in-

heritances).

Each valid instance of a metamodel is also a

graph: G = (VG,EG), where VG is set of nodes (ob-

jects) and EG is set of edges (links), but preserve

extra type information about the classes in a meta-

model. Thus, we now can define a mapping between

two graphs T G and G: type = (typeV , typeE) where

typeV : VG →VT and typeE : EG → ET .

Now, we formally define a bounded typed graph

as: T Gb = (VT ,ET ,b) where b is a bound function

b : VT → Z+ that maps a typed node (non-abstract)

to an integer. This integer specifies an upper bound

of the same typed node that an instance may con-

tain. Therefore, using this bound function, we can



bound our search space to guarantee the termination

for metamodel instance generation.

For example, Figure 1 and 2 show a meta-

model represented as a bounded typed graph and

an instance of it. The bounded typed graph

(metamodel) and graph (model) can be related

with type such that typeV (ComputerScience) =
Department, and typeV (John) = typeV (Willam) =
typeV (Robert) = Manager. Similarly,typeE(e1) =
typeE(e2) = employ.

To generate valid instances from a metamodel, we

form a finite universe based on each bound defined

for a typed node. This includes generating all pos-

sible links based on a particular association (edge)

defined within the bound. We then use correspond-

ing translation rules to encode them into SMT for-

mulas. For example, for the typed graph shown

in Figure 1, we form a finite universe containing

1 Department (ComputerScience) and 3 Managers

(John,William,Robert). For the association employ,

we form an adjacent matrix that describes all possi-

ble connections between Department and Manager.

Each entry in the matrix is an SMT boolean variable

indicating whether a link is selected or not. We then

disjunct each entry in the matrix. The following steps

show this basic translation for the metamodel in Fig-

ure 1 to the SMT formulas:

1. Form a finite universe:

{ComputerScience,John,William,Robert}

2. For association employ, we form an adjacency

matrix:
John William Robert

ComputerScience e1 e2 e3

3. Generate SMT formula: e1 ∨ e2 ∨ e3

The SMT formula captures the meaning of associa-

tion employ: each Department is associated with at

least one of the Mangers. Figure 2 shows an exam-

ple of only e1, e2 and e3 are assigned to be true by an

SMT solver, representing John, William and Robert

are employed by the ComputerScience department.

In this paper, we assume all OCL constraints de-

fined over a metamodel are not conflicted with both

criteria. For example, a representative value of 18 is

chosen for the attribute age, and an OCL constraint is

defined as sel f .age <> 18.

3 Partition-based instance

generation

The main idea for generating instances that sat-

isfying CA and AEM coverage criteria is by adding

Figure 1: An example of a metamodel, represented as a
bounded typed graph. The bounds for Department and
Manager are depicted with a number in a circle on each
class. In this case, they are 1 and 3 for Department and

Manager respectively. No bound is specified for People as
it is an abstract class.

Figure 2: An instance of metamodel in Figure 1. This
instance contains 1 instance of department and 3 instances

of manger.

additional constraints expressed as SMT formulas to

block irrelevant instances during the search. Each

successful assignment is then interpreted as an in-

stance that satisfies the coverage criteria. In the fol-

lowing sections, we show how these constraints can

be expressed as SMT formulas.

For the set of features P in a metamodel, the gen-

eral form of a constraint for each feature Pi in P can

be expressed by:

|Pi|∨

j=1

(Ti =V j)∧Fi

where

• |Pi| denotes the total number of partitions of a fea-

ture Pi.

• Ti is a partition switch, determines when a partic-

ular partition is to be switched on or off based on

V j.

• V j indicates the jth partition of a feature Pi. This

implies that the value for V j chosen by an SMT

solver determines which particular partition is se-

lected.

• Fi is a criteria f ormula that is connected with a

partition switch, indicating that when a partition

switch is on the criteria f ormula must be applied.



• When an attribute d is an integer type:
((Ti = 0)∧ (d < p))∨ ((Ti = 1)∧ (d = p))
∨ ((Ti = 2)∧ (d > p))

• when an attribute d is a boolean type:
((Ti = 0)∧ (d = f alse)) ∨ ((Ti = 1)
∧(d = true))

Figure 3: SMT encoding for partitioning integer and
boolean type attribute.

For different partition-based criteria, ensuring that

the instances generated by the SMT solver achieve

those criteria, depends on criteria formulas in each

constraint. These criteria formulas are captured by

the corresponding SMT encoding, and we elaborate

these encodings in the Section 3.1 and 3.2.

3.1 Partitioning for class attributes

Achieving CA coverage requires that a constraint cov-

ers every partition created for each attribute, and this

is controlled by criteria formula. In other words, the

criteria formulas determine what value is to be as-

signed for an attribute in each instance.

Our current approach supports two types of at-

tributes: integer and booelan, and the SMT encodings

for those two types of attribute are presented in Figure

3.

As shown in Figure 3, for each ith attribute in a

class, a partition switch (Ti) is created. For an inte-

ger type attribute, Ti has a value of 0, 1 or 2 indicat-

ing 3 partitions: > p , = p and < p , where p is a

representative value chosen by a user, each partition

has a corresponding criteria formula. If no particu-

lar value is given, a value p = 0 will be chosen as

default. These three partitions are directly expressed

into SMT formulas. Similarly, an SMT encoding for

a boolean type attribute is formed except that the par-

tition switch is either 0 or 1, since a boolean value can

only be true and f alse.

3.1.1 An Example of Attribute-based Partitions

As an example of how a criteria formula interacts with

an attribute, we take the metamodel in Figure 4. In

this metamodel the class called Class has an integer

type attribute methodCount denoting the total num-

ber of methods contained in that class. The default

strategy for an integer type attribute to achieve 100%

is that it uses three partitions: methodCount < 0,

methodCount = 0 and methodCount > 0. However,

this would conflict with the OCL invariant which re-

quires that methodCount must not be a negative num-

ber. Thus, with the default strategy only 66.6666%

Figure 4: A subset of a programming language metamodel.
The number in each circle represents the bound on the
number of instances for a particular class (2 and 3 for

Class and Method respectively).

can be achieved. This is because methodCout < 0

cannot be chosen by the SMT2 solver. In order

to satisfy both OCL invariant and 100% coverage,

we use a different strategy. We choose 3 as the

value to partition methodCount into the three par-

titions: methodCount < 3, methodCount = 3 and

methodCount > 3.

Since the bound for Class in Figure 4 is 2,

we use method1 and method2 to capture attribute

methodCount. Now a partition set P = {P1,P2} is

introduced where the elements P1 and P2 correspond

to the data nodes methodCount1 and methodCount2.

Two partition switches are created, one each for P1

and P2, ranging from 0 to 2 to represent the three pos-

sible partitions (methodCount < 3, methodCount = 3

and methodCount > 3). Each partition switch has a

one-to-one mapping to a criteria formula. Each map-

ping is conjoined with a criteria formula which puts

an extra constraint on each data node. Thus, the final

formula generated is the conjunction of the partition

switches for P1 and P2, where

P1 = ((T1 = 0)∧ (methodCount1< 3))
∨ ((T1 = 1)∧ (methodCount1= 3))
∨ ((T1 = 2)∧ (methodCount1> 3)).

P2 = ((T2 = 0)∧ (methodCount2< 3))
∨ ((T2 = 1)∧ (methodCount2= 3))
∨ ((T2 = 2)∧ (methodCount2> 3)).

The disjunction inside P1 and P2 makes sure that

at least one of the partitions is selected for each in-

stance, and thus at least three instances must be found

by the SMT2 solver to achieve 100% coverage for

class attribute methodCount. Figure 5 shows the out-

put generated by our tool in this case, depicting the

three instances. These three instances show that the

three partitions (methodCount < 3, methodCount = 3

and methodCount > 3) for the integer type attribute

methodCount have been covered.



Figure 5: Three instances are needed to achieve a maximum class attribute coverage for the class Class in the metamodel
from Figure 4.

3.2 Partitioning Associations

Associations between classes are an important part of

a metamodel, and it is desirable that generated in-

stances should also cover these associations for dif-

ferent partitions. The standard coverage criteria for

associations, known as Association-end multiplicity

(AEM), has already been defined in (Andrews et al.,

2003), and in this section we show how this can be

extended to metamodels and incorporated into our ap-

proach.

3.2.1 Partitioning Unidirectional Associations

To implement AEM coverage for unidirectional asso-

ciation, we specify criteria formulas corresponding to

the most frequently used association types defined in

a metamodel based on their multiplicities. These cri-

teria formulas determine how each node (object) in an

instance can be linked to others. For an association,

we form all possible links from typed node to another

based on the bound defined for each class at both as-

sociation ends, and we then apply the corresponding

translation rule to form a set of SMT formulas.

As shown in Section 2.2, we use an adjacent ma-

trix Ere f to represent all possible links for an asso-

ciation re f between class A and B. The rows of the

matrix, denoted as Erow, represent all links from one

instance of A to one instance of B. The columns of the

matrix, denoted as Ecol , represent all links from one

instance of B to one instance of A. Each entry ei, j in

Ere f is an SMT boolean variable.

Figure 6 summarises 4 rules for common unidi-

rectional association patterns. For each rule, there is a

partition switch that is either 0 or 1 indicating that the

association is divided into two partitions. For exam-

ple, the second formula in Figure 6 shows an example

of the translation rules for unidirectional association

pattern 1..∗. This rule states that this association can

be partitioned into two partitions, and each partition is

controlled by a partition switch (T ) and a criteria for-

mula. One partition is that for each instance of A is as-

sociated with exactly one instance of B, and the other

is for each instance of A is linked with a k number

Aux =

b1 b2 b3 b4 b5

a1 0 1 0 1 1

a2 1 0 1 0 1

a3 0 1 1 1 0

Figure 7: An example of a possible assignment found by
an SMT solver for the auxiliary matrix.

of instances of B. In order to know the exact k num-

ber of instances of B that can be associated with an

instance of A, both criteria formulas (associated with

T ) consist of an auxiliary matrix (Aux), where each

element (Auxi, j) in that matrix is an integer SMT vari-

able. Each Auxi, j uses either 1 or 0 to denote whether

a link in Ere f is selected or not. To compute k number

of instances of B that connect to an instance of A, we

add up all Auxi, js in the same row to k. For exam-

ple, Figure 7 shows a possible assignment found by

an SMT solver. Each instance of A is connected to 3

instances of B, since each row in the array is added

up to 3. Once an Auxi, j is chosen to be one, the cor-

responding ei, j in the matrix Ere f is also switched on

(set to true). This indicates that a relevant link is pre-

sented in the instance.

3.2.2 Partitioning Bidirectional Associations

A bidirectional association distinguishes a unidirec-

tional association by counting links in two directions.

Therefore, a translation rule for a bidirectional asso-

ciation constrains both Erow and Ecol . In general, the

translation rules in Figure 8 are similar to unidirec-

tional except that we need to correctly calculate the

possible maximum number of instances of B that an

instance of A connects to.

For example, the second rule in Figure 8 is for a

bidirectional association pattern 1 ↔ 1..∗ 2. This pat-

tern is partitioned into two partitions. One is for each

instance of A is connected to exactly one instance of

B, and one instance of B can only connect to one in-

stance of A. The other partition allows one instance

of A to connect to multiple instances of B. Both parti-

2We use x ↔ y to denote a bidirectional association with
two multiplicities x and y at two association ends



Association Pattern
Translation Rule

(Unidirectional)

(1) ((T = 0) ∧
|Erow|∧
i=1

|Ecol |∨
j=1

¬ei, j)

∨ ((T = 1) ∧ (
|Erow|∧
i=1

(
|Ecol |∨
j=1

(
|Ecol |∧

k=1,k 6= j

¬ei,k)∧ ei, j)))

(2) ((T = 0) ∧
|Erow|∧
i=1

(
|Ecol |

∑
j=1

Auxi, j) = 1)

∨ ((T = 1) ∧
|Erow|∧
i=1

(
|Ecol |

∑
j=1

Auxi, j) = k ∧ |Ecol |> 1)

where 1 < k ≤ |Ecol |

(3) ((T = 0) ∧
|Erow|∧
i=1

|Ecol |∨
j=1

¬ei, j)

∨ ((T = 1) ∧
|Erow|∧
i=1

(
|Ecol |

∑
j=1

Auxi, j) = k ∧ |Ecol | ≥ 1)

where 1 ≤ k ≤ |Ecol |

Figure 6: Translation rules for unidirectional association patterns.

tions are controlled by a partition switch (T ), and have

two different criteria formulas. The first criteria for-

mula specifies the first partition is one instance of A

connects exactly one instances of B, and one instances

of B can only connect to one instances of A.

Since the second partition allows k number of in-

stances of B to be connected to an instance of A, the

criteria formula needs to compute the maximum pos-

sible number of instances of B that an instance of A

can connect to. We compute this number k by calcu-

lating the difference between the bound of B and the

bound of A, and adding 1. Thus, |Erow| specifies b(A)
while |Ecol | gives b(B). To understand how k gets cal-

culated, we consider the following three scenarios:

1. |Ecol | = |Erow|: we have equal number instances

of A and B. Since the multiplicities for two

association-ends (1 and 1..∗) tell us that one in-

stance of A must be connected to at least one in-

stance of B, and one instance of B can only be

linked to one instance of A, this scenario now im-

plies that each instance of A connects each in-

stance of B, vice versa. Thus, the maximum num-

ber of instances of B that an instance of A can con-

nect to is k = 1.

2. |Ecol |> |Erow|: we have more instances of B than

A. We first connect every instance of A to one

instance of B, and every instance of B connects

to only one instance of A. Now, we can add the

remaining number instances of B to one of the ex-

isting connections between instance of A and B,

and counts one link as already having been estab-

lished. Thus, k gives the maximum number of Bs

that one of the instance of A can connect to.

3. |Ecol | < |Erow|: we have less instances of B than

A. However, this scenario violates the constraint

implied by the multiplicities, and is thus ruled out.

In all possible cases the minimum number of in-

stances of B has to be equal to the number instances

of A. Figure 9 shows an example where one instance

of A can connect to at most 3 (here we set k = 3) in-

stances of B.

Similarly, rule 1 in Figure 8 states that when the

first partition is chosen (T is 0), no links encoded by

ei, j are chosen. When the second partition is chosen

(T is 1), only one ei, j is chosen. This indicates that

a link (ei, j) between each instance of A and B is al-

lowed to be presented. Rule 3 for the association pat-

tern (1 ↔ ∗) has a criteria formula that combines the

first criteria formula from the first association-pattern

(1 ↔ 0..1) with the second criteria formula from the

second association-pattern (1 ↔ 1..∗) as they indicate

that either no links are chosen at all or choose exactly

k number of links between an instance of A and B.

3.3 Instance Enumeration

With respect to the coverage criteria presented in pre-

vious sections, we devise a way to reduce the number

of instances during the enumeration. We first group

partition switches that have the same number of parti-

tions, and then apply Formula 1 to block unnecessary

assignments. To group them together, we store ev-



Association Pattern
Translation Rule

(Bidirectional)

(1) ((T = 0) ∧
|Erow|∧
i=1

|Ecol |∨
j=1

¬ei, j)

∨ ((T = 1) ∧
|Erow|∨
i=1

(
|Ecol |

∑
j=1

Auxi, j) = 1)

(2) ((T = 0) ∧
|Erow|∨
i=1

(
|Ecol |

∑
j=1

Auxi, j) = 1)

∨ ((T = 1) ∧
|Erow|∨
i=1

(
|Ecol |

∑
j=1

Auxi, j) = k) ∧ |Erow|< |Ecol |

where 1 < k ≤ |Ecol |− |Erow|+ 1

(3) ((T = 0) ∧
|Erow|∧
i=1

|Ecol |∨
j=1

¬ei, j)

∨ ((T = 1) ∧
|Erow|∨
i=1

(
|Ecol |

∑
j=1

Auxi, j) = k) ∧ |Erow| ≤ |Ecol |

where 1 ≤ k ≤ |Ecol |− |Erow|+ 1

Figure 8: Translation rules for bidirectional association patterns.

Aux =

b1 b2 b3 b4 b5

a1 1 0 0 1 1

a2 0 0 1 0 0

a3 0 1 0 0 0

Figure 9: An example of an assignment found by an SMT
solver for an association between two classes A and B,

where the bounds for A and B are 3 and 5, respectively. In
this example an instance of A is linked with a maximum of

3 instances of B. Since the sum of each column is 1, an
instance of B is only connected to a single instance of A.

ery partition switch in a hash table, indexed by their

number of partitions. Then we apply Formula 1 on

each group of switches. The first sub-formula in For-

mula 1 indicates that every partition switch that has

the same number of partitions must be equal to each

other. This allows us to achieve the coverage criteria

partitions by partitions. The second sub-formula in-

dicates that it is also possible for switches that have

the same number of partitions to have different com-

binations. This allows us to achieve the coverage cri-

teria using a combination of partitions. Finally, we

conjoin all the formulas from each group to have a

combination of partition switches that have different

partitions.

(
n−1∧
i=1

Ti = Ti+1) ∨ (
n−1∧
i=1

Ti 6= Ti+1), where n > 2.

(1)

To understand how this works, please consider the

following example:

Suppose a total of six partition switches

2 T1,T2,T3,T4

3 T5,T6

Table 1: Partition switches are grouped by the number of
partitions

(T1,T2,T3,T4,T5,T6) were created, four of them

(T1,T2,T3,T4) have two partitions and two of them

(T5,T6) have three partitions. We first group those six

partition switches, as in Table 1, by their partitions.

Then we apply Formula 1 to these two groups. This

results in the following formulas:

• f1 = ((T1 = T2)∧ (T2 = T3)∧ (T3 = T4))∨ ((T1 6=
T2)∧ (T2 6= T3)∧ (T3 6= T4))

• f2 = (T5 = T6)∨ (T5 6= T6)
3

We observe these formulas, not every assignment

that makes f1 and f2 satisfiable is possible now. For

example, T1,T2,T3,T4 can have a total of sixteen pos-

sible assignments (T1 ∨ T2 ∨ T3 ∨ T4). However, af-

ter applying Formula 1, only four possible assign-

ments are left. These four possible assignments are

listed in Table 3. The first two assignments satisfy

the first sub-formula of Formula 1, and the remain-

ing two satisfy the second sub-formula. Thus, by

applying Formula 1, we block twelve other possible

assignments. Furthermore, the first two assignments

achieve full coverage via partitions. The last two as-

signments achieve full coverage via a combination of

partitions. Therefore, by enumerating these four pos-

3Note that when there are only two partition switches (Ti

and Tj), we use formula (Ti = Tj)∨ (Ti 6= Tj).



T1 T2 T3 T4

1 1 1 1

2 2 2 2

1 2 1 2

2 1 2 1

Table 2: Four possible assignments for formula f1. Here, 1
and 2 denote two different partitions.

T1 T2 T3 T4 T5 T6

1 2 1 2 3 2

Table 3: One possible assignment for formula f1 and f2.
Here, 1, 2 and 3 denote three different partitions.

sible assignments, we can cover all the partitions for

partition switches (T1,T2,T3 and T4) in two different

ways.

Finally, in order to have a different combination

from partition switches that have different partitions,

we conjoin the two formulas ( f1 ∧ f2) and feed the

entire formula to an SMT2 solver. For example, Ta-

ble 3 shows one possible assignment for all partition

switches (T1,T2,T3,T4,T5,T6).

3.4 An Example of Achieving CA and

AEM Coverage Criteria

To demonstrate partition-based generation, we use a

subset of the Ecore metamodel as depicted in Fig-

ure 10 (Steinberg et al., 2008). This metamodel de-

scribes the relationships among EPackage, EClass,

EAttribute, and EOperation in the Ecore metamodel.

The bound for each non-abstract class is shown as a

number in a circle.

In order to achieve the maximum coverage for

both CA and AEM, the translation rules described in

Section 3 are applied to this metamodel, and result in

a total of 8 instances. Thus, one can conclude that

only 8 instances are needed to achieve the full cov-

erage of CA and AEM for this metamodel. These 8

instances cover a range of combinations from differ-

ent partition switches defined during the translation to

SMT2 formulas. For example, two of the instances in

Figure 11 and 12 show a combination of different par-

titions from different associations and attributes de-

fined in the metamodel.

4 Instance generation using

graph-based constraints

The techniques described in the previous sections

allow coverage criteria to be achieved for the class

attributes and associations in a metamodel. As such

they are standard coverage criteria for UML class di-

agrams, and may be applied to any metamodel. How-

ever, it is reasonable to suppose that a user will have

more sophisticated requirements, and wish to direct

the generation of instances so as to satisfy other con-

straints. For this reason, we present a new technique

that allows instance generation to meet the following

graph-based properties.

4.1 Directed Acyclic Graphs

Directed acyclic graphs (DAGs) are commonly used

in many areas, for example, the topology of a net-

work, data flow diagrams, etc. Regarding metamod-

eling, one may require a program to have a particular

depth of inheritance tree, or a particular call depth.

Thus, to ensure the generation of a DAG from a re-

flexive association in a metamodel, we only enable

the elements that are in the upper triangle of the ad-

jacency matrix, and disable the rest of the ei, js in the

matrix, breaking all the cycles in the graph.

4.2 Sharing and Non-Sharing Nodes

Since we use an adjacency matrix to capture all pos-

sible links (within the bounds) for an association, we

can also manipulate this matrix to form new formu-

las that can express how links are connected to each

other. In particular, we can facilitate the specifica-

tion of graph-based constraints by the user that will

direct instance generation. In order to facilitate in-

stance generation with such properties, we introduce

the following new properties.

In a graph, some nodes may have all their out-

going edges going to the same node and some may

not. We consider these nodes having sharing and non-

sharing properties. Sharing and non-sharing proper-

ties can only be applied to a non-reflexive association.

Before we precisely define sharing and non-sharing

properties, we first define two functions ( f and g).

1. Function f is an out-adjacency function (Ad j+)

that computes a set of nodes from all out-going

edges of a particular node. f : VG → 2VG , where

VG is the set of nodes, and 2VG is the power set of

VG.

2. Function g is an in-adjacency function (Ad j−) that

computes a set of nodes from all in-coming edges

of a particular node. g : VG → 2VG , where VG is the

set of nodes, and 2VG is the power set of VG.

With functions f and g, we are able to calculate a

set of nodes based on their in-coming and out-going

edges. Now we can use these two functions to define

the following sharing and non-sharing properties:



Figure 10: A subset of the Ecore metamodel showing the relationship between EPackage, EClass, EAttribute, ERe f erence
and EOperation, where a bound for each non-abstract class is depicted as a number in a circle.

Figure 11: In this generated instance of the Ecore metamodel of Figure 10, at least one EClass instance is associated with a
maximum number of EAttribute, EOperation and ERe f erence instances.

Figure 12: In this generated instance of the Ecore metamodel of Figure 10, each EClass instance is associated with a
maximum number of other instances (EAttribute, EOperation and ERe f erence) according to the bound defined on each

class in metamodel.



Figure 13: An example of sharing nodes in a graph

• A set of nodes L = {N1,N2, ...,N j}, where |L| ≥
2, are said to be strong sharing nodes iff

(
j⋂

i=1

f (Ni)) 6= /0, ∀Lx ∈
j⋃

i=1

f (Ni) and g(Lx)⊆ L.

• A set of nodes L = {N1,N2, ...,N j}, where |L| ≥ 2,

are said to be weak sharing nodes iff (
j⋂

i=1

f (Ni)) 6=

/0, ∃Lx ∈
j⋃

i=1

f (Ni) and L ⊂ g(Lx).

• A set of nodes L = {N1,N2, ...,N j}, where |L| ≥ 2,

are said to be strong non-sharing nodes iff ∀Li ∈
L, | f (Ni)|= 1 and f (Na)∩ f (Nb) = /0, where 1 ≤
a < b ≤ j.

• A set of nodes L = {N1,N2, ...,N j}, where |L| ≥ 2,

are said to be weak non-sharing nodes iff ∀Ni ∈ L,

| f (Ni)|> 1 and f (Na)∩ f (Nb) = /0, where 1≤ a<
b ≤ j.

To understand these definitions, we use two exam-

ples to illustrate sharing and non-sharing properties.

In Figure 13, a solid line is used to denote the exist-

ing links and a dashed line is used to represent pos-

sible links. The set of nodes n1 and n2 (with solid

lines) are considered as strong sharing nodes since

both their out-adjacency functions return n3 ( f (n1) =
f (n2)= {n3}), and n3’s in-adjacency function returns

n1 and n2 (g(n3) = {n1,n2}) . In other words, n3

can only be accessed by both n1 and n2 and no other

nodes. However, if a link from n4 to n3 is connected,

then the set of nodes n1 and n2 are regarded as weak

sharing nodes because n3’s in-adjacency function this

time returns three nodes: g(n3) = {n1,n2,n4}. Thus,

the set of nodes n1, n2 and n4 are considered as

strong sharing nodes ( f (n1)∩ f (n2)∩ f (n4) = n3),
and g(n3)⊆ {n1,n2,n4}).

Similarly, in Figure 14 the solid lines between

nodes n1, n2 and n4, n5 make the set of nodes n1 and

n4 strong non-sharing nodes in the graph (| f (n1)| =
| f (n4)| = 1, and f (n1)∩ f (n4) = /0). If n1 also con-

nects to n3 (a possible link), and n4 connects to n6,

then the set of nodes n1 and n2 are weak non-sharing

nodes, since they all connect to more than one other

node (| f (n1)|= | f (n4)|> 1).

Figure 16 shows a matrix for capturing an asso-

ciation in a metamodel. Suppose we want to give

strong sharing property to a set of nodes L = {a1,a4}.

Figure 14: An example of non-sharing nodes in a graph

a1 a2 a3 a4

b1 e1,1 e1,2 e1,3 e1,4

b2 e2,1 e2,2 e2,3 e2,4

b3 e3,1 e3,2 e3,3 e3,4

Figure 16: An example of matrix for illustrating sharing
and non-sharing properties. In this example, each ei, j is

represented as a link from a j to bi.

This indicates that at least one of the b′s must be

shared by them. For example, e1,1 and e1,4 could be

selected at the same time, or e2,1 and e2,4 are cho-

sen ((e1,1 ∧ e1,4)∨ (e2,1 ∧ e2,4)). This represents that

a1 and a4 they both have out-going edges to b1 or

b2. This is captured by the first sub-formula of rule

(2) from Figure 15. Now, suppose e1,1 and e1,4 are

selected, then anything between them cannot be se-

lected otherwise they are not strong sharing nodes.

Thus, e1,2 and e1,3 are disabled when e1,1 and e1,4

are selected ((e1,1 ∧ e1,4) → (¬e1,2 ∧¬e1,3)). This is

captured by the second sub-formula of rule (2) from

Figure 15.

Similarly weak sharing, strong and weak non-

sharing properties are captured in rule (1) (3) and (4)

in Figure 15. In each formula listed in Figure 15, we

use L to denote a set of nodes to be assigned with one

of the four properties, and |L| ≥ 2. For weak shar-

ing property, the Formula is similar to the Formula

for strong sharing property except that we drop the

second sub-formula. Instead, we add a formula that

states that at least one of the a′s not specified in L can

be linked to the b′s. The formula for the strong non-

sharing property indicates that only one link can be

selected according to specified nodes in L. It indicates

that as long as one link is selected all other links in the

same row and column are switched off. Similarly, for

weak non-sharing property, the formula indicates that

there could be multiple links selected according to a

specific node in L. This indicates that a node can con-

nect to at least one or more nodes. Since connections

to multiple nodes are allowed, all other nodes in the

same row must be disabled.

4.3 An Example of Achieving

Graph-based Constraints

This section demonstrates an example of achieving

graphs-based constraints via using the techniques de-



Property SMT Formula

(1) Weak sharing
|Erow|∨
i=1

|L|∧

k=1

ei,Lk
∧

|Erow|∧
i=1

|Ecol |∨

j=1, j/∈L

ei, j

(2) Strong sharing (
|Erow|∨
i=1

|L|∧

k=1

ei,Lk
) ∧ (

|Erow|∧
i=1

(
|L|∧

k=1

ei,Lk
→

|Ecol |∧

j=1, j/∈L

¬ei, j))

(3) Strong non-sharing (
|L|∧

k=1

|Erow|∨
i=1

(
|Erow|∧

j=1, j 6=i

¬e j,k)∧ ei,Lk
) ∧ (

|Erow|∧
i=1

(
|L|∧

k=1

ei,Lk
→

|Ecol |∧

j=1, j/∈L

¬ei, j))

(4) Weak non-sharing (
|L|∧

k=1

|Erow|∨
i=1

ei,Lk
) ∧ (

|Erow|∧
i=1

(
|L|∧

k=1

ei,Lk
→

|Ecol |∧

j=1, j/∈L

¬ei, j))

Figure 15: The SMT formulas for capturing sharing/non-sharing properties.

Figure 17: A subset of the Java metamodel represented as a
bounded graph representing relationships between classes

and their members, which are fields or methods.

scribed in Section 4. This example uses a small sub-

set of Java programming language metamodel as de-

picted in Figure 17. This metamodel represents the re-

lationship (a field can be accessed by multiple meth-

ods, and a method can call multiple methods) be-

tween Class, Method and Field. From this meta-

model, instances of programs with a particular value

of a cohesion metric (LCOM) can be generated (Chi-

damber and Kemerer, 1994), and with a particular

depth of the call graph (Li and Henry, 1993).

LCOM is a structural class cohesion metric that

measures the number of disjoint components in a

graph, where each node represents a method and an

edge indicates that two methods share at least one

common field. In order to generate instances, an

SMT2 solver is used to compute how the graph should

be connected according to the bounds defined over the

metamodel.

Thus, an SMT2 solver is used for finding assign-

ments for the constraints encoded in Formula 2:

(
c∧

k=1

|Method|∨

j=1

m j = k)∧ (

|Method|∧

j=1

1 ≤ m j ≤ c) (2)

Here, c is the desired value for the LCOM metric

specified by the user, for example LCOM should be

evaluated to 3 that means a graph has 3 connected

components. Thus, c denotes the number of con-

nected components. We use an SMT2 integer vari-

able, m j to encode a method. The possible values of

an m j can get indicates that whether the correspond-

ing method is connecting to another.

If two methods are assigned the same integer, this

indicates that they are connected in the graph (one

connected component), otherwise they are discon-

nected. Note that we require that c varies between

1 and the number of methods bounded by |Method|
inclusive, that is because the connection of a list of

methods varies from not being connected at all to be-

ing fully connected.

To understand how Formula 2 works, we use the

following example.

Suppose we have five methods (method1, method2,

method3, method4, and method5), and we would

like them to form a graph with three connected com-

ponents. That means three different integer values

should be assigned to those methods to indicate three

different connected components (c = 3). Any two

methods get assigned to the same integer means that

they are connected. Now, we expand Formula 2, we

get the following terms:
((m1 = 1)∨ (m2 = 1)∨ (m3 = 1)∨
(m4 = 1)∨ (m5 = 1)) ∧
((m1 = 2)∨ (m2 = 2)∨ (m3 = 2)∨
(m4 = 2)∨ (m5 = 2)) ∧
((m1 = 3)∨ (m2 = 3)∨ (m3 = 3)∨
(m4 = 3)∨ (m5 = 3)) ∧
(1 ≤ m1 ≤ 3)∧ (1 ≤ m2 ≤ 3)∧ (1 ≤ m3 ≤ 3) ∧
(1 ≤ m4 ≤ 3)∧ (1 ≤ m5 ≤ 3)

In the expanded formulas above each m j denotes

a method, for example m1 denotes method1. Now ob-



Figure 18: One of the successful assignments for the
formula for deciding how the graph is connected, based on
the bounds defined on metamodel in Figure 17 and given a
desired LCOM value of 3. Here m1 through m5 represent
methods, and the numbers 1 through 3 represent three sets

in a partition of these methods.

serve these formulas, we note that three of the m′
js can

be assigned with value of 1,2 and 3. Because of the

additional constraints 1 ≤ m j ≤ 3, this guarantees that

the remaining two m′
js share some integers with other

m′
js , since there are only 3 possible integer values to

be assigned to 5 methods.

One possible solution (Note that one might get a

different solution, this depends on the SMT solver.)

derived from Formula 2 is shown in Figure 18, where

m2, m3 and m4 are assigned with the same value of

3, indicating that method2, method3 and method4

are connected together in the graph. That means that

these three methods share at least one common field.

On the other hand, m1 and m5 are assigned values that

are different from others. This specifies that method1

and method5 are disjoint from other methods. There-

fore, a graph with an LCOM value of 3 has been con-

structed, and we can enumerate each successful as-

signment for this formula to get every possible graph

with this LCOM value.

Now that how the graph is structured for an

LCOM value of 3 is known, sharing and non-

sharing formulas on the five methods can be ap-

plied. More specifically, the column can be lo-

cated from the 2D-array capturing the access asso-

ciation, and two lists are constructed, one each for

the sharing and non-sharing nodes. In this example,

we simply use weak sharing formulas on method2,

method3 and method4, and strong non-sharing for-

mulas on method1 and method5. As Figure 19 shows,

method2, method3 and method4 all have access to

f ield3, while method1 and method5 have accesses to

f ield2 and f ield4 respectively.

To generate the call graph with a depth of 3 for

Method in the metamodel in Figure 17, we generate

a directed acyclic graph (Section 4.1) for the asso-

ciation calls. Figure 19 shows the series of method

calls giving a depth of 3: method1 calls method4 and

method4 calls method5 which calls method3.

5 Evaluation

In this section, we first briefly describe a tool that

is extended with partition-based and graph-based in-

stance generation, then we present our initial evalua-

tion, and finally we discuss its capabilities and limita-

tions.

5.1 Implementation

We have implemented and integrated the partition-

based and graph-based criteria described in this pa-

per in our existing tool, ASMIG 3. ASMIG takes in

a metamodel in ecore format (with a bound defined

for each class in that metamodel) and an OCL file,

outputs all consistent models (if it has any) within

those bounds. To enumerate “all possible” instances,

ASMIG blocks all previously generated instances by

adding the negation of satisfiable assignments found

by an SMT solver one at a time until no more satisfi-

able assignment is possible. ASMIG is purely written

in Java and it consists of about 22000 (excluding UI)

lines of code (LOC) with about 8300 LOC dedicated

to the techniques described in this paper. To construct

ASMIG, we re-engineered a parser extracted from the

USE tool (Kuhlmann et al., 2011), adapting it to use

as our front-end for reading the OCL invariants. The

current version of ASMIG uses Z3 as its default back-

end SMT solver (De Moura and Bjørner, 2008), sup-

ports generating formulas in SMT2 standard (Barrett

et al., 2010).

5.2 Results

The evaluation for both partition-based and graph-

based criteria is performed on a machine with a

2.93GHz Intel Core 2 Duo and 4GB memory, the re-

sults and time are recorded in Table 4 and 5. More de-

tailed results, along with further examples, are avail-

able at our website8.

Table 4 shows the results for partition-based cri-

teria based on a total of 20 metamodels. For each

metamodel, we record translation time and average

instance generation time. These recorded time along

with the size of metamodels can be seen in Figure20.

From Table 4 and Figure 20, we note that the transla-

tion time is not affected by a single factor. In fact,

3available at: https://github.com/NUIM-FM/asmig
4Available at: http://www.emn.fr/z-info/atlanmod/
5From Eclipse Modeling Framework Royal and Loyal

Example Project
6Extracted from Eclipse Modeling Framework
7Available at: http://www.jamopp.org/
8http://www.cs.nuim.ie/∼haowu/ASMIG/Results/



Figure 19: A generated instance of the Java metamodel from Figure 17. This Java program has an LCOM value of 3, as well
as a call-graph depth of 3.



it is affected by three factors: the size of a meta-

model, the number of associations and the number of

attributes. A smaller metamodel with more associ-

ations and attributes, ASMIG might need more time

for translation than a larger metamodel with less asso-

ciations and attributes. This is because each associa-

tion and attribute needs to be additionally constrained

in order to achieve partition-based coverage crite-

rion. For example, the metamodel HT ML has more

classes than the UML2 Class Diagram metamodel,

but ASMIG spends much more time on translating the

UML2 Class Diagram metamodel than HTML be-

cause the UML2 Class Diagram has 26 associations

and 46 attributes while HT ML only has 7 associations

and no attributes. Therefore, translation time from a

metamodel to formulas depends on its size, associa-

tions and attributes.

To evaluate scalability, we select a variety of

metamodels such as general purpose programming

languages, domain specific languages, ranging from

small size to large size. We believe these metamod-

els are good representatives in terms of their usage in

different domains. To effectively evaluate partition-

based technique, we change ASMIG’s internal con-

figuration in order to set a large enough upper bound

for each non-abstract class, this would guarantee each

non-abstract class to be initialised at least once and

up to that upper bound. The total bounds column in

Figure 4 shows the sum of each bound for every non-

abstract class in the metamodel. The total instances

column indicates the number of instances generated

in order to achieve full coverage for the CA and AEM

criteria. For the class attributes coverage criteria (CA),

ASMIG allows users to choose a representative value,

but for general purpose, we choose the default value 0

to obtain three partitions (< 0, = 0 and > 0) for each

integer type attribute. For the association-end multi-

plicity criteria (AEM), we set 3 instances as an upper

bound for each association that has a multiplicity of

∗. We choose this upper bound because it is easy for

us to distinguish this from a one-to-one multiplicity

for both association ends.

For graph-based instance generation, we have

evaluated ASMIG against different bounds for each

metric to measure its scalability. The graph in Fig-

ure 21 shows that the translation time is affected by

the bounds defined. In general, the translation and

average finding time is proportional to the size of

bounds allocated on both association-ends. However,

ASMIG tries to utilise cache mechanism as much as

possible to prevent formula regeneration, and this de-

pends on a specific association defined in a meta-

model.

Table 5 shows the results for ASMIG to gener-

CK Metric Total Time in ms

Metric Value Bound Translate Finding

WMC

2 3 446 31

3 6 444 59

5 10 461 120

DIT

2 3 456 53

4 6 457 54

8 10 460 180

NOC

2 3 469 64

4 6 481 65

8 10 489 180

LCOM

2 3 476 63

2 6 470 42

3 10 484 138

Table 5: Results of generating 100 instances which satisfy
constraints based on four of the CK metrics. Each metric

was constrained using three values, and the calculated
bounds are shown, as well as two measures of the time

taken to generate appropriate instances.

ate 100 instances of a subset of Java programming

language metamodel based on specific bounds for

four different CK metrics (Chidamber and Kemerer,

1994). We choose this metamodel because the graph-

based criteria focus on a specific association such as

an inheritance relationship must be a directed acyclic

graph. We choose CK metrics because these metrics

possess good graph properties.

For simplicity, we consider the complexity of

WMC as the sum of the methods in a class. To cor-

rectly calculate LCOM value, we first use an SMT

solver to select a list of nodes to be connected, then

apply sharing/non-sharing properties to those nodes.

There are a number of possible definitions of the

LCOM metric which are supported by ASMIG. We

choose LCOM3 here which represents the methods

accessing common fields as a connected graph. Thus,

a value of 2 for LCOM3 means 2 connected graphs

with respect to method accessing fields. For each of

the four metrics in Table 5 we specified three different

metric values (shown in the values column) causing

the calculated bounds to vary between 3 to 10. For

DIT, we directly apply the method described in Sec-

tion 4.1. For NOC, we first fix the number of links

between two nodes via an auxiliary matrix as shown

in Section 3.2, then apply strong sharing properties to

these nodes. All the detailed instances generated for

above metrics are available at our website 8.

5.3 Discussion

Capabilities. (1) The partition-based technique in

section 3.1 and section 3.2 allows one to achieve a

full equivalence partitioning testing by iteratively se-
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Number of Total Time in ms

Metamodel Classes Assocs Attribs Bounds Instances Translation Avg Finding

Ant 5 48 27 0 56 4 673ms 71ms

Company 6 7 6 6 13 12 487ms 36ms

C++ 1.0 5 16 4 5 20 8 499ms 22ms

Java 9 233 104 1 183 8 971ms 2629ms

Royal&Loyal 7 15 41 2 40 8 535ms 65ms

Finite State Ma-

chine 1.0 5
16 7 0 16 4 485ms 30ms

Ecore 8 22 40 0 31 4 585ms 195ms

UML2 Class Dia-

gram 8
40 26 46 35 8 721ms 966ms

Web App: Concep-

tual Model5
19 24 0 25 4 505ms 45ms

KM3 5 12 7 0 16 4 490ms 40ms

Business Process

Model 5
26 15 0 28 4 511ms 63ms

CPL1.0 5 32 16 0 38 4 513ms 90ms

GraphML 5 11 13 2 20 8 496ms 53ms

Hierarchical State

Machine 1.0 5
15 16 0 33 4 510ms 72ms

Maven(maven.xml)

0.3 5
58 32 0 65 4 539ms 108ms

MoDAF0.1 5 48 35 0 70 4 531ms 76ms

QualityofService 5 24 26 0 37 4 502ms 69ms

DOT1.0 5 26 20 0 21 4 512ms 50ms

BibTexML1.2 5 28 4 0 18 4 510ms 28ms

HTML 5 59 7 0 59 4 673ms 1562ms

Table 4: Results of 20 metamodels for evaluating partition-based instance generation, and all instances were automatically
generated by the ASMIG tool.

lecting a different representative value. Equivalence

partitioning testing is considered as one of the im-

portant techniques for testing object oriented system

(Binder, 1999) (Gutjahr, 1999). For CA, equivalence

partitioning testing for a valid range of 0..100 can be

achieved via two steps. Firstly, pick 0 as the rep-

resentative value covering < 0, = 0 and > 0, then

choose 100 covering < 100, = 100 and > 100. Sim-

ilarly, for AEM, one can set a larger bound just out-

side the boundary (the boundary can be decided by

using knowledge of the problem domain) for each

class at two ends of an association. (2) Having in-

stances meeting graph-based constraints provides a

way of analysing or measuring a software system

such as generating a control flow graph via specify-

ing sharing/non-sharing properties on specific nodes.

Viewing a metamodel or an instance as a graph brings

one kind of diversity of instance generation for those

who require models that are based on particular shape

of a graph.

Limitations. (1) Currently, our SMT formulas do not

fully support a graph criteria that constrains over more

than a single association. For example, metrics like

response for a class (RFC) or coupling between ob-

ject classes (CBO) typically constrain over two dif-

ferent associations. However, this can be avoided via

a sequence of SMT solving, and use the assignment

from previous successful solving as the input to the

next SMT solving. For example, for RFC, one could

fix a set of methods first, then use SMT solver to

distribute the number of methods directly called by

that set of methods, finally apply sharing/non-sharing

properties to those methods are selected from previ-

ous SMT solving. (2) We admit that both partition-

based and graph-based criteria may not be sufficient

enough to fulfill users’ expectation of the diversity of

instances. One may certainly require a different crite-

ria for validating a metamodel based on different test-

ing strategies. CA and AEM criteria both are part of

standard coverage criteria for UML class diagrams,

and graph-based criteria provides a way of generating

instances based on describing graph properties. With



both kinds of instance generation, we can at least pro-

vide a certain degree of confidence in designing, test-

ing or validating a metamodel. In the future, we will

investigate a more general approach that would allow

language engineers to describe customised coverage

criteria via a simple domain specific language.

6 Related work

One of the challenges with metamodelling is that

it is difficult to instantiate a metamodel since in-

stances have to conform to both the metamodels’

structural constraints and additional semantic con-

straints written in a language such as OCL. Although

much recent research has endeavoured to instanti-

ate metamodels using different approaches and tech-

niques (Anastasakis et al., 2007; Ehrig et al., 2009;

González Pérez et al., 2012; Macedo and Cunha,

2013), the ability to coverage criteria directed in-

stance generation is still quite limited.

One of the earliest approaches to generating pro-

grams using coverage criteria is Purdom’s algorithm,

based on generating programs that cover all the rules

in a context free grammar (CFG) (Purdom, 1972).

However, a metamodel captures more than a CFG be-

cause the static semantics can be defined, e.g. using

extra OCL constraints. Though work has been done

on extending Purdom’s approach to attribute gram-

mars (Harm and Lämmel, 2000), thus incorporating

semantic constraints, the core generation framework

is still based on rule coverage, and more general cov-

erage criteria are not considered.

The most closely related research to our work is

the model finding tool Alloy (Jackson, 2002). Alloy

translates a relational specification into formulas for

a SAT solver, and each successful assignment for the

SAT instances can be mapped back to the problem

domain, and much of the research built around Al-

loy facilitates instance generation. In previous work

we have used Alloy to generate instances of meta-

models using the Eclipse Modeling Framework, and

then applied test-suite reduction techniques in order to

pick out instances contributing to a coverage criteria

(McQuillan and Power, 2008). However much of our

work (and that of others) was limited by the capabil-

ities of Alloy, particularly in relation to coverage ori-

ented generation and quantitative constraints (Anas-

tasakis et al., 2007; Bordbar and Anastasakis, 2005;

Kuhlmann et al., 2011; Sen et al., 2009; Kuhlmann

and Gogolla, 2012).

The latest version of Alloy employs a powerful

relational engine called kodkod (Torlak and Jackson,

2007), which outperforms previous versions of Alloy

on large-scale problem solving. However, a major

disadvantage is the dependence on SAT solvers which

perform poorly when dealing with numeric quanti-

ties, using calculations such as addition, multiplica-

tion, comparison, etc.

Graph grammars offer a natural way to describe

the instance generation process and so have an advan-

tage for generating metamodel instances (Ehrig et al.,

2009; Hoffmann and Minas, 2011). Though graph

grammars deal with graphs, it is more difficult to user

their grammars to quantify a set of nodes than using

first-order logic. Parsing a graph is expensive because

graph matching is not always deterministic. Thus, the

cost of using graph grammars to produce instances

that meet graph-based constraint could be very high.

Cabot et al. propose a detailed systematic pro-

cedure that reduces the problem of UML class di-

gram instantiation to a Constraint Satisfaction Prob-

lem (CSP) (González Pérez et al., 2012; Cabot et al.,

2008; Cabot et al., 2014). The main advantage is that

CSP provides a high-level language so that a partic-

ular constraint problem is programmable. Our ap-

proach distinguishes with theirs by reducing it to an

SMT problem. SMT encoding provides a much better

expressiveness power than SAT, and it is more natu-

ral to encode a problem into SMT formulas. Much

research has been made in improving SMT solvers’

expressiveness and performance (Barrett et al., 2010;

De Moura and Bjørner, 2008; Barrett et al., 2011;

Cimatti et al., 2013), which make them more suit-

able for complicated tasks such as verification, test

case generation, program synthesis, etc (Büttner et al.,

2012; Felbinger and Schwarzl, 2014; Tillmann and

De Halleux, 2008; Gulwani, 2010).

Soeken et al. encode a UML class diagram in a set

of operations on bit-vectors which can be solved by

SMT solvers using bit-vector theory (Soeken et al.,

2010). A successful assignment for each bit-vector

can be interpreted as an instance of the UML class di-

agram. They also propose an approach to encode a

subset of OCL constraints as bit-vectors, and provide

a list of corresponding mappings between OCL col-

lection data types and bit-vector operations (Soeken

et al., 2011). However, their approach does not

support structural constraints on the metamodel, es-

pecially the quantitative constraints for associations.

Furthermore, it is unlikely to use their approach to

generate instances satisfying graph-based constraints

because they do not represent a metamodel as a graph

and provide no tool support.



7 Conclusion

In this paper, we have presented a new approach to

improve metamodel instance generation by consider-

ing two kinds of coverage criteria: standard coverage

criteria defined for UML class diagram and graph-

based criteria. Both kinds of criteria are translated

to SMT formulas and solved using an external SMT

solver. We have already implemented and integrated

our techniques into a tool, and results reveal both its

capabilities and limitations. In the future, we plan to

improve expressiveness of graph properties to allow

users to be able to describe more complicated graph

shapes. We will also investigate a way of detecting

the conflicts between coverage criteria and OCL in-

variants defined for a metamodel.
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