
General Video Game Playing by means of
Evolution-based Rolling Horizon Algorithm

Oxana Gorshkova

Dissertation 2020

DEPEND Erasmus Mundus Joint MSc in Advanced Systems Dependability

Department of Computer Science,

Maynooth University,

Co. Kildare, Ireland.

A dissertation submitted in partial fulfilment

of the requirements for the

Erasmus Mundus MSc in Advanced Systems Dependability

Head of Department: Dr Joseph Timoney

Supervisor: Dr Edgar Galvan

Date: 22 June, 2020

Contents

Declaration .. 4	
Acknowledgements .. 5	
Abstract ... 6	
Chapter 1: Introduction .. 7	

1.1	 Topic .. 7	
1.2	 Motivation ... 7	
1.3	 Problem statement ... 7	
1.4	 Research question .. 8	
1.5	 Approach and Metrics ... 8	

Chapter 2: Background ... 9	
2.1	 General Video Game Playing .. 9	
2.2 	 General Video Game AI Framework .. 9	
2.3	 Evolutionary Algorithms ... 11	
2.4	 Shift Buffer Enhancement ... 12	
2.5	 Statistical Tree Enhancement .. 13	

Chapter 3: Shortcomings of Vanilla Rolling Horizon Evolutionary Algorithm 15	
Chapter 4: Statistical Tree Seeding with Replacement of Individuals 16	

4.1	 Population Seeding from the Statistical Tree .. 16	
4.2	 Replacement of Individuals ... 17	

Chapter 5: Development of Intelligent Agents .. 19	
5.1	 Design and Implementation .. 19	
5.2	 Software Verification .. 20	
5.3	 Collection and Processing of Output Data .. 21	

Chapter 6: Evaluation ... 22	
6.1	 Experimental Setup ... 22	

6.1.1	 Games ... 22	

6.1.2	 Controllers ... 23	

6.2	 Results and Discussions .. 23	
Chapter 7: Conclusion ... 27	

7.1	 Contribution to the state-of-art .. 27	
7.2	 Future Work .. 27	

References ... 28	
Appendix A ... 30	
Appendix B ... 31	
Appendix C1 ... 33	

Appendix C2 ... 34	
Appendix C3 ... 35	
Appendix C4 ... 36	
Appendix D ... 37	

Declaration
I hereby certify that this material, which I now submit for assessment on the program of study
as part of Erasmus Mundus Joint MSc in Advanced Systems Dependability qualification, is
entirely my own work and has not been taken from the work of others - save and to the extent
that such work has been cited and acknowledged within the text of my work.

Signed: Oxana Gorshkova Date: 22/06/2020

Acknowledgements
I want to express my sincere gratitude to my supervisor Dr Edgar Galvan for all his guidance
and encouragement. I appreciate the time and advice he has given me throughout the course of
this project.

A special acknowledgement goes to the Educational, Audiovisual and Cultural Executive
Agency (EACEA) that granted me an opportunity to pursue an Erasmus Mundus Joint Master
Degree (EMJMD).

I would also like to acknowledge the DJEI/DES/SFI/HEA Irish Centre for High-End
Computing (ICHEC) for the provision of computational facilities and support.

Abstract
General Video Game Playing represents a branch of Artificial General Intelligence. It aims to
develop an agent that can achieve a high level of play of any given game. The Rolling Horizon
Evolutionary Algorithm has recently emerged on stage of General Video Game Playing and
showed promising results. However, there are some issues to be addressed to boost the
algorithm’s performance. This work proposes an improvement of the vanilla version of Rolling
Horizon Evolutionary Algorithm. The enhancement represents a combination of two
techniques: population seeding from statistical tree and replacement of individuals. This work
compares the proposed approach with the baseline algorithm, as well as with two other studied
enhancements: Shift Buffer and Statistical Tree. The agents based on the algorithms were
implemented in the General Video Game AI Framework and assessed on the test set of 20
single-player games. The scores and number of wins achieved by each agent were analyzed
with a statistical significance test. The results show that the proposed enhancement of statistical
tree seeding combined with replacement of individuals can significantly improve the
performance of vanilla version of Rolling Horizon Evolutionary Algorithm. It appeared, that
in some games, the proposed algorithm outperforms other popular enhancements applied to the
Rolling Horizon Evolutionary Algorithm. Strong and weak sides of the proposed approach can
be further investigated by testing the algorithm on more configurations.

Chapter 1: Introduction

1.1 Topic
The topic of this work belongs to the Artificial Intelligence (AI) domain, creation of intelligent
game agents in particular. One of the ways to test intelligence of a program is by making it
play a game. For a long time, classical board games have been a center of attention for AI
software creators. It led to development of world-famous programs that outperformed best
human players in games like checkers, chess and Go. Chess and Go were considered
particularly difficult challenges for software to overcome, many people were skeptical that
computer would ever be able to beat world’s leading champions. Nevertheless, in 1997 a
program called DeepBlue[1] defeated the best human player in chess and in 2016 AlphaGo[2]
gained victory over the professional dan player in Go. Today, computers can defeat human
experts in all popular board games with perfect information.

Although such programs as DeepBlue and AlphaGo excelled in games that require strong
logical thinking skills, their intelligence is still questionable. These programs’ scope of
application is extremely narrow as they utilize game-specific heuristics. Their success can
arguably be attributed to the program’s ability of learning how to play a game. It can be
considered rather a programmer’s achievement for an agent to excel in a particular game. The
human that created an agent can be viewed as a real expert, not a program itself. General game
playing (GGP), on the other hand, puts emphasis on the agent’s ability to adapt to any given
unknown game during the gameplay. If an agent can learn how to play any game and perform
well in it, that can represent true intelligence of the program.

General Video Game Playing (GVGP) is a subset of GGP that focuses on AI application in the
realm of video games. They provide a rich variety of challenges for AI in the ever-growing
game industry. The goal of the GVGP is to create an intelligent agent that learns how to play
any previously unseen game on the fly without knowing the rules. These agents decide what
strategy to follow based on the information they get during the play.

1.2 Motivation
The purpose of GVGP is to devise generalized algorithms that suit any game, but they can also
be beneficial for development of more specialized programs. These approaches are devised to
perform optimally under majority of circumstances. They can serve as a good base for an agent
in any game because of their versatility. Picking one algorithm and extending it with heuristics
for a particular game can be a good choice for someone who is interested in a narrower field.
AI approaches developed in GVGP can be applied to virtually any discipline. They can be
adopted by AI specialists to create useful programs that are able to solve real life problems.

1.3 Problem statement
The majority of agents employed in GVGP are based on tree search methods like Monte-Carlo
Tree Search algorithm, which has shown to yield results superior to other approaches[3].
Recently, evolutionary algorithms started to gain attention in this area and evolution-based
agents proved themselves to be successful competitors to MCTS variants. Rolling Horizon
Evolutionary Algorithm (RHEA), first applied to GVGP by Perez et al. [4] and compared with
MCTS, appeared to be a good alternative to tree search methods. The algorithm has much
potential due to its simplicity, but still requires improvement for optimal results.

Due to the requirement placed on the algorithm to provide a solution in very limited time
budget, it does not always yield optimal results. The algorithm requires more time to evolve a
good strategy from a random generated sequence of actions.

Vanilla RHEA lacks a way to store and use knowledge obtained during the gameplay. The
information about the virtual surroundings acquired by previous generations is lost as all
individuals are discarded before the start of the next planning stage. This project attempts to
improve upon the vanilla version of RHEA.

1.4 Research question
Can population seeding from the statistical tree combined with replacements of individuals
improve performance of Vanilla Rolling Horizon Evolutionary Algorithm applied to General
Video Game Playing?

1.5 Approach and Metrics
The enhancement of Vanilla RHEA proposed in this work consists of combination of two
techniques: population seeding from statistical tree and replacement of individuals in the
evolving population. It is suggested to initialize population of the evolutionary algorithm with
a solution recommended by statistical tree that is used to gather information throughout the
gameplay. The seeding approach was combined with replacement of individuals in the evolving
population. Seeding provides algorithm an opportunity to improve on the best sequence of
actions found during previous game steps. This reduces a number of generations needed to find
a good solution which is beneficial due to the shortage of computational time.

In order to test, assess and compare the proposed enhancement, intelligent agents were
implemented in Java programming language using General Video Game AI (GVGAI)
Framework. The agents implemented in this work represent the proposed approach, the
baseline algorithm (Vanilla RHEA) and two recently studied enhancements of Vanilla RHEA.
The correct work of evolutionary algorithm that serves as a base for the agents was verified by
a black-box test. The test ensured the algorithm’s convergence to the best solution.

In the experiment part of the project, each agent played 4000 times total on 20 games available
in the GVGAI Framework. The agents were compared by the number of victories and scores
they achieved. The Mann-Whitney U test was carried out on the results to determine statistical
significance of algorithms’ performance.

Chapter 2: Background

2.1 General Video Game Playing
Video games attract attention of many researchers specializing in General Game Playing
(GGP) due to their richness of challenges for AI. Most of the video games belong to the real-
time domain; they are not turn-based and require prompt reactions from the player. The game
environment can be unpredictable and can change in a blink of an eye. When in some cases a
video game agent has milliseconds to fire an action to prevent its defeat, a classical board game
agent can take more time to finish its turn. Furthermore, video games feature different virtual-
world entities like non-player characters or collectable items that make a gameplay more
complex. These aspects of video games make them an excellent benchmark for AI software.

The focus of this work is on creation of versatile planning agents. Planning agents are the agents
that learn how to play a game by planning their paths in the virtual environment. When playing
a game they complete a series of steps, and in order to choose the most optimal first step, an
agent needs to look a few steps into the future. This can be accomplished by simulation of the
game before deciding what step to take.

Today, a majority of GVGP planning agents employ tree-based approaches like Monte-Carlo
Tree Search (MCTS) algorithm, which has shown to yield results superior to other
approaches[3]. MCTS is well known for its employment in the famous AlphaGo program.
Recently, evolutionary algorithms started to gain attention in this area and evolution-based
agents proved themselves to be successful competitors to MCTS variants[4]. Specifically,
Rolling Horizon Evolutionary Algorithm (RHEA) introduced by Perez et al. [4] and
implemented alongside MCTS showed very good results and potential.

Today, it is possible for GVGP agents to compete with each other. One of the most popular
competitions among AI software creators is “The General Video Game AI Competition” that
has been running since 2014[5]. In order to participate in this competition, an agent has to be
implemented in the General Video Game AI (GVGAI) Framework [6].

2.2 General Video Game AI Framework
GVGAI Framework written in Java provides a corpus of games as well as means for creating
games that can be used as testbeds for various intelligent controllers. The corpus consists of
two- and single-player 2D games of different genres: shooter, maze, survival, puzzle, etc. All
games have their own rules, scoring and winning criteria. For example, in the game Aliens
controller wins when it kills all of the aliens and it gets points for every killed alien and an
obstacle destroyed. The graphics of the game can be observed in Fig. 1. The game Survive
Zombies, illustrated in Fig.2, considers controller a winner if it is able to stay alive avoiding
being eaten by zombies for a particular amount of time. The avatar in this game has a health
bar that decreases every time a zombie catches a player. Collecting honey helps restore the
health bar. Furthermore, there are obstacles on the player’s way that it needs to avoid while
running away from zombies and collecting honey.

Figure 1 The game Aliens from GVGAI Framework

Figure 2 The game Survive Zombies from GVGAI Framework

Different games have different actions that are legal for a player to execute. Total there are six
actions in the framework: left, right, up, down, nil, use, escape. In the planning track of the
GVGAI Framework, controllers have access to the current game state; they can copy it and
execute actions on the copy by using a Forward Model (FM), thus simulating the game. Games
can be deterministic or stochastic in nature. In stochastic games, FM can produce different
future game outcomes from the current game state with each simulation.

All games can be played on 5 levels. Each level can be played independently; there is no
connection between levels and how controller performs, as there is no requirement for a
controller to win a lower level to advance to the next level. A higher level can increase a
complexity of the game played, it can introduce new challenges to the player. Like some levels
may require better exploration from the controller.

In the general setting, a controller has a budget of 40ms to simulate the game and decide on an
action to fire. Controller can face disqualification if it exceeds time allotted for decision-
making. Thus, it is important for controllers to explore the game environment efficiently having
limited resources.

2.3 Evolutionary Algorithms
Evolutionary Algorithms (EA) are heuristic search algorithms that are based on natural
evolution principles [7]. As a rule, EAs consist of four main operators: selection, crossover
(reproduction), mutation, the creation of a new generation. The cycle of selection, crossover
and mutation followed by fitness assessment is called a generation. A classical algorithm of a
new generation creation can be represented as follows:

Step 1. Create an initial population of N chromosomes.

Step 2. Assess the degree of fitness of each individual.

Step 3. Select N parents from the population using the selection method (the probability
of choosing a parent should depend on its fitness).

Step 4. Select a pair of parents for reproduction from the parent pool. Using the crossover
operator, get a descendant.

Step 5. Subject descendants to the mutation operator.

Step 6. Form a new generation of individuals.

Step 7. Assess fitness of each individual in the new population.

Step 7. Go to step 3 if the number of generations does not exceed permissible.

It is important to formalize a problem in such a way that its solution can be encoded into a
chromosome - a vector of genes. With regards to GVGP, the genes in the chromosome should
be represented by actions, legal in the game played. When applied to GVGAI, EA needs to be
modified so that it is possible to stop it at any moment of time as the time budget for decision-
making is limited. Instead of creating a pool of parents, we prioritize creation of children by
selecting two parents N amount of times.

Rolling Horizon Evolutionary Algorithm (RHEA) appears to be a suitable version of EA for
employment in GVGP. The vanilla version of the algorithm was described and applied to
GVGP by Perez et al. [4]. Vanilla RHEA is a variant of EA that consists of cycles of constant
reevaluation of available solutions – game strategies. Instead of preserving the initial
population throughout the game, the algorithm creates a new population from scratch in the
beginning of every game tick and does not use any information acquired from previous game
steps. Each game tick an agent has to decide on an action to fire, so it creates a population of
individuals that are represented by sequences of actions. This representation is illustrated in
Fig. 3.

Figure 3 Representation of population used in Rolling Horizon Evolutionary Algorithm for

GVGP

The algorithm evolves the population and assesses the individuals by using simulations of the
game. In GVGAI Framework, Forward Model (FM) is available to simulate a game. The FM
advances the copy of current state of the game by executing every action of the individual’s
chromosome. The result state of the game is assessed by using a heuristic function and the
individual’s fitness is assigned the function’s value. When the last action is applied, the
heuristic function is used to evaluate the produced state and its value is assigned to the
individual’s fitness. In case of the controller’s victory, heuristic function can return a huge
positive value, and if controller loses — huge negative value. Otherwise, it can return the score
achieved by the controller after the plan of actions was performed. There are various
enhancement of vanilla RHEA proposed to date. Two the most successful ones will be observed
in this work.

2.4 Shift Buffer Enhancement
Shift Buffer algorithm was introduced by Santos et al. [8]. The idea of Shift Buffer
enhancement is, once a population is initialized, to keep it throughout the game play. It does
not discard evolved population at every game tick. Instead, it moves each individual’s action
plan to the left, dropping the first outdated action and adding a new random action at the end
as illustrated in Fig. 4. This technique allows the algorithm to keep already found good
solutions. Shift Buffer enhancement has been shown to be the most successful modification of
Vanilla RHEA to date [10].

­ Use ¬ ¬ Nil ® ¬ ¯

® ¬ ¯ Nil ­ Use ¬ ­

® ¯ Use ¬ ­ ® ¯ ®

Action plan length
(simulation depth)

Po
pu

la
tio

n

…

Individual 1

Individual 2

Individual N

Figure 4 A preservation of an individual across populations with a left shift of its action plan

2.5 Statistical Tree Enhancement
The Statistical Tree enhancement inspired by the tree search algorithms was devised by Perez
et al. [9]. It targets the shortcoming of Vanilla RHEA of not using knowledge obtained from
previous the game cycles. The idea of this approach is to build a tree with the statistics on
scores acquired during the game simulations. The tree is built while evaluating individual’s
action plan. Each action is added as a node to the tree starting from the root. Root represents a
node which action was chosen on the previous game step. Each node contains information of
how many times it has been visited, the action assigned to it and accumulated reward. This
approach is called an Open Loop approach. It is utilized by many MCTS-like algorithms and
it means that the game states (generative models) are not stored in the nodes. It is important
because the game states can become obsolete and provide irrelevant information.

The tree is built by evaluating the first action of the individual and this action is added as a
child to the root node. All consequent actions are added in the similar manner. When the last
action is applied using FM, the game state is evaluated and the result of evaluation is assigned
to individual’s fitness. This value is then backpropagated to the root, incrementing the node
visits count and augmenting stored rewards with the fitness value. An example of this process
is presented in Fig. 5. Before advancing to the next step, irrelevant branches of the tree are
pruned, and a node with the selected action becomes a new root.

Population i

Population i + 1

® ¯ Nil ¬ ­ ® ¬ ¯

®

¯ ® Nil ¬ ­ ® ¬ ¯

Figure 5 An example of the statistical tree building process while evaluating individuals,

where v is accumulated reward of the node, n is the number of times it was visited

root

¬
n = 1
v = 20

Nil
n = 1
v = 20

¯
n = 1
v = 20

root

¬
n = 1

v = 20

¯
n = 1
v = 5

®
n = 1
v = 5

Nil

n = 1
v = 20

¯
n = 1
v = 20

®
n = 1
v = 5

root

¬
n = 2
v = 23

¯
n = 1
v = 5

®
n = 1
v = 5

Nil

n = 1
v = 20

¯
n = 2

v = 23

®
n = 1
v = 5

®
n = 1
v = 3

 ¯ ¬ Nil … ® ¯ ® …

 ¯ ¬ ® …

…

…

Fitness value = 3

…

Fitness value = 20

…

Fitness value = 5

…

Individual 3

Individual 1 Individual 2

Chapter 3: Shortcomings of Vanilla Rolling Horizon
Evolutionary Algorithm
Rolling Horizon Evolutionary Algorithm (RHEA) appeared to be a suitable and competitive
approach employed by intelligent agents because it is able to perform well in the face of
uncertainty caused by changes in game environment. It decomposes a big problem into smaller
ones and tackles one of them at a time. The algorithm evaluates its strategies to make just one
step into the future. It is done by applying the first action of the best found action sequence.
The cycle of planning, evaluation and pushing the planning horizon one step forward is called
“rolling horizon”. That means that every game step the algorithm starts planning from scratch
given updated circumstances. The visual representation of the process is illustrated in Fig 6.

Figure 6 The process of “rolling horizon”

Introduced in 2013 [4], Vanilla RHEA remains to have much room for improvement. Applied
to GVGP, a real-time domain, strict limitation in computational time makes it particularly
challenging for the algorithm to perform its best. Due to its random nature, Vanilla RHEA is
often unable to explore search space efficiently enough and find good solutions. Research
showed [11] that Vanilla RHEA yields best results when configured with a bigger population.
However, configuring the algorithm with a population of a big size means that there is very
little time left for the evolution process, making Vanilla RHEA a random search algorithm.
This means, that the algorithm is confined to a relatively small population size in order to save
budget for evolution. It has been cognized before [12] that when the population size is relatively
small and the initial pool of individuals is not optimal, EA can produce poor results.
Populations of small size perform best at refining a solution, while bigger populations are
suitable for exploring the search space. It is also known that tree search algorithms like MCTS
outperform evolutionary counterparts in planning tracks of GVGAI [3]. One of the reasons for
that might be their employment of various policies to target promising game states, balancing
between refinement and exploration.

The vanilla variant of RHEA discards evolved population before proceeding to the next game
step. This means that there is no information left about the past plans evaluations. The
algorithm could use this knowledge to make better decisions. If we look at tree search
algorithms, they do not have this drawback. They store statistics about the game states in the
tree structure that they carry from one game step to another. They use the knowledge saved
before they make a final decision.

Time

Game step i

Game step i + 1

Game step i + 2

Planning horizon

Action
applied

Action
applied

Action
applied

Chapter 4: Statistical Tree Seeding with Replacement
of Individuals
The enhancement of Vanilla RHEA proposed in this work consists of combination of two
techniques: population seeding from statistical tree and replacement of individuals in the
evolving population. The proposed enhancement is based on the idea of building and keeping
a statistical tree alongside the evolving population in the same manner as described in chapter
two, section 2.5. Keeping the tree provides some knowledge of the game space explored by
previous populations. However, instead of exploiting EA to build a statistical tree that dictates
final action selection as proposed by Perez et al. [9], it is suggested to utilize the tree to start
EA with a more optimal pool of individuals. The final action selection of the proposed
enhancement is done in the same way as in Vanilla RHEA: by choosing the first action of the
fittest individual, while the statistical tree is used to guide evolution.

4.1 Population Seeding from the Statistical Tree
The technique described in this section addresses the shortcoming of Vanilla RHEA of having
difficulty to find a good solution in limited time. Instead of starting with a randomly initialized
population, the proposed algorithm works on improvement of the best action plan explored so
far. Seeding the population with an already good solution helps reduce the number of
generations needed to produce better results.

The statistical tree is built in the same way as in Statistical Tree enhancement. The scores stored
in tree nodes are updated each time an individual is evaluated. If there was no node that
corresponds to an action of an individual being evaluated, the node is added to the tree. The
pseudocode for evaluation strategy can be found in Algorithm 1 starting from line 13.

The first individual of a new population is initialized by traversing the tree and selecting nodes
that have the highest mean reward. This is done in line 4 of the pseudocode of Algorithm 1 that
can be found at the end of this chapter. That gives the algorithm a chance to improve on the
best action plan explored so far. To target more efficient exploration of the game space, it is
suggested to initialize other N-1 individuals using the UCB (Upper Confidence Bound)
algorithm (line 6 of the Algorithm 1). One of the simple, yet efficient, versions of the algorithm
is UCB1, proposed by Auer et. al [13]. The selection policy’s objective is to opt for a node that
maximizes the value

 𝑈𝐶𝐵1 = 𝑥' + 	𝑐
+ ,-.
./

, (1)

where 𝑥' is a mean reward of the 𝑗th child node, 𝑛2 is the number of times when the 𝑗th child
node was visited,	𝑛 is the number of times the parent (current) node was selected, 𝑐 is an
exploration constant. The reward value of the child node 𝑥2 is required to belong to interval
[0,1] for the UCB1 algorithm to work correctly. The left term of Equation (1) encourages
selection of the nodes with high reward values, while the right term stimulates visiting less
explored but potentially profitable nodes. This policy also helps avoid further exploration of
child nodes that yielded the least scores. Equation (1) is widely used as a tree selection policy
in MCTS-like algorithms and ensures that only promising nodes are visited, encouraging better
exploration of the search space [14]. Implementing this policy, RHEA works on exploring
promising branches of the statistical tree expanding unvisited paths. This way the tree provides
richer information for a better choice of individuals in subsequent game steps. It is important

Edgar

Edgar

Edgar

Edgar

Edgar

Edgar

Edgar

to evaluate freshly created individual before initializing a next one. Evaluation of individual
updates stored statistics. This ensures that the tree provides up-to-date information for the
seeding of the next individual.

Two other techniques of population initialization of Vanilla RHEA have been studied before
[15], showing that seeding can significantly improve performance of the vanilla version of the
algorithm. One of the techniques is to run MCTS algorithm, which uses half of the budget to
build a tree from which the first individual of a new population is created. The second is One
Step Look Ahead algorithm that employs exhaustive search to create action plan of the first
individual. Both of these approaches significantly reduce time for the evolution process,
preventing RHEA from realizing its full potential. Keeping the statistical tree is a much cheaper
operation and it does not require additional simulations of the game.

4.2 Replacement of Individuals
After some initial testing, it has been observed that the proposed seeding technique yields best
results when combined with injection of new individuals using a replacement method.
Generally, it is considered a good practice to remove the worst individual among the most
similar ones to diversify population. In this work, a simpler version is chosen: a new individual
substitutes the worst one if its fitness value is greater.

As the statistical tree represents the search space explored during the evolution cycles, it might
suggest some good variants of action plans for the evolving population. In this work, starting
from when the population is half evolved, a new individual using UCB1 policy is created at
the end of each generation. Its fitness is compared to the fitness of the worst individual in the
population. If the new individual’s action plan yields a better score, it replaces the worst
individual. This technique can increase diversity in the population and provide good solutions
by examining potentially profitable branches of the statistical tree.

Algorithm 1. Population Seeding Algorithm

Procedure InitializePopulation() 1
For i is 0, i is less than POPULATION_LENGTH, i increments by 1 2
 If i is equal to 0 3
 individual = CreateIndividual(BestAverageReward) 4
 Else 5
 individual = CreateIndividual(UctSearch) 6
 EndIf 7

Evaluate(individual) 8
 population.add(individual) 9
EndFor 10
End Procedure 11
 12
Procedure Evaluate(individual) 13
parent = statisticalTree.root 14
For i is 0, i is less than INDIVIDUAL_LENGTH and not gameState.GameOver, i 15
increments by 1 16
 gameState.applyAction(individual.actions[i]) 17
 parent = parent.addChild(individual.actions[i]) 18
EndFor 19
score = heuristics.evaluateState(gameState) 20
parent.backpropagate(score) 21
individual.fitness = score 22
End Procedure 23
 24

Edgar

Edgar

Procedure CreateIndividual(policy) 25
individual = new individual() 26
parent = StatisticalTreeContext.root 27
chosenChild = nil 28
For i is 0, i is less than INDIVIDUAL_LENGTH, i increments by 1 29
 chosenChild = policy(parent) 30
 individual.appendAction(chosenChild.action) 31

parent = chosenChild 32
EndFor 33
Return individual 34
EndProcedure 35
 36
CallBack UctSearch(node) 37
selectedChild = nil 38
bestValue = -MAX_VALUE 39
Foreach child in node.children 40
 childValue = normalize(child.accumulatedScore / child.nVisits) 41
 uctValue = childValue + c * sqrt(Math.log(node.nVisits/child.nVisits)) 42
 applyNoise(uctValue) 43
 If uctValue is greater than bestValue 44
 selectedChild = child 45
 bestValue = uctValue 46
 EndIf 47
EndForeach 48
Return selectedChild 49
EndCallBack 50
 51
CallBack BestAverageReward(node) 52
selectedChild = nil 53
bestValue = -MAX_VALUE 54
Foreach child in node.children 55
 If child.nVisits is greater than 0 56
 childValue = child.accumulatedScore / child.nVisits 57
 applyNoise(childValue) 58
 If childValue is greater than bestValue 59
 selectedChild = child 60
 bestValue = childValue 61
 EndIf 62
 EndIf 63
EndForeach 64
Return selectedChild 65
EndCallBack 66

Chapter 5: Development of Intelligent Agents

5.1 Design and Implementation
For the experiment part of the project, I implemented four controllers that represent four
evolutionary approaches. The algorithms are Statistical Tree Seeding with Replacement of
Individuals proposed in chapter 4, Shift Buffer described in chapter 2 section 2.4, Statistical
Tree described in chapter 2 section 2.5 and Vanilla Rolling Horizon Evolutionary Algorithm
(RHEA). Controllers used in this work were implemented from scratch. They are designed to
work in the environment of General Video Game AI (GVGAI) Framework, described in
chapter 2. They implement an interface that allows them to communicate with the framework.
Controllers submit actions, access games states and simulate games by using the framework’s
mechanics.

Because all algorithms have Vanilla RHEA as their base, instead of implementing four
different classes for each controller, I created one that changes its behavior based on the type
of algorithm chosen. All algorithms differ in the way they initialize population and evaluate
individuals. To avoid code repetition and to increase flexibility, I implemented a Strategy
pattern[16] for these operators. Strategies can be substituted one for another. This provides
flexibility to test and mix different approaches. Adoption of the Strategy pattern can be useful
for future work on extension and improvement of Vanilla RHEA. Using this pattern helps avoid
creation of a new class for every combination of operator variants. Inheritance in this case can
result in code repetition and/or exploding class hierarchy. The UML diagram of EA classes is
presented in Fig. 7.

Figure 7 UML diagram of EA classes

To store all configuration of the algorithms in one place, I created a context class that contains
parameters like budget for simulation, population size, mutation rate etc. The context also
stores the current game state and heuristic that is used to evaluate individual’s action plan. This
context can be accessed by all strategy classes as well as from the core classes such as
Population and Individual. This context ensures that all variants of algorithms have the same
parameters thus fair conditions. It also makes it easy to change configuration because it is stored
in one place and applies to every variant of the base algorithm. The context classes are
illustrated in Fig. 8. The project file structure can be observed in Appendix A.

Figure 8 UML diagram of context classes

5.2 Software Verification
Testing EA is a challenging task due to its random nature. Testing a controller in the setting of
GVGAI Framework is even more complex as it depends on the games and Forward Model that
is used to simulate games. The class structure I designed allows implementing different
strategies for evaluation of individuals. I implemented a test strategy that makes the
evolutionary algorithm (base for all controllers) independent from the GVGAI framework. I
chose to evaluate individuals based on their resemblance to the randomly created reference
action plan. The more actions an individual’s action plan has at the same position as the
reference plan, the higher its fitness. To test that the algorithm works as expected I wrote a
black-box test using JUnit that checks convergence of the algorithm to the reference action
plan. Because the algorithm depends on randomness, I repeated the test 10000 times to verify
it works correctly. The details of the test can be seen in Table 1.

Table 1. Functional test details

Input Randomly created reference action plan
Expected Output Best individual’s action plan is identical to the reference action

plan
Actual Output As expected
Number of Generations 500
Number of Test Runs 10000
Pass/Fail 10000/10000 Pass, 0/10000 Fail

5.3 Collection and Processing of Output Data
One of the most challenging parts of this project was to collect and analyze all the results that
agents achieved. To assess performance of the algorithms, controllers had to run 40 times on 5
levels of 20 chosen games. Each controller had to play 4000 times, resulting in total of 16000
runs by all controllers in one configuration. To perform this amount of executions, additional
computational resources were required. I was kindly granted an access to the supercomputer
Kay[17], that is provided to academic researchers by ICHEC. Kay runs a job scheduling system
SLURM[18] that provides easy means to execute parallel software.

Because controllers can play games simultaneously and do not depend on each other, I adopted
an embarrassingly parallel execution model for my program. The entry point was designed to
accept a game index and a controller name for the specified game to be played 200 times (40
times on 5 levels). I submitted a job to SLURM via a bash script that contained a reference to
a runnable JAR file of my program. An example of a script is provided in Fig. 9. The bash
script specifies job steps, each step launches a jar file with parameters that indicate an index of
a game and a name of a controller. Each step produces a file as an output. The file name contains
a name of the controller and a name of the game that were passed as parameters. Each row of
the file is attributed to one execution of the game and contains two values: a win value and a
score value. A win value can be either 1 for a victory or 0 for a loss.

To collect all the data from the files and perform initial statistical analysis on it, I wrote a parser
in the C# programming language. The parser reads all results files, structures data and outputs
it into Excel files. I performed the rest of the statistical analysis, including the Mann-Whitney
U test, in Excel by writing macros and executing them on the data. The parser and all result
files, including Excel files, are submitted with the code.

Figure 9 An example of a bash script used to execute games on Kay via SLURM

Chapter 6: Evaluation
The hypothesis that the proposed approach can improve the performance of Vanilla RHEA was
tested using the GVGAI Framework. The suggested enhancement was compared to the baseline
algorithm Vanilla RHEA as well as its previously studied enhancements: Statistical Tree and
Shift Buffer, described in chapter two. The measured output values are number of victories and
scores achieved by algorithms in one-player games. In order to reject the null hypothesis, a
statistical significance test was carried out on the obtained results.

6.1 Experimental Setup
To ensure that all algorithms have fair conditions, they were tested with the same configuration:
population size was set to 10 and the length of the individual (action plan) — to 14. All
algorithms used uniform crossover operator and a tournament selection with the tournament
size of 3. The mutation rate was set to 80%. The use of elitism ensured that the best individual
was carried to the next generation. Algorithms were not limited in the number of generations,
the evolution process continued until the algorithm was out of given budget. To make results
of the experiment machine independent, the budget for an action decision was set to 900 FM
calls. FM calls are used as a measure of time, because simulating the game is the most
computationally expensive operation. 900 is an average number of FM calls that Vanilla RHEA
performs in 40ms in the GVGAI Framework [15].

The algorithms were run 40 times on all 5 levels of each game, resulting in 200 runs total per
controller per game. All results were converted into Formula-1 (F1) ranking scheme. For each
game, controllers are compared by their mean win rate. The controller with the highest average
win rate gets 25 points, second best controller is granted 18 points, and others get 15 and 12
points accordingly. If controllers achieved the same number of victories, they are compared by
the scores they acquired, and the best one gets the most points.

The Mann-Whitney U test at 5% significance level was used to compare controllers with each
other to determine if the difference in scores and wins is statistically significant.

6.1.1 Games
For the evaluation of the algorithms, a set of 20 games from GVGAI Framework was chosen.
The set contains 10 stochastic and 10 deterministic games and is presented in Table 2. The
indexes provided are used in the results tables to refer to a particular game.

Table 2. A set of 20 games used in experiments

Index Stochastic Index Deterministic
1 Aliens 11 Bait
2 Butterflies 12 Camel Race
3 Chopper 13 Chase
4 Crossfire 14 Escape
5 Dig Dug 15 Hungry Birds
6 Infection 16 Lemmings
7 Intersection 17 Missile Command
8 Roguelike 18 Modality
9 Sea Quest 19 Plaque Attack
10 Survive Zombies 20 Wait for Breakfast

This particular games set is chosen because it was used in many previous research works like
[10], [8], [11] and it is considered to be a representative assortment of various challenges
present in GVGAI corpus. The results shown in this section can be compared to ones already
acquired by algorithms used by other researchers.

6.1.2 Controllers
Four controllers were used in this experiment. The baseline algorithm Vanilla RHEA is
implemented as a Vanilla controller, controller representing the proposed enhancement is
called TreeSeeding. The other two controllers used for results comparison are StatTree and
ShiftB. StatTree controller implements the enhancement described in chapter 2, section 2.5. As
a recommendation policy, StatTree selects an action to play by opting for a child with the
highest average reward. Statistical trees used by StatTree and TreeSeeding are carried from one
game step to another. At the end of each game step, the values stored in the nodes – visit count
and accumulated reward – are multiplied by a decay factor of 0.99. This reduces weight of old
statistics, as it becomes outdated due to the dynamic environment of the games. ShiftB
controller represents enhancement described in chapter 2, section 2.4. The whole population is
shifted one action to the left, a random action is appended to the end of each individual’s action
plan. The shifted population is then carried to the next game step.

6.2 Results and Discussions
The controllers were assigned Formula-1(F1) points and ranked by the total points achieved.
The idea of the F1 ranking scheme is described in section 6.1. The ranking and results for each
game in F1 points are presented in the Table 3. The higher the number in the cell and the darker
its color, the better results achieved by a controller.

Table 3. F1 points achieved by controllers, where algorithms in the first column are 1 –
TreeSeeding, 2 – StatTree, 3 – ShiftB, 4 – Vanilla. The darker the color of the cell, the better
results achieved by a controller.

 F1
Points

Avg.
Wins G-1 G-11 G-2 G-12 G-13 G-3 G-4 G-5 G-14 G-15 G-6 G-7 G-16 G-17 G-18 G-19 G-8 G-9 G-10 G-20

1 412 49.67% 15 25 15 25 18 25 25 15 25 18 15 25 12 18 18 25 18 25 25 25

2 382 48.37% 18 18 25 18 25 12 15 18 12 25 25 15 25 25 25 18 15 15 15 18

3 315 45.92% 25 12 18 15 12 18 12 25 15 12 18 12 18 15 12 12 25 12 12 15

4 291 46.77% 12 15 12 12 15 15 18 12 18 15 12 18 15 12 15 15 12 18 18 12

Results show, that Vanilla controller gained the least amount of points and the proposed
algorithm showed the best results, ranking first in 10 games. For more detailed results achieved
by controllers in each game in terms of wins percentage and scores, the reader is referred to
Appendix C1-4. Grouped bar charts with confidence intervals that show win rates across games
are presented in Fig. 10 and Fig. 11.

Figure 10 Win rate of controllers in stochastic games. Confidence interval is expressed in

terms of standard error.

Figure 11 Win rate of controllers in deterministic games. Confidence interval is expressed in

terms of standard error.

The win rates indicate that all controllers performed better in stochastic games on average, but
it is not convincing. This might be attributed to the fact that games in stochastic section of the
test set are less challenging than the ones in deterministic section. In games like Lemmings,
Dig-Dug and Roguelike none of the controllers was able to win. That was expected, as in
previous research [10], [8], [11] RHEA performed the same way in these games. The
controllers’ inability to succeed can be attributed to the difficulty of the games. They require
from algorithms high ability to explore the game while avoiding entities that can kill the player.
To achieve victory in these games, controllers have to focus on multiple goals.

Mann-Whitney U test was performed to determine the significance of the results. The number
of games, in which controllers achieved significantly higher win rates than algorithms they
are compared to are presented in Table 4.

0

0.2

0.4

0.6

0.8

1

TreeSeeding ShiftB StatTree Vanilla

0

0.2

0.4

0.6

0.8

1

TreeSeeding ShiftB StatTree Vanilla

Table 4. Significance comparison of controllers by win percentage. The number indicates the
number of games in which controller specified in the first column significantly outperformed
a controller in first the row.

Compared to

Algorithm
TreeSeeding ShiftB StatTree Vanilla

TreeSeeding 4 2 3

ShiftB 0 0 0

StatTree 2 3 3

Vanilla 0 2 1

Based on significance analysis, we can say with 95% confidence, that the proposed agent
outperformed Vanilla in 3 games in terms of win rates. These games are Wait For Breakfast,
Missile Command and Chopper. The StatTree controller has the same number of games in
which it outperformed Vanilla, but they are Infection, Butterflies, Missile Command. The two
approaches share similarity in the fact that they use statistical tree for information keeping, and
that seems to be the reason why they outperform Vanilla in Missile Command. Worth
mentioning, that there are no games in which TreeSeeding is worse than Vanilla in terms of
victories while StatTree is inferior to Vanilla in game Escape. In fact, even ShiftB showed
worse results in Escape.

Interesting to note the difference between StatTree and TreeSeeding. TreeSeeding performs
significantly better than StatTree in games Chopper and Escape while StatTree leads in games
Butterflies and Infection. The difference in these games applies to both win rate and scores.
The result of significance comparison in terms of achieved scores is shown in Table 5.

Table 5. Significance comparison of controllers by achieved scores. The number indicates the
number of games in which controller specified in the first column significantly outperformed
a controller in first the row.

Compared To

Algorithm
TreeSeeding ShiftB StatTree Vanilla

TreeSeeding 4 3 6

ShiftB 2 0 5

StatTree 4 4 5

Vanilla 1 1 0

Although TreeSeeding has not shown results inferior to Vanilla in terms of win rate, there is a
game Dig-Dug in which it gained significantly less scores. Nevertheless, TreeSeeding has

shown the most number of games (6) compared to other enhancements in which it is superior
to Vanilla. These games are Wait for Breakfast, Roguelike, Crossfire. Chopper, Intersection.

The results show, that although StatTree and TreeSeeding have similarities in their nature, there
is a significant difference in the way they perform in some games. In the game Chopper, the
scene changes very rapidly and the player has to shoot flying objects to get points and avoid
moving tanks. Poor performance of StatTree can be caused by information in the tree getting
outdated quickly. The proposed approach does not have this shortcoming because it evolves
the best action instead of following a recommendation of the tree.

The external validity threat in this work lies in the relatively small amount of games in the test
set. The threat can be reduced by using more games of different genres in the experiment.
Another external validity threat is caused by testing algorithms in single configuration of
population size and individual length. The threat can be reduced by testing solution on various
configurations of EA.

Chapter 7: Conclusion

7.1 Contribution to the state-of-art
The proposed enhancement of the vanilla version of Rolling Horizon Algorithm (RHEA)
showed significantly improved performance of the algorithm in some games of the chosen test
set. It appeared, that in some games, the proposed algorithm of tree seeding with replacement of
individuals outperforms other popular enhancements applied to the Vanilla RHEA.

7.2 Future Work
For deeper investigation, the performance of the proposed enhancement can be tested on more
configurations of the evolutionary algorithm. This can help to better determine its weak and
strong sides.

Two techniques that constitute the proposed approach, namely population seeding and
replacement of individuals, can be tested separately to determine their contribution to the
improved performance. In this work, replacement of individuals with the worst fitness was
tested. To better target population diversity, replacement of the least fitted individual out of the
most similar individuals can be adopted in future investigations.

The population seeding technique proposed in this work can be compared to other seeding
techniques introduced by Gaina et al [15] and mentioned in chapter 4. This requires
implementation of additional agents.

In the experiment part of the work, 20 games were chosen to observe the effect of employed
enhancement of Vanilla RHEA. For stronger conclusions on the improved performance of the
baseline algorithm, more testing can be done on a wider range of games.

References

[1] M. Campbell, A. J. Hoane, and F. Hsu, “Deep Blue ,” Artificial Intelligence , vol. 134,
no. 1. Elsevier B.V , AMSTERDAM , pp. 57–83, 2002.

[2] D. Silver et al., “Mastering the game of Go with deep neural networks and tree search
,” Nature , vol. 529, no. 7587. NATURE PUBLISHING GROUP , LONDON , pp. 484–
489, 2016.

[3] P. García-Sánchez and P. García-Sánchez, “Georgios N. Yannakakis and Julian
Togelius: Artificial Intelligence and Games: Springer, 2018, Print ISBN: 978-3-319-
63518-7, Online ISBN: 978-3-319-63519-4, https://doi.org/10.1007/978-3-319-63519-
4 ,” Genetic Programming and Evolvable Machines , vol. 20, no. 1. Springer US , New
York , pp. 143–145.

[4] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, “Rolling horizon evolution
versus tree search for navigation in single-player real-time games ,” Proceedings of the
15th annual conference on genetic and evolutionary computation . ACM , pp. 351–358,
2013.

[5] D. Perez-Liebana et al., “The 2014 General Video Game Playing Competition ,” IEEE
Transactions on Computational Intelligence and AI in Games , vol. 8, no. 3. IEEE ,
PISCATAWAY , pp. 229–243, 2016.

[6] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M. Lucas, “General
Video Game AI: a Multi-Track Framework for Evaluating Agents, Games and Content
Generation Algorithms .” 2018.

[7] T. Bäck, “Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms .” Oxford University Press , New York ,
1996.

[8] B. Santos, H. Bernardino, and E. Hauck, “An Improved Rolling Horizon Evolution
Algorithm with Shift Buffer for General Game Playing,” in 2018 17th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames), 2018, pp. 31–
316, doi: 10.1109/SBGAMES.2018.00013.

[9] D. Perez Liebana, J. Dieskau, M. Hunermund, S. Mostaghim, and S. Lucas, “Open Loop
Search for General Video Game Playing ,” Proceedings of the 2015 Annual Conference
on genetic and evolutionary computation . ACM , pp. 337–344, 2015.

[10] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Rolling horizon evolution
enhancements in general video game playing ,” 2017 IEEE Conference on
Computational Intelligence and Games, CIG 2017 . pp. 88–95, 2017.

[11] R. D. Gaina, J. Liu, S. M. Lucas, and D. Pérez-Liébana, “Analysis of vanilla rolling
Horizon evolution parameters in general video game playing ,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) , vol. 10199. pp. 418–434, 2017.

[12] P. Diaz-Gomez and D. Hougen, Initial Population for Genetic Algorithms: A Metric
Approach. 2007.

[13] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the Multiarmed
Bandit Problem ,” Machine Learning , vol. 47, no. 2. Kluwer Academic Publishers ,
Boston , pp. 235–256, 2002.

[14] C. B. Browne et al., “A Survey of Monte Carlo Tree Search Methods ,” IEEE
Transactions on Computational Intelligence and AI in Games , vol. 4, no. 1. IEEE ,
PISCATAWAY , pp. 1–43, 2012.

[15] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Population seeding techniques for
Rolling Horizon Evolution in General Video Game Playing ,” 2017 IEEE Congress on
Evolutionary Computation (CEC) . IEEE , pp. 1956–1963, 2017.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Software. Addison-Wesley, 1994.

[17] “Kay | ICHEC.” [Online]. Available: https://www.ichec.ie/about/infrastructure/kay.
[Accessed: 18-Jun-2020]

[18] “Slurm Workload Manager - Overview.” [Online]. Available:
https://slurm.schedmd.com/overview.html. [Accessed: 18-Jun-2020]

Appendix A
The structure of the source code.

Appendix B
Convergence test of the EA
package tracks.singlePlayer.advanced.controller.tests;

import static org.junit.Assert.*;
import java.util.ArrayList;
import java.util.Arrays;
import org.junit.Test;
import org.junit.jupiter.api.RepeatedTest;
import ontology.Types.ACTIONS;
import tracks.singlePlayer.advanced.controller.ControllerContext;
import tracks.singlePlayer.advanced.controller.Population;

public class ConvergenceTest {

 final static int NUMBER_OF_GENERATIONS = 500;

 /**
 * Tests convergence of genetic algorithm
 *
 * @result Best individual's actions should be identical to
reference actions by
 * the end of the evolution
 */
 @Test
 @RepeatedTest(10000)
 public void test() {
 // Arrange
 ControllerContext.availableActions = new
ArrayList<ACTIONS>(Arrays.asList(ACTIONS.values()));
 // so code works properly and canAdvance() returns true
 ControllerContext.FM_CALLS_LEFT =
ControllerContext.FM_CALLS_BUDGET;
 var evalStrategy = new TestEvaluateFitnessStrategy();
 var referenceActions = evalStrategy.referenceActions;
 var population = new Population(new
TestInitilizePopulationStrategy(), evalStrategy);
 var initialBestIndividual = population.getBestIndividual();

 // Act
 for (int i = 0; i < NUMBER_OF_GENERATIONS; i++) {
 population.evolve();
 }

 var bestIndiv = population.getBestIndividual();

 // Assert
 // Check if the initial best individual was random
 // makes sure that it evolved during GA execution
 boolean allEqual = true;
 for (int i = 0; i < ControllerContext.INDIVIDUAL_LENGTH;
i++) {
 if (referenceActions[i] !=
initialBestIndividual.getAction(i)) {
 allEqual = false;
 }
 }

 assertEquals("Best individual was already the fittest",
false, allEqual);

 // Check if the best individual's actions match the
reference actions
 for (int i = 0; i < ControllerContext.INDIVIDUAL_LENGTH;
i++) {
 assertEquals("Action with index " + i + "differs",
referenceActions[i], bestIndiv.getAction(i));
 }

 assertEquals("The fitness is incorrect",
ControllerContext.INDIVIDUAL_LENGTH, bestIndiv.getFitness(), 0.000005);
 }

}

Appendix C1
Detailed results in each game achieved by TreeSeeding controller

TreeSeeding	
	

Game	name	 Mean	
wins	

Wins	
standard	
deviation	

Wins	
standard	
error	

Mean	
scores	

Scores	
standard	
deviation	

Scores	
standard	
error	

aliens	 1	 0	 0	 62,275	 12,80427	 0,905399	
bait	 0,115	 0,319022	 0,022558	 6,265	 8,295467	 0,586578	
butterflies	 0,92	 0,271293	 0,019183	 33,09	 16,27857	 1,151069	
camelRace	 0,05	 0,217945	 0,015411	 -0,75	 0,53619	 0,037914	
chase	 0,035	 0,18378	 0,012995	 2,49	 2,229327	 0,157637	
chopper	 1	 0	 0	 17,745	 2,896545	 0,204817	
crossfire	 0,08	 0,271293	 0,019183	 0,135	 1,498925	 0,10599	
digdug	 0	 0	 0	 15,54	 11,71744	 0,828548	
escape	 0,38	 0,485386	 0,034322	 0,35	 0,53619	 0,037914	
hungrybirds	 0,3	 0,458258	 0,032404	 30,2	 45,78166	 3,237252	
infection	 0,965	 0,18378	 0,012995	 14,62	 8,362751	 0,591336	
intersection	 1	 0	 0	 2,085	 3,359728	 0,237569	
lemmings	 0	 0	 0	 -0,55	 0,89861	 0,063541	
missilecommand	 0,72	 0,448999	 0,031749	 5,3	 4,749737	 0,335857	
modality	 0,265	 0,441333	 0,031207	 0,265	 0,441333	 0,031207	
plaqueattack	 0,97	 0,170587	 0,012062	 54,805	 19,42465	 1,37353	
roguelike	 0	 0	 0	 6,995	 6,310703	 0,446234	
seaquest	 0,88	 0,324962	 0,022978	 2724,535	 2174,111	 153,7329	
survivezombies	 0,505	 0,499975	 0,035354	 3,12	 3,490788	 0,246836	
waitforbreakfast	 0,75	 0,433013	 0,030619	 0,75	 0,433013	 0,030619	

Appendix C2
Detailed results in each game achieved by ShiftB controller.

ShiftB	
	

Game	name	 Mean	
wins	

Wins	
standard	
deviation	

Wins	
standard	
error	

Mean	
scores	

Scores	
standard	
deviation	

Scores	
standard	
error	

aliens	 1	 0	 0	 64,485	 13,49814	 0,954463	
bait	 0,045	 0,207304	 0,014659	 6,23	 8,86268	 0,626686	
butterflies	 0,925	 0,263391	 0,018625	 30,8	 15,06386	 1,065176	
camelRace	 0,035	 0,18378	 0,012995	 -0,765	 0,499775	 0,035339	
chase	 0,03	 0,170587	 0,012062	 2,79	 2,205879	 0,155979	
chopper	 0,99	 0,099499	 0,007036	 17,385	 2,914923	 0,206116	
crossfire	 0,05	 0,217945	 0,015411	 0,085	 1,190704	 0,084195	
digdug	 0	 0	 0	 16,655	 12,06922	 0,853422	
escape	 0,2	 0,4	 0,028284	 0,145	 0,48371	 0,034203	
hungrybirds	 0,27	 0,443959	 0,031393	 27,4	 44,33103	 3,134677	
infection	 0,985	 0,121552	 0,008595	 14,89	 8,575424	 0,606374	
intersection	 1	 0	 0	 1,09	 0,895489	 0,063321	
lemmings	 0	 0	 0	 -0,505	 0,894413	 0,063245	
missilecommand	 0,64	 0,48	 0,033941	 4,61	 5,088015	 0,359777	
modality	 0,255	 0,435861	 0,03082	 0,255	 0,435861	 0,03082	
plaqueattack	 0,92	 0,271293	 0,019183	 50,665	 21,51099	 1,521057	
roguelike	 0	 0	 0	 7,13	 6,567579	 0,464398	
seaquest	 0,755	 0,430087	 0,030412	 2187,915	 1931,65	 136,5883	
survivezombies	 0,415	 0,492722	 0,034841	 2,7	 3,559494	 0,251694	
waitforbreakfast	 0,67	 0,470213	 0,033249	 0,67	 0,470213	 0,033249	

Appendix C3
Detailed results in each game achieved by StatTree controller.

StatTree	

Game	name	 Mean	
wins	

Wins	
standard	
deviation	

Wins	
standard	
error	

Mean	
scores	

Scores	
standard	
deviation	

Scores	
standard	
error	

aliens	 1	 0	 0	 63,49	 13,0073	 0,919755	
bait	 0,09	 0,286182	 0,020236	 3,94	 4,268067	 0,301798	
butterflies	 0,98	 0,14	 0,009899	 31,16	 15,30276	 1,082068	
camelRace	 0,045	 0,207304	 0,014659	 -0,755	 0,524381	 0,037079	
chase	 0,05	 0,217945	 0,015411	 2,77	 2,144085	 0,15161	
chopper	 0,975	 0,156125	 0,01104	 17,525	 3,517012	 0,24869	
crossfire	 0,05	 0,217945	 0,015411	 0,21	 1,116199	 0,078927	
digdug	 0	 0	 0	 15,815	 11,52305	 0,814803	
escape	 0,175	 0,379967	 0,026868	 0,165	 0,397209	 0,028087	
hungrybirds	 0,33	 0,470213	 0,033249	 33	 47,02127	 3,324906	
infection	 0,995	 0,070534	 0,004987	 17,08	 9,733632	 0,688272	
intersection	 1	 0	 0	 1,41	 2,114687	 0,149531	
lemmings	 0	 0	 0	 -0,435	 0,869353	 0,061473	
missilecommand	 0,74	 0,438634	 0,031016	 5,74	 4,7236	 0,334009	
modality	 0,265	 0,441333	 0,031207	 0,265	 0,441333	 0,031207	
plaqueattack	 0,965	 0,18378	 0,012995	 53,31	 18,76417	 1,326827	
roguelike	 0	 0	 0	 5,75	 5,943694	 0,420283	
seaquest	 0,87	 0,336303	 0,02378	 2884,71	 2286,489	 161,6792	
survivezombies	 0,455	 0,497971	 0,035212	 3,055	 3,627944	 0,256534	
waitforbreakfast	 0,69	 0,462493	 0,032703	 0,69	 0,462493	 0,032703	

Appendix C4
Detailed results in each game achieved by Vanilla controller.

VanillaRHEA	
	

Game	name	 Mean	
wins	

Wins	
standard	
deviation	

Wins	
standard	
error	

Mean	
scores	

Scores	
standard	
deviation	

Scores	
standard	
error	

aliens	 1	 0	 0	 62,14	 12,68032	 0,896634	
bait	 0,07	 0,255147	 0,018042	 6,35	 8,602761	 0,608307	
butterflies	 0,88	 0,324962	 0,022978	 30,96	 15,03989	 1,063481	
camelRace	 0,03	 0,170587	 0,012062	 -0,77	 0,486929	 0,034431	
chase	 0,035	 0,18378	 0,012995	 2,43	 2,2924	 0,162097	
chopper	 0,98	 0,14	 0,009899	 15,48	 4,292971	 0,303559	
crossfire	 0,06	 0,237487	 0,016793	 -0,11	 1,381268	 0,09767	
digdug	 0	 0	 0	 14,32	 10,18517	 0,7202	
escape	 0,315	 0,464516	 0,032846	 0,23	 0,589152	 0,041659	
hungrybirds	 0,285	 0,451414	 0,03192	 29,5	 44,94163	 3,177853	
infection	 0,955	 0,207304	 0,014659	 13,48	 8,012465	 0,566567	
intersection	 1	 0	 0	 1,465	 1,915405	 0,13544	
lemmings	 0	 0	 0	 -0,51	 1,029514	 0,072798	
missilecommand	 0,545	 0,497971	 0,035212	 3,88	 5,007554	 0,354088	
modality	 0,26	 0,438634	 0,031016	 0,26	 0,438634	 0,031016	
plaqueattack	 0,945	 0,22798	 0,016121	 53,105	 21,17532	 1,497321	
roguelike	 0	 0	 0	 5,235	 6,021609	 0,425792	
seaquest	 0,88	 0,324962	 0,022978	 2394,57	 1882,27	 133,0966	
survivezombies	 0,475	 0,499375	 0,035311	 3,225	 3,672108	 0,259657	
waitforbreakfast	 0,64	 0,48	 0,033941	 0,64	 0,48	 0,033941	

Appendix D

Repository with source code and experiment results: https://gitlab.cs.nuim.ie/p200123/cs646a

