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Abstract 
General Video Game Playing represents a branch of Artificial General Intelligence. It aims to 
develop an agent that can achieve a high level of play of any given game. The Rolling Horizon 
Evolutionary Algorithm has recently emerged on stage of General Video Game Playing and 
showed promising results. However, there are some issues to be addressed to boost the 
algorithm’s performance. This work proposes an improvement of the vanilla version of Rolling 
Horizon Evolutionary Algorithm. The enhancement represents a combination of two 
techniques: population seeding from statistical tree and replacement of individuals. This work 
compares the proposed approach with the baseline algorithm, as well as with two other studied 
enhancements: Shift Buffer and Statistical Tree. The agents based on the algorithms were 
implemented in the General Video Game AI Framework and assessed on the test set of 20 
single-player games. The scores and number of wins achieved by each agent were analyzed 
with a statistical significance test. The results show that the proposed enhancement of statistical 
tree seeding combined with replacement of individuals can significantly improve the 
performance of vanilla version of Rolling Horizon Evolutionary Algorithm. It appeared, that 
in some games, the proposed algorithm outperforms other popular enhancements applied to the 
Rolling Horizon Evolutionary Algorithm. Strong and weak sides of the proposed approach can 
be further investigated by testing the algorithm on more configurations. 

  



Chapter 1: Introduction 

1.1 Topic 
The topic of this work belongs to the Artificial Intelligence (AI) domain, creation of intelligent 
game agents in particular. One of the ways to test intelligence of a program is by making it 
play a game. For a long time, classical board games have been a center of attention for AI 
software creators. It led to development of world-famous programs that outperformed best 
human players in games like checkers, chess and Go. Chess and Go were considered 
particularly difficult challenges for software to overcome, many people were skeptical that 
computer would ever be able to beat world’s leading champions. Nevertheless, in 1997 a 
program called DeepBlue[1] defeated the best human player in chess and in 2016 AlphaGo[2] 
gained victory over the professional dan player in Go. Today, computers can defeat human 
experts in all popular board games with perfect information. 

Although such programs as DeepBlue and AlphaGo excelled in games that require strong 
logical thinking skills, their intelligence is still questionable. These programs’ scope of 
application is extremely narrow as they utilize game-specific heuristics. Their success can 
arguably be attributed to the program’s ability of learning how to play a game. It can be 
considered rather a programmer’s achievement for an agent to excel in a particular game. The 
human that created an agent can be viewed as a real expert, not a program itself. General game 
playing (GGP), on the other hand, puts emphasis on the agent’s ability to adapt to any given 
unknown game during the gameplay. If an agent can learn how to play any game and perform 
well in it, that can represent true intelligence of the program.  

General Video Game Playing (GVGP) is a subset of GGP that focuses on AI application in the 
realm of video games. They provide a rich variety of challenges for AI in the ever-growing 
game industry. The goal of the GVGP is to create an intelligent agent that learns how to play 
any previously unseen game on the fly without knowing the rules. These agents decide what 
strategy to follow based on the information they get during the play.  

1.2 Motivation 
The purpose of GVGP is to devise generalized algorithms that suit any game, but they can also 
be beneficial for development of more specialized programs. These approaches are devised to 
perform optimally under majority of circumstances. They can serve as a good base for an agent 
in any game because of their versatility. Picking one algorithm and extending it with heuristics 
for a particular game can be a good choice for someone who is interested in a narrower field. 
AI approaches developed in GVGP can be applied to virtually any discipline. They can be 
adopted by AI specialists to create useful programs that are able to solve real life problems.  

1.3 Problem statement 
The majority of agents employed in GVGP are based on tree search methods like Monte-Carlo 
Tree Search algorithm, which has shown to yield results superior to other approaches[3]. 
Recently, evolutionary algorithms started to gain attention in this area and evolution-based 
agents proved themselves to be successful competitors to MCTS variants. Rolling Horizon 
Evolutionary Algorithm (RHEA), first applied to GVGP by Perez et al. [4] and compared with 
MCTS, appeared to be a good alternative to tree search methods. The algorithm has much 
potential due to its simplicity, but still requires improvement for optimal results. 



Due to the requirement placed on the algorithm to provide a solution in very limited time 
budget, it does not always yield optimal results. The algorithm requires more time to evolve a 
good strategy from a random generated sequence of actions.  

Vanilla RHEA lacks a way to store and use knowledge obtained during the gameplay. The 
information about the virtual surroundings acquired by previous generations is lost as all 
individuals are discarded before the start of the next planning stage. This project attempts to 
improve upon the vanilla version of RHEA. 

1.4 Research question 
Can population seeding from the statistical tree combined with replacements of individuals 
improve performance of Vanilla Rolling Horizon Evolutionary Algorithm applied to General 
Video Game Playing? 

1.5 Approach and Metrics 
The enhancement of Vanilla RHEA proposed in this work consists of combination of two 
techniques: population seeding from statistical tree and replacement of individuals in the 
evolving population. It is suggested to initialize population of the evolutionary algorithm with 
a solution recommended by statistical tree that is used to gather information throughout the 
gameplay. The seeding approach was combined with replacement of individuals in the evolving 
population. Seeding provides algorithm an opportunity to improve on the best sequence of 
actions found during previous game steps. This reduces a number of generations needed to find 
a good solution which is beneficial due to the shortage of computational time.  

In order to test, assess and compare the proposed enhancement, intelligent agents were 
implemented in Java programming language using General Video Game AI (GVGAI) 
Framework. The agents implemented in this work represent the proposed approach, the 
baseline algorithm (Vanilla RHEA) and two recently studied enhancements of Vanilla RHEA. 
The correct work of evolutionary algorithm that serves as a base for the agents was verified by 
a black-box test. The test ensured the algorithm’s convergence to the best solution.  

In the experiment part of the project, each agent played 4000 times total on 20 games available 
in the GVGAI Framework. The agents were compared by the number of victories and scores 
they achieved. The Mann-Whitney U test was carried out on the results to determine statistical 
significance of algorithms’ performance. 

 



Chapter 2: Background 

2.1 General Video Game Playing 
Video games attract attention of many researchers specializing in General Game Playing 
(GGP) due to their richness of challenges for AI. Most of the video games belong to the real-
time domain; they are not turn-based and require prompt reactions from the player. The game 
environment can be unpredictable and can change in a blink of an eye. When in some cases a 
video game agent has milliseconds to fire an action to prevent its defeat, a classical board game 
agent can take more time to finish its turn. Furthermore, video games feature different virtual-
world entities like non-player characters or collectable items that make a gameplay more 
complex. These aspects of video games make them an excellent benchmark for AI software.  

The focus of this work is on creation of versatile planning agents. Planning agents are the agents 
that learn how to play a game by planning their paths in the virtual environment. When playing 
a game they complete a series of steps, and in order to choose the most optimal first step, an 
agent needs to look a few steps into the future. This can be accomplished by simulation of the 
game before deciding what step to take. 

Today, a majority of GVGP planning agents employ tree-based approaches like Monte-Carlo 
Tree Search (MCTS) algorithm, which has shown to yield results superior to other 
approaches[3]. MCTS is well known for its employment in the famous AlphaGo program. 
Recently, evolutionary algorithms started to gain attention in this area and evolution-based 
agents proved themselves to be successful competitors to MCTS variants[4]. Specifically, 
Rolling Horizon Evolutionary Algorithm (RHEA) introduced by Perez et al. [4] and 
implemented alongside MCTS showed very good results and potential.  

Today, it is possible for GVGP agents to compete with each other. One of the most popular 
competitions among AI software creators is “The General Video Game AI Competition” that 
has been running since 2014[5]. In order to participate in this competition, an agent has to be 
implemented in the General Video Game AI (GVGAI) Framework [6]. 

2.2  General Video Game AI Framework 
GVGAI Framework written in Java provides a corpus of games as well as means for creating 
games that can be used as testbeds for various intelligent controllers. The corpus consists of 
two- and single-player 2D games of different genres: shooter, maze, survival, puzzle, etc. All 
games have their own rules, scoring and winning criteria. For example, in the game Aliens 
controller wins when it kills all of the aliens and it gets points for every killed alien and an 
obstacle destroyed. The graphics of the game can be observed in Fig. 1. The game Survive 
Zombies, illustrated in Fig.2, considers controller a winner if it is able to stay alive avoiding 
being eaten by zombies for a particular amount of time. The avatar in this game has a health 
bar that decreases every time a zombie catches a player. Collecting honey helps restore the 
health bar. Furthermore, there are obstacles on the player’s way that it needs to avoid while 
running away from zombies and collecting honey.  



 
Figure 1 The game Aliens from GVGAI Framework 

 
Figure 2 The game Survive Zombies from GVGAI Framework 

Different games have different actions that are legal for a player to execute. Total there are six 
actions in the framework: left, right, up, down, nil, use, escape. In the planning track of the 
GVGAI Framework, controllers have access to the current game state; they can copy it and 
execute actions on the copy by using a Forward Model (FM), thus simulating the game. Games 
can be deterministic or stochastic in nature. In stochastic games, FM can produce different 
future game outcomes from the current game state with each simulation. 

All games can be played on 5 levels. Each level can be played independently; there is no 
connection between levels and how controller performs, as there is no requirement for a 
controller to win a lower level to advance to the next level. A higher level can increase a 
complexity of the game played, it can introduce new challenges to the player. Like some levels 
may require better exploration from the controller. 



In the general setting, a controller has a budget of 40ms to simulate the game and decide on an 
action to fire. Controller can face disqualification if it exceeds time allotted for decision-
making. Thus, it is important for controllers to explore the game environment efficiently having 
limited resources. 

2.3 Evolutionary Algorithms 
Evolutionary Algorithms (EA) are heuristic search algorithms that are based on natural 
evolution principles [7]. As a rule, EAs consist of four main operators: selection, crossover 
(reproduction), mutation, the creation of a new generation. The cycle of selection, crossover 
and mutation followed by fitness assessment is called a generation. A classical algorithm of a 
new generation creation can be represented as follows: 

Step 1. Create an initial population of N chromosomes. 

Step 2. Assess the degree of fitness of each individual. 

Step 3. Select N parents from the population using the selection method (the probability 
of choosing a parent should depend on its fitness). 

Step 4. Select a pair of parents for reproduction from the parent pool. Using the crossover 
operator, get a descendant. 

Step 5. Subject descendants to the mutation operator. 

Step 6. Form a new generation of individuals. 

Step 7. Assess fitness of each individual in the new population. 

Step 7. Go to step 3 if the number of generations does not exceed permissible. 

It is important to formalize a problem in such a way that its solution can be encoded into a 
chromosome - a vector of genes. With regards to GVGP, the genes in the chromosome should 
be represented by actions, legal in the game played. When applied to GVGAI, EA needs to be 
modified so that it is possible to stop it at any moment of time as the time budget for decision-
making is limited. Instead of creating a pool of parents, we prioritize creation of children by 
selecting two parents N amount of times. 

Rolling Horizon Evolutionary Algorithm (RHEA) appears to be a suitable version of EA for 
employment in GVGP. The vanilla version of the algorithm was described and applied to 
GVGP by Perez et al. [4]. Vanilla RHEA is a variant of EA that consists of cycles of constant 
reevaluation of available solutions – game strategies. Instead of preserving the initial 
population throughout the game, the algorithm creates a new population from scratch in the 
beginning of every game tick and does not use any information acquired from previous game 
steps. Each game tick an agent has to decide on an action to fire, so it creates a population of 
individuals that are represented by sequences of actions. This representation is illustrated in 
Fig. 3.  



 
Figure 3 Representation of population used in Rolling Horizon Evolutionary Algorithm for 

GVGP 

The algorithm evolves the population and assesses the individuals by using simulations of the 
game. In GVGAI Framework, Forward Model (FM) is available to simulate a game. The FM 
advances the copy of current state of the game by executing every action of the individual’s 
chromosome. The result state of the game is assessed by using a heuristic function and the 
individual’s fitness is assigned the function’s value. When the last action is applied, the 
heuristic function is used to evaluate the produced state and its value is assigned to the 
individual’s fitness. In case of the controller’s victory, heuristic function can return a huge 
positive value, and if controller loses — huge negative value. Otherwise, it can return the score 
achieved by the controller after the plan of actions was performed. There are various 
enhancement of vanilla RHEA proposed to date. Two the most successful ones will be observed 
in this work.  

2.4 Shift Buffer Enhancement 
Shift Buffer algorithm was introduced by Santos et al. [8]. The idea of Shift Buffer 
enhancement is, once a population is initialized, to keep it throughout the game play. It does 
not discard evolved population at every game tick. Instead, it moves each individual’s action 
plan to the left, dropping the first outdated action and adding a new random action at the end 
as illustrated in Fig. 4. This technique allows the algorithm to keep already found good 
solutions. Shift Buffer enhancement has been shown to be the most successful modification of 
Vanilla RHEA to date [10].  
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Figure 4 A preservation of an individual across populations with a left shift of its action plan 

2.5 Statistical Tree Enhancement 
The Statistical Tree enhancement inspired by the tree search algorithms was devised by Perez 
et al. [9]. It targets the shortcoming of Vanilla RHEA of not using knowledge obtained from 
previous the game cycles. The idea of this approach is to build a tree with the statistics on 
scores acquired during the game simulations. The tree is built while evaluating individual’s 
action plan. Each action is added as a node to the tree starting from the root. Root represents a 
node which action was chosen on the previous game step. Each node contains information of 
how many times it has been visited, the action assigned to it and accumulated reward. This 
approach is called an Open Loop approach. It is utilized by many MCTS-like algorithms and 
it means that the game states (generative models) are not stored in the nodes. It is important 
because the game states can become obsolete and provide irrelevant information. 

The tree is built by evaluating the first action of the individual and this action is added as a 
child to the root node. All consequent actions are added in the similar manner. When the last 
action is applied using FM, the game state is evaluated and the result of evaluation is assigned 
to individual’s fitness. This value is then backpropagated to the root, incrementing the node 
visits count and augmenting stored rewards with the fitness value. An example of this process 
is presented in Fig. 5. Before advancing to the next step, irrelevant branches of the tree are 
pruned, and a node with the selected action becomes a new root.  
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Figure 5 An example of the statistical tree building process while evaluating individuals, 

where v is accumulated reward of the node, n is the number of times it was visited  
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Chapter 3: Shortcomings of Vanilla Rolling Horizon 
Evolutionary Algorithm 
Rolling Horizon Evolutionary Algorithm (RHEA) appeared to be a suitable and competitive 
approach employed by intelligent agents because it is able to perform well in the face of 
uncertainty caused by changes in game environment. It decomposes a big problem into smaller 
ones and tackles one of them at a time. The algorithm evaluates its strategies to make just one 
step into the future. It is done by applying the first action of the best found action sequence. 
The cycle of planning, evaluation and pushing the planning horizon one step forward is called 
“rolling horizon”. That means that every game step the algorithm starts planning from scratch 
given updated circumstances. The visual representation of the process is illustrated in Fig 6. 

 
Figure 6 The process of “rolling horizon” 

Introduced in 2013 [4], Vanilla RHEA remains to have much room for improvement. Applied 
to GVGP, a real-time domain, strict limitation in computational time makes it particularly 
challenging for the algorithm to perform its best. Due to its random nature, Vanilla RHEA is 
often unable to explore search space efficiently enough and find good solutions. Research 
showed [11] that Vanilla RHEA yields best results when configured with a bigger population. 
However, configuring the algorithm with a population of a big size means that there is very 
little time left for the evolution process, making Vanilla RHEA a random search algorithm. 
This means, that the algorithm is confined to a relatively small population size in order to save 
budget for evolution. It has been cognized before [12] that when the population size is relatively 
small and the initial pool of individuals is not optimal, EA can produce poor results. 
Populations of small size perform best at refining a solution, while bigger populations are 
suitable for exploring the search space. It is also known that tree search algorithms like MCTS 
outperform evolutionary counterparts in planning tracks of GVGAI [3]. One of the reasons for 
that might be their employment of various policies to target promising game states, balancing 
between refinement and exploration. 

The vanilla variant of RHEA discards evolved population before proceeding to the next game 
step. This means that there is no information left about the past plans evaluations. The 
algorithm could use this knowledge to make better decisions. If we look at tree search 
algorithms, they do not have this drawback. They store statistics about the game states in the 
tree structure that they carry from one game step to another. They use the knowledge saved 
before they make a final decision.  
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Chapter 4: Statistical Tree Seeding with Replacement 
of Individuals 
The enhancement of Vanilla RHEA proposed in this work consists of combination of two 
techniques: population seeding from statistical tree and replacement of individuals in the 
evolving population. The proposed enhancement is based on the idea of building and keeping 
a statistical tree alongside the evolving population in the same manner as described in chapter 
two, section 2.5. Keeping the tree provides some knowledge of the game space explored by 
previous populations. However, instead of exploiting EA to build a statistical tree that dictates 
final action selection as proposed by Perez et al. [9], it is suggested to utilize the tree to start 
EA with a more optimal pool of individuals. The final action selection of the proposed 
enhancement is done in the same way as in Vanilla RHEA: by choosing the first action of the 
fittest individual, while the statistical tree is used to guide evolution.  

4.1 Population Seeding from the Statistical Tree 
The technique described in this section addresses the shortcoming of Vanilla RHEA of having 
difficulty to find a good solution in limited time. Instead of starting with a randomly initialized 
population, the proposed algorithm works on improvement of the best action plan explored so 
far. Seeding the population with an already good solution helps reduce the number of 
generations needed to produce better results.  

The statistical tree is built in the same way as in Statistical Tree enhancement. The scores stored 
in tree nodes are updated each time an individual is evaluated. If there was no node that 
corresponds to an action of an individual being evaluated, the node is added to the tree. The 
pseudocode for evaluation strategy can be found in Algorithm 1 starting from line 13. 

The first individual of a new population is initialized by traversing the tree and selecting nodes 
that have the highest mean reward. This is done in line 4 of the pseudocode of Algorithm 1 that 
can be found at the end of this chapter. That gives the algorithm a chance to improve on the 
best action plan explored so far. To target more efficient exploration of the game space, it is 
suggested to initialize other N-1 individuals using the UCB (Upper Confidence Bound) 
algorithm (line 6 of the Algorithm 1). One of the simple, yet efficient, versions of the algorithm 
is UCB1, proposed by Auer et. al [13]. The selection policy’s objective is to opt for a node that 
maximizes the value 

 𝑈𝐶𝐵1 = 𝑥' + 	𝑐
+ ,-.
./

, (1) 

where 𝑥' is a mean reward of the 𝑗th child node, 𝑛2 is the number of times when the 𝑗th child 
node was visited,	𝑛 is the number of times the parent (current) node was selected, 𝑐 is an 
exploration constant. The reward value of the child node 𝑥2 is required to belong to interval 
[0,1] for the UCB1 algorithm to work correctly. The left term of Equation (1) encourages 
selection of the nodes with high reward values, while the right term stimulates visiting less 
explored but potentially profitable nodes. This policy also helps avoid further exploration of 
child nodes that yielded the least scores. Equation (1) is widely used as a tree selection policy 
in MCTS-like algorithms and ensures that only promising nodes are visited, encouraging better 
exploration of the search space [14]. Implementing this policy, RHEA works on exploring 
promising branches of the statistical tree expanding unvisited paths. This way the tree provides 
richer information for a better choice of individuals in subsequent game steps. It is important 
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to evaluate freshly created individual before initializing a next one. Evaluation of individual 
updates stored statistics. This ensures that the tree provides up-to-date information for the 
seeding of the next individual.  

Two other techniques of population initialization of Vanilla RHEA have been studied before 
[15], showing that seeding can significantly improve performance of the vanilla version of the 
algorithm. One of the techniques is to run MCTS algorithm, which uses half of the budget to 
build a tree from which the first individual of a new population is created. The second is One 
Step Look Ahead algorithm that employs exhaustive search to create action plan of the first 
individual. Both of these approaches significantly reduce time for the evolution process, 
preventing RHEA from realizing its full potential. Keeping the statistical tree is a much cheaper 
operation and it does not require additional simulations of the game.  

4.2 Replacement of Individuals 
After some initial testing, it has been observed that the proposed seeding technique yields best 
results when combined with injection of new individuals using a replacement method. 
Generally, it is considered a good practice to remove the worst individual among the most 
similar ones to diversify population. In this work, a simpler version is chosen: a new individual 
substitutes the worst one if its fitness value is greater.  

As the statistical tree represents the search space explored during the evolution cycles, it might 
suggest some good variants of action plans for the evolving population. In this work, starting 
from when the population is half evolved, a new individual using UCB1 policy is created at 
the end of each generation. Its fitness is compared to the fitness of the worst individual in the 
population. If the new individual’s action plan yields a better score, it replaces the worst 
individual. This technique can increase diversity in the population and provide good solutions 
by examining potentially profitable branches of the statistical tree. 

 

Algorithm 1. Population Seeding Algorithm 
 

Procedure InitializePopulation() 1 
For i is 0, i is less than POPULATION_LENGTH, i increments by 1 2 
 If i is equal to 0 3 
  individual = CreateIndividual(BestAverageReward) 4 
 Else 5 
  individual = CreateIndividual(UctSearch) 6 
 EndIf 7 

Evaluate(individual) 8 
 population.add(individual) 9 
EndFor 10 
End Procedure 11 
 12 
Procedure Evaluate(individual) 13 
parent = statisticalTree.root 14 
For i is 0, i is less than INDIVIDUAL_LENGTH and not gameState.GameOver, i 15 
increments by 1 16 
 gameState.applyAction(individual.actions[i]) 17 
 parent = parent.addChild(individual.actions[i]) 18 
EndFor 19 
score = heuristics.evaluateState(gameState)  20 
parent.backpropagate(score) 21 
individual.fitness = score 22 
End Procedure 23 
 24 
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Procedure CreateIndividual(policy) 25 
individual = new individual() 26 
parent = StatisticalTreeContext.root 27 
chosenChild = nil 28 
For i is 0, i is less than INDIVIDUAL_LENGTH, i increments by 1 29 
 chosenChild = policy(parent) 30 
 individual.appendAction(chosenChild.action) 31 

parent = chosenChild 32 
EndFor 33 
Return individual 34 
EndProcedure 35 
 36 
CallBack UctSearch(node) 37 
selectedChild = nil 38 
bestValue = -MAX_VALUE 39 
Foreach child in node.children 40 
 childValue = normalize(child.accumulatedScore / child.nVisits) 41 
 uctValue = childValue + c * sqrt(Math.log(node.nVisits/child.nVisits)) 42 
 applyNoise(uctValue) 43 
 If uctValue is greater than bestValue 44 
  selectedChild = child 45 
  bestValue = uctValue 46 
 EndIf  47 
EndForeach 48 
Return selectedChild  49 
EndCallBack 50 
 51 
CallBack BestAverageReward(node) 52 
selectedChild = nil 53 
bestValue = -MAX_VALUE 54 
Foreach child in node.children  55 
 If child.nVisits is greater than 0 56 
  childValue = child.accumulatedScore / child.nVisits 57 
  applyNoise(childValue) 58 
  If childValue is greater than bestValue 59 
   selectedChild = child 60 
   bestValue = childValue 61 
  EndIf  62 
 EndIf 63 
EndForeach 64 
Return selectedChild  65 
EndCallBack 66 



Chapter 5: Development of Intelligent Agents 

5.1 Design and Implementation 
For the experiment part of the project, I implemented four controllers that represent four 
evolutionary approaches. The algorithms are Statistical Tree Seeding with Replacement of 
Individuals proposed in chapter 4, Shift Buffer described in chapter 2 section 2.4, Statistical 
Tree described in chapter 2 section 2.5 and Vanilla Rolling Horizon Evolutionary Algorithm 
(RHEA). Controllers used in this work were implemented from scratch. They are designed to 
work in the environment of General Video Game AI (GVGAI) Framework, described in 
chapter 2. They implement an interface that allows them to communicate with the framework. 
Controllers submit actions, access games states and simulate games by using the framework’s 
mechanics. 

Because all algorithms have Vanilla RHEA as their base, instead of implementing four 
different classes for each controller, I created one that changes its behavior based on the type 
of algorithm chosen. All algorithms differ in the way they initialize population and evaluate 
individuals. To avoid code repetition and to increase flexibility, I implemented a Strategy 
pattern[16] for these operators. Strategies can be substituted one for another. This provides 
flexibility to test and mix different approaches. Adoption of the Strategy pattern can be useful 
for future work on extension and improvement of Vanilla RHEA. Using this pattern helps avoid 
creation of a new class for every combination of operator variants. Inheritance in this case can 
result in code repetition and/or exploding class hierarchy. The UML diagram of EA classes is 
presented in Fig. 7. 

 
Figure 7 UML diagram of EA classes 



To store all configuration of the algorithms in one place, I created a context class that contains 
parameters like budget for simulation, population size, mutation rate etc. The context also 
stores the current game state and heuristic that is used to evaluate individual’s action plan. This 
context can be accessed by all strategy classes as well as from the core classes such as 
Population and Individual. This context ensures that all variants of algorithms have the same 
parameters thus fair conditions. It also makes it easy to change configuration because it is stored 
in one place and applies to every variant of the base algorithm. The context classes are 
illustrated in Fig. 8. The project file structure can be observed in Appendix A. 

 
Figure 8 UML diagram of context classes  

 

5.2 Software Verification 
Testing EA is a challenging task due to its random nature. Testing a controller in the setting of 
GVGAI Framework is even more complex as it depends on the games and Forward Model that 
is used to simulate games. The class structure I designed allows implementing different 
strategies for evaluation of individuals. I implemented a test strategy that makes the 
evolutionary algorithm (base for all controllers) independent from the GVGAI framework. I 
chose to evaluate individuals based on their resemblance to the randomly created reference 
action plan. The more actions an individual’s action plan has at the same position as the 
reference plan, the higher its fitness. To test that the algorithm works as expected I wrote a 
black-box test using JUnit that checks convergence of the algorithm to the reference action 
plan. Because the algorithm depends on randomness, I repeated the test 10000 times to verify 
it works correctly. The details of the test can be seen in Table 1. 

 

 



Table 1. Functional test details 

Input Randomly created reference action plan 
Expected Output Best individual’s action plan is identical to the reference action 

plan 
Actual Output As expected 
Number of Generations  500 
Number of Test Runs 10000 
Pass/Fail 10000/10000 Pass, 0/10000 Fail 

 

5.3 Collection and Processing of Output Data 
One of the most challenging parts of this project was to collect and analyze all the results that 
agents achieved. To assess performance of the algorithms, controllers had to run 40 times on 5 
levels of 20 chosen games. Each controller had to play 4000 times, resulting in total of 16000 
runs by all controllers in one configuration. To perform this amount of executions, additional 
computational resources were required. I was kindly granted an access to the supercomputer 
Kay[17], that is provided to academic researchers by ICHEC. Kay runs a job scheduling system 
SLURM[18] that provides easy means to execute parallel software.  

Because controllers can play games simultaneously and do not depend on each other, I adopted 
an embarrassingly parallel execution model for my program. The entry point was designed to 
accept a game index and a controller name for the specified game to be played 200 times (40 
times on 5 levels). I submitted a job to SLURM via a bash script that contained a reference to 
a runnable JAR file of my program. An example of a script is provided in Fig. 9. The bash 
script specifies job steps, each step launches a jar file with parameters that indicate an index of 
a game and a name of a controller. Each step produces a file as an output. The file name contains 
a name of the controller and a name of the game that were passed as parameters. Each row of 
the file is attributed to one execution of the game and contains two values: a win value and a 
score value. A win value can be either 1 for a victory or 0 for a loss. 

To collect all the data from the files and perform initial statistical analysis on it, I wrote a parser 
in the C# programming language. The parser reads all results files, structures data and outputs 
it into Excel files. I performed the rest of the statistical analysis, including the Mann-Whitney 
U test, in Excel by writing macros and executing them on the data. The parser and all result 
files, including Excel files, are submitted with the code.  

 
Figure 9 An example of a bash script used to execute games on Kay via SLURM 



Chapter 6: Evaluation 
The hypothesis that the proposed approach can improve the performance of Vanilla RHEA was 
tested using the GVGAI Framework. The suggested enhancement was compared to the baseline 
algorithm Vanilla RHEA as well as its previously studied enhancements: Statistical Tree and 
Shift Buffer, described in chapter two. The measured output values are number of victories and 
scores achieved by algorithms in one-player games. In order to reject the null hypothesis, a 
statistical significance test was carried out on the obtained results.  

6.1 Experimental Setup 
To ensure that all algorithms have fair conditions, they were tested with the same configuration: 
population size was set to 10 and the length of the individual (action plan) — to 14. All 
algorithms used uniform crossover operator and a tournament selection with the tournament 
size of 3. The mutation rate was set to 80%. The use of elitism ensured that the best individual 
was carried to the next generation. Algorithms were not limited in the number of generations, 
the evolution process continued until the algorithm was out of given budget. To make results 
of the experiment machine independent, the budget for an action decision was set to 900 FM 
calls. FM calls are used as a measure of time, because simulating the game is the most 
computationally expensive operation. 900 is an average number of FM calls that Vanilla RHEA 
performs in 40ms in the GVGAI Framework [15]. 

The algorithms were run 40 times on all 5 levels of each game, resulting in 200 runs total per 
controller per game. All results were converted into Formula-1 (F1) ranking scheme. For each 
game, controllers are compared by their mean win rate. The controller with the highest average 
win rate gets 25 points, second best controller is granted 18 points, and others get 15 and 12 
points accordingly. If controllers achieved the same number of victories, they are compared by 
the scores they acquired, and the best one gets the most points. 

The Mann-Whitney U test at 5% significance level was used to compare controllers with each 
other to determine if the difference in scores and wins is statistically significant. 

6.1.1 Games 
For the evaluation of the algorithms, a set of 20 games from GVGAI Framework was chosen. 
The set contains 10 stochastic and 10 deterministic games and is presented in Table 2. The 
indexes provided are used in the results tables to refer to a particular game. 

Table 2. A set of 20 games used in experiments 

Index Stochastic Index Deterministic 
1 Aliens 11 Bait 
2 Butterflies 12 Camel Race 
3 Chopper 13 Chase 
4 Crossfire 14 Escape 
5 Dig Dug 15 Hungry Birds 
6 Infection 16 Lemmings 
7 Intersection 17 Missile Command 
8 Roguelike 18 Modality 
9 Sea Quest 19 Plaque Attack 
10 Survive Zombies 20 Wait for Breakfast 

 



This particular games set is chosen because it was used in many previous research works like 
[10], [8], [11] and it is considered to be a representative assortment of various challenges 
present in GVGAI corpus. The results shown in this section can be compared to ones already 
acquired by algorithms used by other researchers.  

6.1.2 Controllers 
Four controllers were used in this experiment. The baseline algorithm Vanilla RHEA is 
implemented as a Vanilla controller, controller representing the proposed enhancement is 
called TreeSeeding. The other two controllers used for results comparison are StatTree and 
ShiftB. StatTree controller implements the enhancement described in chapter 2, section 2.5. As 
a recommendation policy, StatTree selects an action to play by opting for a child with the 
highest average reward. Statistical trees used by StatTree and TreeSeeding are carried from one 
game step to another. At the end of each game step, the values stored in the nodes – visit count 
and accumulated reward – are multiplied by a decay factor of 0.99. This reduces weight of old 
statistics, as it becomes outdated due to the dynamic environment of the games. ShiftB 
controller represents enhancement described in chapter 2, section 2.4. The whole population is 
shifted one action to the left, a random action is appended to the end of each individual’s action 
plan. The shifted population is then carried to the next game step. 

6.2 Results and Discussions 
The controllers were assigned Formula-1(F1) points and ranked by the total points achieved. 
The idea of the F1 ranking scheme is described in section 6.1. The ranking and results for each 
game in F1 points are presented in the Table 3. The higher the number in the cell and the darker 
its color, the better results achieved by a controller. 

Table 3. F1 points achieved by controllers, where algorithms in the first column are 1 – 
TreeSeeding, 2 – StatTree, 3 – ShiftB, 4 – Vanilla. The darker the color of the cell, the better 
results achieved by a controller.  

 F1 
Points 

Avg. 
Wins G-1 G-11 G-2 G-12 G-13 G-3 G-4 G-5 G-14 G-15 G-6 G-7 G-16 G-17 G-18 G-19 G-8 G-9 G-10 G-20 

1 412 49.67% 15 25 15 25 18 25 25 15 25 18 15 25 12 18 18 25 18 25 25 25 

2 382 48.37% 18 18 25 18 25 12 15 18 12 25 25 15 25 25 25 18 15 15 15 18 

3 315 45.92% 25 12 18 15 12 18 12 25 15 12 18 12 18 15 12 12 25 12 12 15 

4 291 46.77% 12 15 12 12 15 15 18 12 18 15 12 18 15 12 15 15 12 18 18 12 

 

Results show, that Vanilla controller gained the least amount of points and the proposed 
algorithm showed the best results, ranking first in 10 games. For more detailed results achieved 
by controllers in each game in terms of wins percentage and scores, the reader is referred to 
Appendix C1-4. Grouped bar charts with confidence intervals that show win rates across games 
are presented in Fig. 10 and Fig. 11. 

 



 
Figure 10 Win rate of controllers in stochastic games. Confidence interval is expressed in 

terms of standard error.  

 

 
Figure 11 Win rate of controllers in deterministic games. Confidence interval is expressed in 

terms of standard error. 

The win rates indicate that all controllers performed better in stochastic games on average, but 
it is not convincing. This might be attributed to the fact that games in stochastic section of the 
test set are less challenging than the ones in deterministic section. In games like Lemmings, 
Dig-Dug and Roguelike none of the controllers was able to win. That was expected, as in 
previous research [10], [8], [11] RHEA performed the same way in these games. The 
controllers’ inability to succeed can be attributed to the difficulty of the games. They require 
from algorithms high ability to explore the game while avoiding entities that can kill the player. 
To achieve victory in these games, controllers have to focus on multiple goals. 

Mann-Whitney U test was performed to determine the significance of the results. The number 
of games, in which controllers achieved significantly higher win rates than algorithms they 
are compared to are presented in Table 4.  
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Table 4. Significance comparison of controllers by win percentage. The number indicates the 
number of games in which controller specified in the first column significantly outperformed 
a controller in first the row. 

Compared to 

Algorithm 
TreeSeeding ShiftB StatTree Vanilla 

TreeSeeding  4 2 3 

ShiftB 0  0 0 

StatTree 2 3  3 

Vanilla 0 2 1  

 

Based on significance analysis, we can say with 95% confidence, that the proposed agent 
outperformed Vanilla in 3 games in terms of win rates. These games are Wait For Breakfast, 
Missile Command and Chopper. The StatTree controller has the same number of games in 
which it outperformed Vanilla, but they are Infection, Butterflies, Missile Command. The two 
approaches share similarity in the fact that they use statistical tree for information keeping, and 
that seems to be the reason why they outperform Vanilla in Missile Command. Worth 
mentioning, that there are no games in which TreeSeeding is worse than Vanilla in terms of 
victories while StatTree is inferior to Vanilla in game Escape. In fact, even ShiftB showed 
worse results in Escape. 

Interesting to note the difference between StatTree and TreeSeeding. TreeSeeding performs 
significantly better than StatTree in games Chopper and Escape while StatTree leads in games 
Butterflies and Infection. The difference in these games applies to both win rate and scores. 
The result of significance comparison in terms of achieved scores is shown in Table 5. 

Table 5. Significance comparison of controllers by achieved scores. The number indicates the 
number of games in which controller specified in the first column significantly outperformed 
a controller in first the row. 

Compared To 

Algorithm 
TreeSeeding ShiftB StatTree Vanilla 

TreeSeeding  4 3 6 

ShiftB 2  0 5 

StatTree 4 4  5 

Vanilla 1 1 0  

 

Although TreeSeeding has not shown results inferior to Vanilla in terms of win rate, there is a 
game Dig-Dug in which it gained significantly less scores. Nevertheless, TreeSeeding has 



shown the most number of games (6) compared to other enhancements in which it is superior 
to Vanilla. These games are Wait for Breakfast, Roguelike, Crossfire. Chopper, Intersection. 

The results show, that although StatTree and TreeSeeding have similarities in their nature, there 
is a significant difference in the way they perform in some games. In the game Chopper, the 
scene changes very rapidly and the player has to shoot flying objects to get points and avoid 
moving tanks. Poor performance of StatTree can be caused by information in the tree getting 
outdated quickly. The proposed approach does not have this shortcoming because it evolves 
the best action instead of following a recommendation of the tree. 

The external validity threat in this work lies in the relatively small amount of games in the test 
set. The threat can be reduced by using more games of different genres in the experiment. 
Another external validity threat is caused by testing algorithms in single configuration of 
population size and individual length. The threat can be reduced by testing solution on various 
configurations of EA.  

 



Chapter 7: Conclusion 

7.1 Contribution to the state-of-art 
The proposed enhancement of the vanilla version of Rolling Horizon Algorithm (RHEA) 
showed significantly improved performance of the algorithm in some games of the chosen test 
set. It appeared, that in some games, the proposed algorithm of tree seeding with replacement of 
individuals outperforms other popular enhancements applied to the Vanilla RHEA. 

7.2 Future Work 
For deeper investigation, the performance of the proposed enhancement can be tested on more 
configurations of the evolutionary algorithm. This can help to better determine its weak and 
strong sides.  

Two techniques that constitute the proposed approach, namely population seeding and 
replacement of individuals, can be tested separately to determine their contribution to the 
improved performance. In this work, replacement of individuals with the worst fitness was 
tested. To better target population diversity, replacement of the least fitted individual out of the 
most similar individuals can be adopted in future investigations.  

The population seeding technique proposed in this work can be compared to other seeding 
techniques introduced by Gaina et al [15] and mentioned in chapter 4. This requires 
implementation of additional agents. 

In the experiment part of the work, 20 games were chosen to observe the effect of employed 
enhancement of Vanilla RHEA. For stronger conclusions on the improved performance of the 
baseline algorithm, more testing can be done on a wider range of games. 
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Appendix A 
The structure of the source code. 

 
  



Appendix B 
Convergence test of the EA 
package tracks.singlePlayer.advanced.controller.tests; 
 
import static org.junit.Assert.*; 
import java.util.ArrayList; 
import java.util.Arrays; 
import org.junit.Test; 
import org.junit.jupiter.api.RepeatedTest; 
import ontology.Types.ACTIONS; 
import tracks.singlePlayer.advanced.controller.ControllerContext; 
import tracks.singlePlayer.advanced.controller.Population; 
 
public class ConvergenceTest { 
 
 final static int NUMBER_OF_GENERATIONS = 500; 
 
 /** 
  * Tests convergence of genetic algorithm 
  *  
  * @result Best individual's actions should be identical to 
reference actions by 
  *         the end of the evolution 
  */ 
 @Test 
 @RepeatedTest(10000) 
 public void test() { 
  // Arrange 
  ControllerContext.availableActions = new 
ArrayList<ACTIONS>(Arrays.asList(ACTIONS.values())); 
  // so code works properly and canAdvance() returns true 
  ControllerContext.FM_CALLS_LEFT = 
ControllerContext.FM_CALLS_BUDGET; 
  var evalStrategy = new TestEvaluateFitnessStrategy(); 
  var referenceActions = evalStrategy.referenceActions; 
  var population = new Population(new 
TestInitilizePopulationStrategy(), evalStrategy); 
  var initialBestIndividual = population.getBestIndividual(); 
 
  // Act 
  for (int i = 0; i < NUMBER_OF_GENERATIONS; i++) { 
   population.evolve(); 
  } 
 
  var bestIndiv = population.getBestIndividual(); 
 
  // Assert 
  // Check if the initial best individual was random 
  // makes sure that it evolved during GA execution 
  boolean allEqual = true; 
  for (int i = 0; i < ControllerContext.INDIVIDUAL_LENGTH; 
i++) { 
   if (referenceActions[i] != 
initialBestIndividual.getAction(i)) { 
    allEqual = false; 
   } 
  } 



  assertEquals("Best individual was already the fittest", 
false, allEqual); 
 
  // Check if the best individual's actions match the 
reference actions 
  for (int i = 0; i < ControllerContext.INDIVIDUAL_LENGTH; 
i++) { 
   assertEquals("Action with index " + i + "differs", 
referenceActions[i], bestIndiv.getAction(i)); 
  } 
 
  assertEquals("The fitness is incorrect", 
ControllerContext.INDIVIDUAL_LENGTH, bestIndiv.getFitness(), 0.000005); 
 } 
 
} 

 

  



Appendix C1 
Detailed results in each game achieved by TreeSeeding controller 

 

TreeSeeding	
	

Game	name	 Mean	
wins	

Wins	
standard	
deviation	

Wins	
standard	
error	

Mean	
scores	

Scores	
standard	
deviation	

Scores	
standard	
error	

aliens	 1	 0	 0	 62,275	 12,80427	 0,905399	
bait	 0,115	 0,319022	 0,022558	 6,265	 8,295467	 0,586578	
butterflies	 0,92	 0,271293	 0,019183	 33,09	 16,27857	 1,151069	
camelRace	 0,05	 0,217945	 0,015411	 -0,75	 0,53619	 0,037914	
chase	 0,035	 0,18378	 0,012995	 2,49	 2,229327	 0,157637	
chopper	 1	 0	 0	 17,745	 2,896545	 0,204817	
crossfire	 0,08	 0,271293	 0,019183	 0,135	 1,498925	 0,10599	
digdug	 0	 0	 0	 15,54	 11,71744	 0,828548	
escape	 0,38	 0,485386	 0,034322	 0,35	 0,53619	 0,037914	
hungrybirds	 0,3	 0,458258	 0,032404	 30,2	 45,78166	 3,237252	
infection	 0,965	 0,18378	 0,012995	 14,62	 8,362751	 0,591336	
intersection	 1	 0	 0	 2,085	 3,359728	 0,237569	
lemmings	 0	 0	 0	 -0,55	 0,89861	 0,063541	
missilecommand	 0,72	 0,448999	 0,031749	 5,3	 4,749737	 0,335857	
modality	 0,265	 0,441333	 0,031207	 0,265	 0,441333	 0,031207	
plaqueattack	 0,97	 0,170587	 0,012062	 54,805	 19,42465	 1,37353	
roguelike	 0	 0	 0	 6,995	 6,310703	 0,446234	
seaquest	 0,88	 0,324962	 0,022978	 2724,535	 2174,111	 153,7329	
survivezombies	 0,505	 0,499975	 0,035354	 3,12	 3,490788	 0,246836	
waitforbreakfast	 0,75	 0,433013	 0,030619	 0,75	 0,433013	 0,030619	

  



Appendix C2 
Detailed results in each game achieved by ShiftB controller. 

 

ShiftB	
	

Game	name	 Mean	
wins	

Wins	
standard	
deviation	

Wins	
standard	
error	

Mean	
scores	

Scores	
standard	
deviation	

Scores	
standard	
error	

aliens	 1	 0	 0	 64,485	 13,49814	 0,954463	
bait	 0,045	 0,207304	 0,014659	 6,23	 8,86268	 0,626686	
butterflies	 0,925	 0,263391	 0,018625	 30,8	 15,06386	 1,065176	
camelRace	 0,035	 0,18378	 0,012995	 -0,765	 0,499775	 0,035339	
chase	 0,03	 0,170587	 0,012062	 2,79	 2,205879	 0,155979	
chopper	 0,99	 0,099499	 0,007036	 17,385	 2,914923	 0,206116	
crossfire	 0,05	 0,217945	 0,015411	 0,085	 1,190704	 0,084195	
digdug	 0	 0	 0	 16,655	 12,06922	 0,853422	
escape	 0,2	 0,4	 0,028284	 0,145	 0,48371	 0,034203	
hungrybirds	 0,27	 0,443959	 0,031393	 27,4	 44,33103	 3,134677	
infection	 0,985	 0,121552	 0,008595	 14,89	 8,575424	 0,606374	
intersection	 1	 0	 0	 1,09	 0,895489	 0,063321	
lemmings	 0	 0	 0	 -0,505	 0,894413	 0,063245	
missilecommand	 0,64	 0,48	 0,033941	 4,61	 5,088015	 0,359777	
modality	 0,255	 0,435861	 0,03082	 0,255	 0,435861	 0,03082	
plaqueattack	 0,92	 0,271293	 0,019183	 50,665	 21,51099	 1,521057	
roguelike	 0	 0	 0	 7,13	 6,567579	 0,464398	
seaquest	 0,755	 0,430087	 0,030412	 2187,915	 1931,65	 136,5883	
survivezombies	 0,415	 0,492722	 0,034841	 2,7	 3,559494	 0,251694	
waitforbreakfast	 0,67	 0,470213	 0,033249	 0,67	 0,470213	 0,033249	

 

  



Appendix C3 
Detailed results in each game achieved by StatTree controller. 

 

StatTree	

Game	name	 Mean	
wins	

Wins	
standard	
deviation	

Wins	
standard	
error	

Mean	
scores	

Scores	
standard	
deviation	

Scores	
standard	
error	

aliens	 1	 0	 0	 63,49	 13,0073	 0,919755	
bait	 0,09	 0,286182	 0,020236	 3,94	 4,268067	 0,301798	
butterflies	 0,98	 0,14	 0,009899	 31,16	 15,30276	 1,082068	
camelRace	 0,045	 0,207304	 0,014659	 -0,755	 0,524381	 0,037079	
chase	 0,05	 0,217945	 0,015411	 2,77	 2,144085	 0,15161	
chopper	 0,975	 0,156125	 0,01104	 17,525	 3,517012	 0,24869	
crossfire	 0,05	 0,217945	 0,015411	 0,21	 1,116199	 0,078927	
digdug	 0	 0	 0	 15,815	 11,52305	 0,814803	
escape	 0,175	 0,379967	 0,026868	 0,165	 0,397209	 0,028087	
hungrybirds	 0,33	 0,470213	 0,033249	 33	 47,02127	 3,324906	
infection	 0,995	 0,070534	 0,004987	 17,08	 9,733632	 0,688272	
intersection	 1	 0	 0	 1,41	 2,114687	 0,149531	
lemmings	 0	 0	 0	 -0,435	 0,869353	 0,061473	
missilecommand	 0,74	 0,438634	 0,031016	 5,74	 4,7236	 0,334009	
modality	 0,265	 0,441333	 0,031207	 0,265	 0,441333	 0,031207	
plaqueattack	 0,965	 0,18378	 0,012995	 53,31	 18,76417	 1,326827	
roguelike	 0	 0	 0	 5,75	 5,943694	 0,420283	
seaquest	 0,87	 0,336303	 0,02378	 2884,71	 2286,489	 161,6792	
survivezombies	 0,455	 0,497971	 0,035212	 3,055	 3,627944	 0,256534	
waitforbreakfast	 0,69	 0,462493	 0,032703	 0,69	 0,462493	 0,032703	

 

  



Appendix C4 
Detailed results in each game achieved by Vanilla controller. 

 

VanillaRHEA	
	

Game	name	 Mean	
wins	

Wins	
standard	
deviation	

Wins	
standard	
error	

Mean	
scores	

Scores	
standard	
deviation	

Scores	
standard	
error	

aliens	 1	 0	 0	 62,14	 12,68032	 0,896634	
bait	 0,07	 0,255147	 0,018042	 6,35	 8,602761	 0,608307	
butterflies	 0,88	 0,324962	 0,022978	 30,96	 15,03989	 1,063481	
camelRace	 0,03	 0,170587	 0,012062	 -0,77	 0,486929	 0,034431	
chase	 0,035	 0,18378	 0,012995	 2,43	 2,2924	 0,162097	
chopper	 0,98	 0,14	 0,009899	 15,48	 4,292971	 0,303559	
crossfire	 0,06	 0,237487	 0,016793	 -0,11	 1,381268	 0,09767	
digdug	 0	 0	 0	 14,32	 10,18517	 0,7202	
escape	 0,315	 0,464516	 0,032846	 0,23	 0,589152	 0,041659	
hungrybirds	 0,285	 0,451414	 0,03192	 29,5	 44,94163	 3,177853	
infection	 0,955	 0,207304	 0,014659	 13,48	 8,012465	 0,566567	
intersection	 1	 0	 0	 1,465	 1,915405	 0,13544	
lemmings	 0	 0	 0	 -0,51	 1,029514	 0,072798	
missilecommand	 0,545	 0,497971	 0,035212	 3,88	 5,007554	 0,354088	
modality	 0,26	 0,438634	 0,031016	 0,26	 0,438634	 0,031016	
plaqueattack	 0,945	 0,22798	 0,016121	 53,105	 21,17532	 1,497321	
roguelike	 0	 0	 0	 5,235	 6,021609	 0,425792	
seaquest	 0,88	 0,324962	 0,022978	 2394,57	 1882,27	 133,0966	
survivezombies	 0,475	 0,499375	 0,035311	 3,225	 3,672108	 0,259657	
waitforbreakfast	 0,64	 0,48	 0,033941	 0,64	 0,48	 0,033941	

 

  



Appendix D 
 

Repository with source code and experiment results: https://gitlab.cs.nuim.ie/p200123/cs646a 


