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Abstract

The charging of electric vehicles (EVs) places a strain on the trans-

formers in the electric grid in order for it to be able to supply enough

power to meet demand. This is set to become more and more of a

burden on the grid as EVs become more popular among the general

public. The use of demand-side management (DSM) and smart grids

have been investigated as a solution to this problem, and the problem

of reducing load at peak times in general, by automatically shifting

the use of some household appliances to times where there is a re-

duced load.

This dissertation aims to reduce these issues in a number of ways

through the use of genetic algorithms (GAs) alongside the DSM ap-

proach. The proposed approach is to implement a GA which uses

several ‘fitness functions’ in order to target multiple separate objec-

tives; fitness functions can be seen as black boxes which we can use to

indicate how good/bad a potential solution is. The objectives include

a lower overall transformer load, a lower peak-to-average ratio, a fi-

nal state of charge (SoC) close to the normal approach, and a lower

cost of electricity to consumers. The execution of this GA will create

schedules that the EVs can follow throughout each day in order to

charge whilst achieving these goals; in order to evaluate this imple-

mentation, we will simulate the electric grid using GridLAB-D across

a 28-day period (for each approach) in which the EVs arrive home in

the evening with a generated SoC, and must charge to the target SoC

by the time of their departure in the morning.
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Chapter 1

Introduction

Demand-side management (DSM) refers systems that allow the automatic control

of energy demand from the consumers’ side, implemented by the utility compa-

nies. This is an important concept within the domain of smart grids (SGs); it

allows utility companies to establish control over the peak load, as well as giving

power to balance the load through peak and off-peak cycles. Without this capa-

bility, the peak load must be achieved through the use of ‘peaking plants’ run only

to meet peak demand, as well as causing an extra strain on transformers within

the grid. One of the predominant ways in which DSM is used to balance load lies

in load-shifting through the control of consumer appliances by the suppliers; this

relies on the handing over of some control of certain household appliances from

the consumer to the supplier, such that, at peak times, the supplier would be

able to deactivate these appliances to reduce the peak and reactivate them when

demand is low. The appliances that are time-independent enough to suit this

approach include washing machines, dryers, and electric vehicle (EV) chargers.

EVs are an important appliance to consider when investigating within this do-

main; as EVs have become more popular among the general population in recent

years, they bring an increased demand on the electric grid. As such, it is impor-

tant to be able to take advantage of the time-independence of the charging of an

EV in order to combat this potentially disruptive load. Many approaches have

been investigated in the implementation of automated DSM systems, including

Monte Carlo Tree Search, game theory-based methods, multi-agent systems, and

evolutionary algorithms. This study aims to tackle the problems outlined through
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1. Introduction

the use of genetic algorithms (GAs), a stochastic bio-inspired search algorithm,

whose typical representation (binary-encoded) is conducive to the on-off states of

the EV chargers to be simulated.

The approach to be taken involves the development of a GA with a number of

‘fitness functions’ that will tackle the goals to be achieved; including reduced

peak-to-average ratio (PAR), reduced overall load, and finally, a reduced cost to

the consumers, all whilst aiming to achieve a similar final state of charge (SoC)

for each of the EVs simulated. To ensure the scalability of the approach, the sim-

ulations will be run using different numbers of EVs, and our GA-based approach

will be contrasted with the outcome of a standard grid in the same scenario. The

execution of the GA will create schedules that the EVs can follow throughout

each day in order to charge whilst achieving the goals set; in order to evaluate

this implementation, we will simulate the electric grid across a 28-day period (for

each approach) in which the EVs arrive home in the evening with a given SoC,

and must charge to the target SoC by the time of their departure in the morning.

In Chapter 2, we will discuss some of the literature representing the current state

of the art in this domain, as well as uncover potential missing links in the litera-

ture which can be filled through this work. We will then move on to Chapter 3

to discuss the problem that we aim to solve, before briefly giving an overview of

GAs and their operation in Chapter 4. Chapter 5 will discuss the implementation

details of the proposed approach, as well as the experimental parameters that will

be used to evaluate the system. Chapter 6 will present and discuss the results

of the many experiments executed, before we discuss the conclusions made from

this work, and the potential areas for future research in Chapter 7.
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Chapter 2

State of the Art

2.1 The Electric Grid

There are many issues involved in the running of the traditional electric grid. The

management of this system is only possible through outdated monitoring meth-

ods, and an ability to increase supply quickly to meet the demand at peak times;

in many cases through the use of power plants operated solely at peak times,

known as ‘Peaking Plants’ [1, 2, 3, 4]. There are a number of problems with this

approach, including the high potential of peaks and troughs in the load profile

despite attempts to balance from the supply side, unpredictability of demand,

and the degradation of transformers in the grid due to the fluctuating load on

them.

The Smart Grid (SG) is an electric grid with a means of using sensors, control

technologies, and communication (over a LAN-like system [5]) in order to deliver

electricity through the grid in a more effective and efficient manner [6]. This can

be implemented throughout the grid from the supplier to consumers through the

use of both hardware and software. In many cases it is seen that the move to

smart grids will be necessary to achieve a number of essential goals, including

distributed generation of electricity (such as home solar panels, wind turbines,

etc), better demand response, and support of electric vehicles (EVs) as they be-

come more prevalent [5, 7]. A key area of research for SGs is in the control of the

demand from the consumers’ side.

3



2. State of the Art

2.2 Demand-Side Management

One of the most explored areas in SGs is Demand-Side Management (DSM)

systems, this is apparent when we look to the increasing number of related pub-

lications over the years [5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. DSM is a very

important concept in SGs, it is concerned with the automatic control of energy

demand from the consumers’ side, implemented by the utility companies.

There are a number of methods of DSM discussed within the literature; for ex-

ample, smart pricing, which relies on the installation of intelligent meters on the

consumer’s side, would allow the metering and analysis of electricity demand by

the supplier. This could lead to control of pricing at a finer level than current sys-

tems, allowing energy companies to penalise/reward consumers for using/avoiding

the use of electricity at times of high demand [5, 10]. Another method is direct

load control (DLC), which involves the handing over of some control of certain

household appliances from the consumer to the supplier, such that, at peak times,

the supplier would be able to deactivate these appliances to reduce the peak and

reactivate them at times of low load [5]. Examples of appliances suitable for this

approach would be dryers, washing machines, or EV chargers, normally known as

shiftable loads. There are many investigations into the concept of ‘load-shifting’

within this domain, and while many use limited dynamic/linear programming

approaches, there are a large number that implement different approaches that

show potential to scale to the larger number of different types of device on the

grid [5, 12, 18].

There are a number of tools commonly used in simulating these grid systems,

some of the more frequently seen open source tools include WindMil (Milsoft

Utility Solutions, Inc.), GridLAB-D (US DoE), and OpenDSS (EPRI) [19]. How-

ever, due to its flexibility and ease of modification, as well as support for time-

series data and scheduling of appliances, GridLAB-D is an excellent candidate

for load-shifting in DSM and the simulation of experiments. A key reason for

using GridLAB-D in this work was due to the fact that many studies report its

flexibility in conducting experiments [11, 20, 21]. Another important tool used

4



2. State of the Art

consistently in the literature is MATLAB Simulink which allows the specification

of models and analysis of simulation results.

2.3 Algorithmic Approaches

Intelligent approaches include the use of Monte Carlo Tree Search (MCTS) [12,

21], evolutionary algorithms (EAs) [11], multi-agent systems [10], as well as game

theory-based methods [5, 18]. While these investigations take a different approach

toward the implementation, the goals remain as a reduction in system peak load

demand, load profile reshaping, and, to a lesser extent, a reduction in cost of

electricity used. The reasons for these approaches stem from their ability to

handle many different types of device on the grid, as well as flexibility to be used

with different structures; they are also able to scale well to the sheer number of

potential solutions when scheduling large numbers of different devices throughout

a specified time period.

While the MCTS and game-theoretic approaches to DSM have shown good results

in many of the targets proposed [5, 12], evolutionary algorithms have also shown

the potential to scale to larger numbers of devices whilst only increasing the

size of the chromosome encoding, as well as to different types of device with

the same algorithm, a level of flexibility not afforded by other approaches. The

use of binary GAs has been implemented within the literature to simulate the

on/off capabilities of many household appliances, but there also lies the possibility

of using real-valued encoding in the case of EV chargers, in order to charge at a

fraction of the maximum power input in order for the SG to have higher precision

control over the demand.

A key area within the Smart Grid space is the charging of EVs; much of the

literature does not take a focus toward this issue, but there are examples where

EVs are analysed as a shiftable load within the grid [11, 21]. These examples do

however take a limited approach with regards to the number of EVs, with 9 and

6 EVs simulated respectively, as well as using a relatively high initial SoC in the

former. In contrast, this work aims at testing the proposed approach using dozens

of EVs with a relatively low initial SoC. EVs are an important area to investigate,

due to their recent growth in popularity, and the impact that widespread adoption
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2. State of the Art

of EVs would have on the grid, as during charging, an EV can almost double the

average household load [5].

2.4 Summary

There are several gaps in the literature that we will aim to address. We see that

there is potential in the use of genetic algorithms within this space, and while

there have been investigations into the use of GAs in DSM, we can see scope to

further emphasise the use of EVs on the grid, due to their growing popularity,

and the potential impact this would have on the current grid structure. As such,

we aim to simulate scenarios with larger numbers of EVs than have been inves-

tigated previously, as well as simulating with multiple different numbers of EVs,

to gain insight into the scalability of the proposed solution. There is also scope

to analyse an SG under the load of different types of EV (with differing battery

capacities and charger power for example) to further investigate the potential

outcome of multiple consumer EV types on the grid.

We also see an area of research in targeting multiple objectives, such as a lower

peak load, PAR, and cost within the same systems, so as to show the possi-

bility of having multiple goals achieved, potentially with a trade off between

them that could be specified depending on the demand or priorities of the con-

sumers/suppliers.

In the area of GAs, the literature analysed does not go into the detail of investi-

gating fitness functions with different goals, which could show the areas in which

a GA would be able to optimise better general solutions. We can thus aim to

implement a GA which targets multiple objectives and can compare and contrast

the outcomes of each of these using the commonly seen metrics from the literature

(load profile, PAR, cost).
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Chapter 3

Problem Under Investigation

There are a number of points of focus within this dissertation; the predominant

problem, however, relates to the alleviation and balancing of the load on trans-

formers within the electric grid. We will be observing and aiming to combat this

problem by controlling the charging of electric vehicles (EVs) within the grid.

The work investigated in this dissertation will assume the existence of either an

implementation of a Smart Grid (SG) system, or a means of networked commu-

nication between the electric vehicles.

3.1 Demand-Side Management

The standard electric grid lacks any computation power or control over its own

operation; this is not the case within an SG. Demand-side management (DSM)

is an important area within the domain of SGs. The concept of DSM revolves

around the control of energy consumption from the consumers’ side, as opposed

to the normal management from the suppliers’ side. The goals in this practice

for the energy supplier are typically to reduce the peak load, and reshape the

load throughout peak and off-peak times in order to reduce the amount of fluc-

tuation. The aspect of DSM that we will be focusing on is in ‘load-shifting’;

this takes advantage of the flexibility of operation of certain appliances at the

consumers’ side, such as washing machines, dryers, and most importantly, EV
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3. Problem Under Investigation

chargers. These devices, known as ‘shiftable’ appliances, need only to complete

their operation within a certain time frame; in our focus, EV chargers, this is

typically simply that the EV needs only to be charged by the departure time of

the user, with minimal need for the EV to have a high state of charge (SoC) in

the interim. DSM operates in this manner by activating/deactivating shiftable

appliances when the load demand gets high/low, allowing for the leveling out of

the load profile, and reducing the strain on transformers within the grid. The

standard grid differs heavily from this in that the EVs would simply charge once

plugged in until they reach 100% SoC, adding to the already high load during

peak hours.

3.2 Transformer Load

The level and stability of transformer load within the grid can impact it greatly.

At peak times we see spikes in the transformer load, while during off-peak times,

the load can drop dramatically; these fluctuations put a strain on the transformers

and can degrade power quality, cause voltage problems, and damage to equipment

on the grid [5]. In many cases, we also must resort to the use of ‘peaking plants’

which are operated only at peak times to alleviate the load. The control of this

load profile and reduction in peak demand could increase grid sustainability due

to the reduced overall cost and carbon emissions from reduced numbers of peaking

plants. This issue looks to become a bigger issue due to the increasing consumer

demand for plug-in EVs in recent years as they have become more viable for

everyday use; this is due to the amount of power used in charging these EVs, as

during charging time, an EV can almost double the average household load [5].

In this situation, DSM will become a necessity to continue the management of

the electric grid; this dissertation looks toward creating an autonomous DSM

to tackle this problem under the strain of EVs by using stochastic bio-inspired

search.
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3. Problem Under Investigation

3.3 Peak-to-Average Ratio

Peak-to-average ratio (PAR) is calculated as the load at the highest peak in the

specified time period, divided by the average load across said time period. It is

a useful metric in measuring the amount of fluctuation in the transformer load,

but has the drawback of not representing the level of the load. For example, if

a system remains relatively stable at a high load, it will have a low PAR value,

close to 1.0 (optimal), while a system in which the load begins high but drops

dramatically, we will see a high PAR, despite the potential that almost all of the

load on the transformers is at the lower level. As such, while we will be analysing

the PAR throughout this study, we will also be analysing many other factors to

ensure a complete picture of the system.

3.4 Electricity Cost

The final aspect that we will be investigating is within the reduction of costs to

the consumer for the electricity used in charging their EV. Electricity companies

provide a number of price plans which give different rates per unit (kilowatt-

hour, kWh) depending on the time of electricity usage. As such, moving non-

essential energy usage from a peak time to an off-peak time reduces the cost to

the consumer despite using the same amount of electricity. In this dissertation we

look toward using DSM to load-shift in a number of ways, including load shifting

to reduce the overall cost of electricity used to the users.

3.5 Summary

In summary, this dissertation aims to tackle the problems of high transformer

load, high PAR, and high cost of electricity within the grid. The focus will be

on the charging of EVs in a grid that will be simulated using the open source

simulator GridLAB-D, as mentioned in the previous chapter. The solutions to the

simulated scenarios will be developed using a stochastic bio-inspired search. We

will discuss the algorithm for performing this search in the next chapter, before

moving on to the implementation details in Chapter 5.
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Chapter 4

Genetic Algorithms

4.1 Overview of Genetic Algorithms

Evolutionary Algorithms (EAs), a.k.a. Evolutionary Computation systems, are

strongly influenced by the theory of evolution by natural selection. These algo-

rithms have been with us for some decades and are very popular, perhaps, due

to their successful application in a range of different problems, ranging from the

automated design of circuits [22, 23], to the automated optimisation of game con-

trollers [24].

Different research areas have been explored within EA (e.g., problem difficulty [25,

26, 27, 28, 29, 30, 31], semantics [32, 33]) . In this dissertation, however, we focus

our attention on their applicability. In particular, we focus our attention on the

use of Genetic Algorithms (GAs) due their representation (bitstring) which is

suitable for the problem used in this work (see Chapter 3).

GAs utilise several key components from the theory of evolution, such as natural

selection and mutation. A potential solution is defined within GAs as an indi-

vidual; the group of these potential solutions is the population. GAs also rely on

crossover (reproduction) between individuals in order to converge on an optimal

solution to the defined problem. The algorithms move through generations of

individuals, evaluating their ‘fitness’ and executing mutation and crossover logic

in order to grow towards a fitter population.

10



4. Genetic Algorithms

4.2 Operation of Genetic Algorithms

In order to implement a GA, there are a number of key considerations. We must

define the structure of the individuals; i.e., the potential solutions to our problem.

In this dissertation, the solutions are schedules for the EVs to follow; as such, the

individuals are 2D binary arrays where each entry is an on/off state for a specific

EV (row) at a specific time (column). In simpler implementations, it could be

a 1D binary string of a set length. In the following example, we will use this

individual representation. Another key component is the fitness function; this

can be considered as a black box into which we pass individuals. The fitness

function will then return a value that grades the fitness of that individual, based

on how good/bad a solution it is to the problem at hand. The fitness function is

the most important part to the effective operation of the GA, as it is what allows

the GA to converge on an optimal solution. There are then many different means

of mutation and crossover that can be implemented in a GA; we will look at two

such algorithms in the following example.

In this example we are looking to find a 1D binary string, of length 8, that

contains only 1s; this is known as the OneMax problem. In this situation, we

define the individuals to be an 8-digit binary string, and can allow the generation

of the set population size to randomly create that number of strings. The fitness

function in this situation is very simple, we can just return the number of 1s in

the string that has been input to the function, as illustrated in Figure 4.1.

Figure 4.1: An illustration of the OneMax fitness function operating on an 8-digit
string.

Figure 4.2 illustrates a mutation operator for the OneMax problem; in this

case, we simply set a mutation rate which will act as the probability of mutation

occurring in each bit of the individual, with the result of the operator being a

swapping of the selected bit. Selection is then used to decide which individuals will

undergo crossover within this generation; this can be done by choosing a random

group (of a predefined size) of individuals in the population, and performing

11



4. Genetic Algorithms

crossover on the two fittest individuals. Crossover within this problem is also a

simplistic operation, in which two individuals that have been selected, are split

at a randomly selected index, and combined with each others opposing parts,

resulting in two new individuals for the next generation.

Figure 4.2: An illustration of the OneMax mutation operator operating on an
8-digit string, where the point of crossover has been chosen as the midpoint of
the individual.

Figure 4.3: An illustration of the OneMax crossover function operating on an
8-digit string.

The final concept within GAs that was undertaken in the implementation of this

study is that of ‘Elitism’. Elitism involves the retention of the fittest individual of

each generation, to ensure that there is no regression between generations in the

best fitness. The result of this practice is that as the generations progress, the

best fitness of each generation can only increase or remain the same, improving

the success rate of the algorithm in converging on an optimum solution.

As stated at the beginning of this chapter, GAs were chosen for this study due

their representation (bitstring) which is suitable for the problem used in this

work. As well as this GAs have the benefit of scaling to larger numbers of devices

whilst only increasing the size of the chromosome encoding, as well as to different

types of device with the same algorithm. This flexibility is not available through

alternative approaches.
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Chapter 5

Implementation

5.1 Approach

The implementation approach to this experiment is to simulate an electric grid,

under which we will be simulating a set number of EVs. We will then analyse

the transformer load, peak-to-average ratio (PAR) values, final state of charge

(SoC) of the EVs, and the cost of electricity used within these simulations. The

simulations will be run for each of the algorithms developed so that comparisons

can be made between all approaches under the same simulation parameters. The

simulations will also be run multiple times using different numbers of houses with

EVs to show how each approach scales to different grid sizes.

The method by which the algorithm will operate will be by designing a schedule

for the EVs to follow throughout the simulation; the aim is for these schedules to

provide improvements in the goals that each algorithm sets out to achieve. The

schedules themselves will be a set of instructions for the EVs to follow throughout

the night, with a decision to be made at every time slot during the simulated time

period. The decisions available to the EV will be to either charge or not charge for

that time period; as such, we will use schedules with a structure of 2D matrices

of binary values with each column representing a time slot in the simulated time

period, and each row representing an EV in the simulation. The GA will operate

by creating a population of individuals (randomly generated), with each individ-

ual being a potential schedule to use. The GA will then evolve through the set

13



5. Implementation

number of generations, improving the solutions as it progresses until reaching the

final generation, at which point it will output the fittest schedule as the one to

be used for that day. This process is repeated for each day within the simulation,

for each different fitness function implemented, and for each number of EVs used

in the simulation.

5.2 Technical Details

In this section we will discuss in detail some of the technical details of the im-

plementation, looking toward the technologies used and what modifications were

required, as well as some of the technical issues experienced and downsides to the

technologies used.

5.2.1 GridLAB-D

GridLAB-D is a “power distribution system simulation and analysis tool”; it

was developed by the United States Department of Energy in collaboration with

industry and academia [34]. GridLAB-D provides a highly-customisable set of

modules which can simulate a huge number of household appliances, including

EV chargers. It also allows for further customisation through the integration of

new modules, but this functionality was unnecessary during the implementation

of this dissertation, as a modified version of the EV charger module provided all

needed functionality. The operation of GridLAB-D relies on the input of ‘Mod-

els’, which specify the structure of the electric grid to be simulated, along with

the number of EVs, houses, and the types of appliances within each household.

These models can be specified to a high degree of accuracy, including using de-

fined schedules for appliances and lights, which can be altered depending on the

time of year. This could be used to implement the simulation of the approaches

implemented through both the Summertime and Wintertime electricity pricing

schedules.

Modifications to the included modules and the system itself are possible due to

14



5. Implementation

the open-source nature of GridLAB-D. It is a relatively straightforward process to

download the source version of the system, make modifications where needed, and

recompile an altered version of the simulation tool. This was invaluable during

the implementation stage of this dissertation, and the system’s flexibility was the

main reason for choosing it over alternatives, as it allowed the modification of the

EV charger module in a number of ways. While the light systems in GridLAB-D

allow the specification of schedules, many other modules do not; notably, the EV

charger module. The experiments of this dissertation use schedules output by

the GAs implemented, so a modification needed to be made to the EV charger

to be able to read these output schedules and act accordingly throughout the

simulation. There also needed to be alterations to allow a higher EV charger

power, an increase from the standard plug-in charging 1700W to 3300W for some

of the simulations.

5.2.2 Python & Pyevolve

Python was chosen for the GA implementation in this dissertation, as well as

the general purpose scripting done to ensure all output was merged together and

that the results were in a format easily interpreted for graphing. There were three

main reasons why this language was chosen. Firstly, due to the simple syntax,

interpreted nature of program operation, and simple installation process, it is

very straightforward and fast to develop programs and scripts when compared to

other languages; this allowed for rapid development and testing of the algorithms.

Secondly, Python provides powerful integration with the operating system, mak-

ing it very straightforward to develop the scripts needed to ensure all output was

consistent, multiple sets of results were compiled into readable CSV files, and

the files were available in a single place. However, some ‘Bash’ scripts were also

created to automate the entire compilation process of GridLAB-D, along with the

running of all Python programs in succession to generate and compile all data

together and plot the results.

The final reason for choosing Python was because there are a huge number of li-

braries available to Python that allow for simple manipulation of data and output,
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which can increase the speed of development further due to the instant availabil-

ity of commonly-used logic. One of the key libraries used in this dissertation was

Pyevolve, a genetic algorithm framework for Python [35], which provides many

of the commonly-used operators in genetic algorithms, allowing us to explore the

numerous approaches undertaken.

5.2.3 MATLAB

MATLAB was used for the final compilation of results for all simulations, as well

as the plotting of all graphs. The output from GridLAB-D, along with all status

output from the GAs were compiled together in CSV files by the Python programs

implemented, this was then easily read by MATLAB and operated upon. MAT-

LAB scripts were developed that could be run from command line to generate

the tables and graphs needed for the results in this dissertation, these commands

were then integrated into the Bash scripts mentioned previously, such that the

entire operation, from generating models for GridLAB-D, through the running of

GridLAB-D for all scenarios and algorithms, to the compilation/plotting of re-

sults in MATLAB, were automated through the execution of a single Bash script.

Thousands of experiments were run in the investigation of the functions imple-

mented, as such, MATLAB was a necessary tool in compiling and plotting results.

5.3 Fitness Functions

Three fitness functions were implemented for this dissertation; as such, the GA

was run three times for each simulation, once with each of the fitness functions, to

generate three sets of schedules which would then be used in GridLAB-D. These

fitness functions are integral parts of the GA, they define the fitness evaluations

of individuals for the GA to be able to converge on a solution that is overall

‘better’ than in any previous generation.

The fitness functions operate on individuals passed in as argument, they analyse

the individual and return a score which will be used by the GA to compare to
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other individuals. In these experiments, the individuals are the potential sched-

ules to be used by the EVs each day of the simulation. The representation in

this regard is a 2D matrix of binary values, with each row representing an EV,

and each column representing a time slot in the simulation. The value at each

point symbolises whether the EV (that row) should be on or off at that time slot

(column). In order to get a full picture of the simulation, the fitness functions are

also able to read the model generated, and see what initial SoC each EV has, as

well as the capacity of each battery to infer how much power would be required to

charge them. As well as this, the third fitness function is also able to read pricing

information for the price plan in use. The fitness functions can then evaluate

each individual based on overall transformer load on the grid at any time, as well

as the amount of charge each car gets, and when during the night the power is

supplied.

The GAs themselves share a configuration file which details all of the parameters

for the operations of the GA. This parameters file includes all of the parameters

detailed in Table 5.2 in the ‘Experimental Setup’ section of this document.

5.3.1 Steady Charging Fitness Function

The operation of this fitness function is the most straightforward of the three

fitness functions implemented. The GA reads in details about the EVs in the

simulation from the model, including initial SoC for each car each day, and the

capacity of the batteries. From this, it can calculate how many time slots each

EV will need to be able to achieve a specified charge value (for the experiments

run for this dissertation, the target is 100% final SoC). The score is then cal-

culated based on how close each EV is to this charge level after all time slots,

with a score of 1.0 for each EV being the maximum score attainable. The score

awarded per EV is based on a calculation of the percentage final SoC achieved,

with the score being extracted as a linear function of the SoC value; the line

ranges from a score of 0.0 at the base percentage possible, to a score of 1.0 at

the optimum final SoC, the score then drops from that point to 0.0 again at the

final SoC specified. Figure 5.1 illustrates the function under the experimental
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parameters given, where the base percentage is 40% and the upper boundary is

at 120%, at which point the solution would get 0.0 for that EV; going beyond this

point would give a negative value for this row (EV) in the solution. This shape

was chosen to encourage a general growth toward the optimal solution, with a

quick drop in fitness for EVs that take more than the target amount of electricity

during the schedule. The specification of a sharper penalty in score for an EV

Figure 5.1: Plot of fitness score awarded per EV based on final SoC achieved.

going above its needed charge ensures that the load on the transformers remains

at the lowest level it can be overall, whilst still achieving the specified final SoC

target for each EV in the system.

5.3.2 Standard Deviation Fitness Function

This fitness function works in a similar manner to the steady charging fitness

function (illustrated in Figure 5.1) for a large portion of its execution; however,

once it reaches an average score of 0.8 per EV under the conditions of the previous

fitness function, it then is able to supplement the fitness score with another
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calculation. This is the point in which the fitness function analyses the standard

deviation of the load on the transformers in the system. This is calculated by

totaling all of the columns in the individual, showing the total number of EVs

charging at each time slot in the simulation; we are aiming to keep this as steady

as possible, so the target is a standard deviation of 0.0 for these values. Using

this analysis, the fitness function can award a further score of 0.5 per EV for

an optimal standard deviation value, giving a new optimum solution score of 1.5

per EV, with the score value being multiplied by the number of EVs to ensure a

representative score for the individual. The score awarded for standard deviation

is once again plotted on a line, in this case from 0.5 for an optimal standard

deviation of 0.0, to a score of 0.0 for the empirically calculated standard deviation

of 5.0. This line plot is illustrated in Figure 5.2.

Figure 5.2: Plot of fitness score awarded per EV based on standard deviation
value calculated across load on transformers.

5.3.3 Pricing Signal Fitness Function

The final fitness function developed targets a low cost to the consumer for the

electricity used during the simulated time period. To achieve this, the fitness
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function reads in the pricing signal data provided, which gives the price per

kWh of electricity at every time slot throughout the simulated day. This fitness

function works in three stages, the first stage operates exactly as the second fitness

function does, where it runs the logic of the steady charging fitness function until

achieving an average 0.8 score per EV; after this, the fitness function evaluates

the cost of the electricity used. To do this, we once again plot the score to award

against the targets to achieve. To plot this, we must set minimum and maximum

prices to award scores of 0.0 and the maximum score of 0.7. The minimum price

is calculated as the cost of electricity if all necessary units were used to charge

all EVs at the off-peak electricity rate; the maximum rate is this number of units

at the peak rate. Figure 5.3 shows this plot from minimum to maximum price

going from a score of 0.7 to a score of 0.0. The score attained is multiplied by

the number of EVs to give a representative score for the individual overall based

on the cost. Upon achieving an average of 0.5 per EV out of the maximum 0.7,

Figure 5.3: Plot of fitness score
awarded for the individual based on the
total cost of electricity used to the con-
sumers in the simulation. This simpli-
fied plot shows the score awarded from
0.0 (the minimal cost possible) to 1.0
(the maximum cost possible).

Figure 5.4: Plot of fitness score
awarded for the individual based on the
standard deviation of the transformer
load on either side of the price rate in-
crease.

the fitness function moves onto the third and final stage, in which it calculates

and rewards a balanced transformer load on either side of the electricity rate

switchover. We expect to see a spike in transformer load at this point as this
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would reduce the cost overall, so our aim is to reduce the PAR by balancing

either side as much as possible. The logic for this works in a similar way to the

second fitness function, except that the plots are split between either side of the

price change, which the fitness function can see from the pricing signal file. Once

the values have been split at this point, each side works the same way as the

standard deviation fitness function, with a maximum score of 0.15 per EV on

either side, giving a total maximum score of 0.3 per EV; each of these are once

again multiplied by the number of EVs to give the final score. These identical

plots are illustrated in Figure 5.4.

The sum of these scores is then used as the score for the individual, giving a

maximum score of 2.0 per EV for each individual under this fitness function.

5.4 Experimental Setup

Throughout the experiments, a number of constants were maintained to ensure

fair comparisons between results. The simulated EV batteries had a capacity of

24kWh, based on the standard battery in a Nissan Leaf, which is one of the more

popular EVs in Ireland currently. The experiments were run with the default

1700W charger used in GridLAB-D; however, to ensure scalable operation of the

algorithms, the experiments were also run with 3300W chargers, the standard

charger of a Nissan Leaf; the plots for these tests are available in the Appendix.

The simulations are run from the cars arriving home at 18:00, until 07:30 when

they leave. The initial SoC upon arriving home ranges from 40-50%, and the

experiments target a final SoC of 100% by 07:30. The pricing signal used is

the Electric Ireland ‘Standard Electricity NightSaver’ plan1 on the Summertime

schedule; on this plan currently, the peak time is from 9am until midnight, with

a rate of e0.2062 per kWh, and the off-peak period is from midnight until 9am,

with a rate of e0.1019 per kWh. These experimental parameters are summarised

in Table 5.1.

There were also a number of constant parameters used in the operation of the GA

under all fitness functions to ensure directly comparable results. These values are

illustrated in Table 5.2.

1Source: https://www.electricireland.ie/switchchange/allPricePlans.htm
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Parameter Value

Charger Input 1700W
Decision Frequency 30 mins
Number of Time Slots 28
Initial SoC 40-50%
Target Final SoC 100%
EV Battery Capacity 24kWh
Number of EVs Simulated 10, 30, 60
Number of Days Simulated 28
Arrival/Departure Time 18:00/07:30
Peak Electricity Price e0.2062
Off-Peak Electricity Price e0.1019
Peak/Off-Peak Hours 09:00-00:00/00:00-09:00

Table 5.1: Summary of Experimental Parameters.

Parameter Value

Chromosome Width Number of time slots
Chromosome Height Number of EVs
Population Size 100
Number of Generations 200
Crossover Rate 0.5
Mutation Rate 0.001

Table 5.2: Summary of Genetic Algorithm Parameters.

As discussed previously, an edited version of GridLAB-D is used for the simulation

of the electric grid, with the alteration allowing for the control of EV charging

throughout the simulation; this is based on the schedules generated by the three

fitness functions used. Alongside these simulations, results are also collected from

an unedited version of GridLAB-D running a simulation of a normal grid in which

the cars charge as soon as they are plugged in until completion; we refer to this

as the ‘Greedy Approach’ due to its action of taking as much power as possible

until full. The expected behaviour of the greedy approach is illustrated in Figure

5.5, in which we see full load from the beginning until a sharp drop when the

EVs complete charging.
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Figure 5.5: Expected load profile of the grid when charging EVs under the greedy
approach.
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Chapter 6

Experimental Results

This chapter will present and discuss the results obtained through the experiments

undertaken. The graphs shown are generated by MATLAB from the output of

GridLAB-D when utilising the schedules generated by the genetic algorithm with

the three proposed fitness functions. We will focus on a number of important

factors, as discussed in Chapters 2 and 3: transformer load, final state of charge

(SoC), peak-to-average ratio (PAR), and the cost of electricity used when dis-

cussing these results throughout this chapter. We will also take a look toward

the growth in fitness through generations within all of the fitness functions used.

Throughout all of the graphs and discussion, we will be looking at the three dif-

ferent fitness functions used in our GAs, as well as the ‘greedy approach’, which

is simply the basic system of all EVs charging immediately when plugged in, and

continuing until reaching 100% SoC (whenever possible).

6.1 Transformer Load

In this section, we will look at the effects of the algorithms on the transformer

load throughout the time periods specified. Figure 6.1 shows the transformer

load within the grid at each time slot simulated for 10 EVs. This is averaged

across the 28 day cycle used in the experiments, with the transformer load at

each timeslot being denoted in kWh.

The plots shown in this graph represent the greedy approach and the proposed
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approach with the three fitness functions detailed in Chapter 5. We can clearly

see the expected behaviour from the greedy approach, in that all EVs immedi-

ately begin charging at 18:00 when they arrive home, keeping the transformers

under a 17kWh load (recall that 1.7kWh is the plug-in charging value for each

car specified in Table 5.1) until there is a sharp drop to 0kWh between 01:30

and 03:30 as the EVs reach 100% SoC. We can see the rate at which the load

drops increase after the first timeslot; this is expected, as we should see the EVs

with the highest initial SoC complete charging first, before other EVs complete

charging in the following timeslots.

Figure 6.1: A comparison of the transformer loads under the 3 fitness functions
used, as well as with the greedy approach (the results shown are for 10 EVs).

The three fitness functions show stark differences in transformer load to the greedy

approach. The steady charging fitness function (denoted by GA in all figures),

which simply tries to charge the EVs to 100% in a balanced way throughout the

time period, shows a far lower load on the transformers, varying between 50-60%

of the peak load from the greedy approach. We can see however, that it does show

some fluctuations, dropping and increasing sharply throughout the time period,

leading to several peaks and troughs in the transformer load.
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The standard deviation fitness function (denoted by GA w/StdDev), which takes

into account the standard deviation of the number of EVs charging at any one

time, shows a much smoother transformer load throughout the time period, ap-

proximately at the average load of the first fitness function. The plot shows only

small amounts of fluctuation in either direction, and has no real peaks or troughs

in transformer load, showing a marked improvement over the first fitness func-

tion.

The pricing signal fitness function (denoted by GA w/Pricing Signal) has a very

different set of goals than the first and second. This fitness function takes into

account the Electric Ireland ‘Nightsaver’ summertime pricing signal as discussed

in Chapter 5, and aims to reduce the cost of electricity to the consumers. This

leads to the spike in transformer load from 23:30 to 00:00, where the price drops

to almost half of the day rate. The fitness function also aims to smooth out the

transformer load at either side of this spike, leading to a relatively stable trans-

former load from 18:00-23:30, and from 00:00-07:30.

Figures 6.2, 6.3, 6.4, and 6.5 show the same plots as 6.1 but with the standard

deviation of the different loads throughout the 28-day period simulated. From

these plots, we can see the stark difference in results between the steady charging

function and the standard deviation function, with the latter achieving a much

lower standard deviation throughout the time period despite the changes to EV

initial SoC throughout this time. We can also see the zero standard deviation on

either side of the load drop in the greedy approach, but with fluctuations during

the drop itself; this is due to the different initial SoCs of the EVs, where a higher

initial SoC EV will be switched off sooner, leading to an earlier drop than others.

Figure 6.6 shows the same plots for a simulation with 30 EVs. We can see that

the greedy approach takes the same shape, but with a much higher load due to

the larger number of EVs. The first fitness function also shows a very similar plot

to the scenario with 10 EVs; the plot is slightly smoothed out, but still shows a

number of small peaks and troughs. However, the second fitness function, which

takes into account the standard deviation, shows a massive improvement with

almost no fluctuation at all in the transformer load throughout the time period.

We have seen from Figures 6.2, 6.3, 6.4, and 6.5 how much of an impact the
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Figure 6.2: Transformer load under the
greedy approach for 10 EVs; also dis-
playing the standard deviation across
the 28-day period as error bars.

Figure 6.3: Transformer load under the
GA approach with the steady charging
fitness function for 10 EVs; also dis-
playing the standard deviation across
the 28-day period as error bars.

Figure 6.4: Transformer load under
the GA approach with the standard
deviation fitness function for 10 EVs;
also displaying the standard deviation
across the 28-day period as error bars.

Figure 6.5: Transformer load under the
GA approach with the pricing signal
fitness function for 10 EVs; also dis-
playing the standard deviation across
the 28-day period as error bars.

standard deviation fitness function has on reducing the load fluctuation across

the time period for 10 EVs; we will look at this closer later when discussing the

PAR of the different algorithms.

The third and final fitness function shows a similar plot once again for 30 EVs,

with a spike at the switchover to the night rate. We see a smaller spike however

27



6. Experimental Results

Figure 6.6: A comparison of the transformer loads under the 3 fitness functions
used, as well as with the greedy approach (the results shown are for 30 EVs).

as compared with 10 EVs when using this fitness function; we will see later how

this impacts the SoC and PAR.

Finally, Figure 6.7 shows the same plots for a 60 EV simulation. We can see

that the greedy approach is once again following the same plot at a higher load,

and the first two fitness functions operate in a similar manner when scaled to

this number of EVs, with a very consistent and smooth plot once again for the

second fitness function. The third fitness function however shows a smaller peak

again when brought to this scale; we will examine this later alongside the results

for 30 EVs.

6.2 State of Charge

In this section we look to the final SoC of the EVs when using the greedy ap-

proach, and contrast these results with the final SoC when using the three GA

fitness functions developed. Figure 6.8 illustrates these results in a bar plot

showing the initial SoC alongside the four separate final SoCs for the 10 EVs in
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Figure 6.7: A comparison of the transformer loads under the 3 fitness functions
used, as well as with the greedy approach (the results shown are for 60 EVs).

the simulation, averaged over the 28 day period.

The results show that the initial charge averages in the area of 45%, expected due

to the range of 40-50% initial SoC for each EV each day. The final SoCs differ

for the different algorithms.

The greedy algorithm, as expected, reaches 100% SoC for every car; this is due to

the approach of charging all EVs immediately until fully charged, and only then

stopping. The three forms of the GA fitness functions show final SoCs of approx-

imately 90%, with the first two fitness functions (steady charging and standard

deviation) consistently achieving above 90%, and the third fitness function (pric-

ing signal) reaching 89-90% on average. This difference is due to how these fitness

functions target different goals to just reaching 100% charge, and do not reach

an absolute optimum solution within the generations under these conditions.

For the simulation with 30 EVs, illustrated in Figure 6.9, the results are almost

identical; this is true in particular for the greedy approach and the first two fit-

ness functions. The main difference with this scenario lies in the third fitness

function, which now only achieves approximately 85-88% on average. This out-

come is predictable through Figure 6.6, where we can see that the transformer

load does not spike as high after the price shift as it does for the 10 EV scenario,
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Figure 6.8: A comparison of the initial and final SoCs of the EVs under the 3
fitness functions used, as well as with the greedy approach (the results shown are
for 10 EVs).

leading to a lower amount of power supplied to the EVs on average. While the

SoC is not as high as with the other approaches, this fitness function has the

goals of reducing price and balancing load on either side of the price change; as

such, we will examine the different costs and PARs of the approaches later, so as

to analyse this trade-off.

Figure 6.10 illustrates the SoC in the same way as previous plots, for a 60 EV

scenario. We see once again a consistent 100% final SoC for the greedy approach,

as well as the above 90% final SoC from the steady charging fitness function we

have seen for 10 and 30 EV simulations. We do however see a slight drop in final

SoC for the second fitness function ( standard deviation) to just below 90%. This

shows a slight drop in the performance of this fitness function when brought to

such scale, but still within a small range. The third fitness function also shows a

drop over the 30 EV simulation, but with a smaller drop than was seen from the

10 EV to the 30 EV simulation. We now see approximately 84-87% final SoC for

EVs on average.

Figure 6.11 shows the initial and final SoCs at each day within the simulated

30



6. Experimental Results

Figure 6.9: A comparison of the initial and final SoCs of the EVs under the 3
fitness functions used, as well as with the greedy approach (the results shown are
for a 30 EV simulation, but show 10 EVs for clarity).

Figure 6.10: A comparison of the initial and final SoCs of the EVs under the 3
fitness functions used, as well as with the greedy approach (the results shown are
for a 60 EV simulation, but show 10 EVs for clarity).
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time period for a single EV picked randomly from the 10 EV simulated scenario.

As we can see from this figure, the greedy approach holds a consistent 100% final

SoC, while the GAs used fluctuate on either side of 90%, with two instances in

which the second fitness function fell just short of 85%.

Figure 6.11: A comparison of the initial and final SoCs of a single EV under the
3 fitness functions used, as well as with the greedy approach (the results shown
are for a 10 EV simulation).

Figures 6.12 and 6.13 show the same plot for single vehicles in the 30 and 60

EV simulations, showing a much more sporadic trend in final SoC for both the

second and third fitness functions as compared with the 10 EV simulation in

Figure 6.11.

This shows that as these functions are targeting goals other than a specific final

SoC, the final SoC for individual EVs can become compromised to a degree in

order to achieve better average transformer load, PAR, and electricity cost for

the overall simulation.
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Figure 6.12: A comparison of the initial
and final SoCs of a single EV in the 30
EV simulation using each approach.

Figure 6.13: A comparison of the initial
and final SoCs of a single EV in the 60
EV simulation using each approach.

6.3 Peak-to-Average Ratio

PAR is a measure of the fluctuation of the power load on the transformers in this

grid simulation. It is calculated as the peak power reached divided by the average

power throughout the time period. An ideal situation in this regard would be

a PAR of 1.0, which would show no fluctuation from the average to the highest

peak throughout the time period. Figures 6.14 and 6.15 show comparisons of

the PAR for the three fitness functions within the 10 EV simulation, with 6.14

also showing the PAR from the greedy approach.

We can see from these figures that the greedy approach, as well as the first fitness

function, show high PAR values throughout the simulation’s 28 day time period.

While the steady charging fitness function showed improvements in the overall

load compared to the greedy approach, there is no such improvement seen when

inspecting the PAR. We can see that the two approaches intermittently switch

between being higher and lower than each other, with a number of spikes from

the steady charging fitness function on days 14, 15, and 19.

Figure 6.15 shows us a clearer picture of the three fitness functions used. While

the first fitness function showed no improvement in PAR to the greedy approach,

we see a dramatic improvement in the second fitness function. With the added

goal of a low standard deviation of transformer load, this fitness function has

reduced the PAR heavily to close to the ideal figure of 1.0, ranging from approxi-

33



6. Experimental Results

Figure 6.14: PAR comparison for
the 10 EV simulation, showing the
greedy approach alongside the three
fitness functions used (only the first
10 days are shown for clarity).

Figure 6.15: PAR comparison for the
10 EV simulation, showing only the
three fitness functions used (only the
first 10 days are shown for clarity).

mately 1.05 to 1.15. The third fitness function, due to its target of a low standard

deviation on either side of the price drop, has a lower overall PAR than the first.

It fluctuates between 1.2 and 1.45 whereas the first varies between 1.4 and 1.8,

giving a much lower PAR overall despite a small number of days with a slightly

higher PAR.

To analyse how the fitness functions are able to scale, we also look to the PAR

in the 30 EV, and 60 EV simulations. Figures 6.16 and 6.17 show the PAR

from all approaches for both of these simulations. An interesting point to note

is that while the PAR of the second fitness function is generally very close to

optimal, both in the 10 EV and 60 EV simulations, in the 30 EV simulation we

see a consistent PAR of almost exactly 1.0.

We also see a trend of decreasing PAR for all of GAs when used with larger

numbers of EVs, due to the added flexibility of the transformer load with a larger

number of potential states at each time slot. This is highlighted by the fact that

while the first fitness function showed a higher PAR than the greedy approach on

many days within the 10 EV simulation, the algorithm shows consistently lower

PAR than the greedy approach when used with 30 EVs, and the gap widens

further when the simulation scales up to 60 EVs.
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Figure 6.16: PAR comparison for
the 30 EV simulation, showing the
greedy approach alongside the three
fitness functions used (only the first
10 days are shown for clarity).

Figure 6.17: PAR comparison for
the 60 EV simulation, showing the
greedy approach alongside the three
fitness functions used (only the first
10 days are shown for clarity).

6.4 Cost of Electricity

The cost of electricity used was the final focus of these experiments. The pricing

signal fitness function specifically targets a lower overall cost to the consumer for

the electricity used in charging the EVs; Figures 6.18 and 6.19 illustrate these

costs for each of the approaches for the 10 EV simulation. Figure 6.18 shows

the direct costs of electricity of each algorithm in the simulation. However, this

representation is flawed due to the slightly lower SoC attained by the GAs when

compared to the greedy approach; as such, Figure 6.19 also shows the costs of

each algorithm, but with the total power supplied for each approach normalised

to match the lowest power supplied by a GA for each day. This gives a precise

comparison of the cost of each approach when using exactly the same number of

‘units’ of electricity. Figure 6.20 then shows the average cost per car for these

normalised results, to better illustrate how much each consumer would pay under

each approach.

From these figures we can see clearly that there is a considerable decrease in the

cost of electricity to consumers using any of the GAs implemented.

Table 6.1 gives a more detailed view of the results displayed for the 10 EV sim-

ulation in Figures 6.19 and 6.20. It illustrates the breakdown of exactly when

electricity is used during each approach, alongside the overall cost, and the per-
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Figure 6.18: Cost comparison for
the 10 EV simulation, showing the
overall cost of the greedy approach
alongside the three fitness functions
used.

Figure 6.19: Normalised cost com-
parison for the 10 EV simulation,
showing the overall cost of each ap-
proach, normalised to the same num-
ber of units of electricity used.

Figure 6.20: Normalised cost comparison for the 10 EV simulation, showing the
average cost per car of each approach, normalised to the same number of units
of electricity used.

centage savings made using each of the GAs over the greedy approach. We can

see that the first two fitness functions show exactly the same cost per car, an

almost 20% reduction by balancing the transformer load throughout the night.
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The third fitness function however, shows an average cost reduction of almost

one third (31.1%) by using the pricing signal to target a low cost. As can be seen

in the usage columns, these figures use the exact same number of units overall

throughout the night, so all costs are measured for the same amount of electricity

supplied. Tables 6.2 and 6.3 show these results for the 30 and 60 EV simula-

tions respectively, showing that while the first two fitness functions become even

more effective at reducing costs with larger numbers of EVs, the gaps closes in

the savings between the third fitness function and the steady charging/standard

deviation functions.

Approach Units (kWh) Units (kWh) Cost (e) Cost (e) Cost
Peak Off-Peak Total Per Car Reduction

Greedy 102.47 26.68 23.85 2.38 -
Steady Charge 57.00 72.15 19.11 1.91 19.7%
Standard Dev. 56.58 72.57 19.06 1.91 19.7%
Pricing Signal 31.01 98.14 16.40 1.64 31.1%

Table 6.1: Analysis of Electricity Usage and Cost for the 10 EV Simulation
(Averaged across 28 days).

Approach Units (kWh) Units (kWh) Cost (e) Cost (e) Cost
Peak Off-Peak Total Per Car Reduction

Greedy 307.78 44.56 68.00 2.27 -
Steady Charge 171.22 181.12 53.76 1.79 20.9%
Standard Dev. 163.80 188.53 52.99 1.77 22.0%
Pricing Signal 128.23 224.10 49.28 1.64 27.5%

Table 6.2: Analysis of Electricity Usage and Cost for the 30 EV Simulation
(Averaged across 28 days).

6.5 Growth of fitness within the GAs

In order to get a full picture of the fitness functions and the results discussed, we

must look toward the performance of the algorithms in a more abstract manner.

Figures 6.22, 6.24 and 6.26 show the growth in the best fitness of individuals
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Approach Units (kWh) Units (kWh) Cost (e) Cost (e) Cost
Peak Off-Peak Total Per Car Reduction

Greedy 617.41 73.43 134.79 2.25 -
Steady Charge 335.29 355.56 105.37 1.76 21.8%
Standard Dev. 315.26 375.59 103.28 1.72 23.4%
Pricing Signal 272.58 418.26 98.83 1.65 26.7%

Table 6.3: Analysis of Electricity Usage and Cost for the 60 EV Simulation
(Averaged across 28 days).

per generation for the steady charging, standard deviation, and pricing signal

fitness functions respectively. Similarly, Figures 6.21, 6.23 and 6.25 show the

growth in the average fitness of the population at each generation for the three

fitness functions.

We can see from the first plot (Figure 6.22) that the steady charging algorithm

both achieves very close to the optimum solution quite quickly, but also scales

very well to 30 and 60 EVs, still achieving almost exactly the same level of fitness

with these numbers of EVs. The standard deviation function (Figure 6.24) then

shows a slight decline overall due to the more complex logic implemented, but

also a decrease in the fitness for the 60 EV approach, showing that the algorithm

may have difficulty when the number of EVs increases further. The third plot,

showing the pricing signal function (Figure 6.26), once again shows an overall

decrease in fitness, again due to further complexity in the algorithm when consid-

ering the level of charge, standard deviation of load on either side of price spike,

and the pricing schedule information. However, we see very little change in fit-

ness growth between 30 and 60 EVs, which shows promise for higher numbers of

EVs, particularly with the reductions in cost for the results found in the previous

section. When looking at the average fitness plots ( 6.21, 6.23 and 6.25), we

can see a similar trend to the best fitness plots, but at a slightly lower level, as

would be expected.

We can see that these figures initially grow very rapidly during the early gener-

ations, but following the region of the 40th-60th generation, begin a very slow

growth toward the optimum solution (1.0). We can also see that the first two

fitness functions (steady charging and standard deviation) reach very close to the

optimum solution, achieving almost 0.99 for the steady charging function, and
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Figure 6.21: A comparison of the
convergence of the steady charging
fitness function under 10, 30, and
60 EV loads. The plot shows the
growth in average fitness of each gen-
eration.

Figure 6.22: A comparison of the
convergence of the steady charging
fitness function under 10, 30, and
60 EV loads. The plot shows the
growth in fitness of the fittest indi-
vidual of each generation.

Figure 6.23: A comparison of the
convergence of the standard devia-
tion fitness function under 10, 30,
and 60 EV loads. The plot shows
the growth in average fitness of each
generation.

Figure 6.24: A comparison of the
convergence of the standard devia-
tion fitness function under 10, 30,
and 60 EV loads. The plot shows the
growth in fitness of the fittest indi-
vidual of each generation.

consistently above 0.9 for the standard deviation function. The pricing signal

ranges between 0.82 to 0.88 in general, showing a lower fitness than the other

functions, but still generating excellent results.
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Figure 6.25: A comparison of the
convergence of the pricing signal fit-
ness function under 10, 30, and
60 EV loads. The plot shows the
growth in average fitness of each gen-
eration.

Figure 6.26: A comparison of the
convergence of the pricing signal fit-
ness function under 10, 30, and
60 EV loads. The plot shows the
growth in fitness of the fittest indi-
vidual of each generation.

6.6 Summary

In summary, we have seen improvements in performance from the three fitness

functions under the GA approach when compared with the greedy approach.

These improvements occur in PAR, average load, and cost; however, within these

simulations the greedy approach does consistently achieve 100% final SoC in all

scenarios, whereas the GA approach ranges from 8̃0% to 95%, depending on the

targets of the fitness function, and the number of EVs on the grid. This means

that there is a trade-off between the two approaches in this regard; this will be

discussed further in Chapter 7.
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Chapter 7

Conclusions/Future Work

7.1 Conclusions from the Experimental Results

From the results discussed in the previous chapter, we can see that all of fitness

functions used in our Genetic Algorithm (GA) show clear improvements in many

ways over the greedy approach. We will now discuss the individual results of each

fitness function.

7.1.1 Steady Charging Fitness Function

While this function showed a number of spikes in peak-to-average ratio (PAR)

throughout the simulated time period, in general it showed an overall reduced

PAR when compared with the greedy approach. It also showed a lower overall

load on the transformers, which is a factor that needs to be taken into account

when analysing PAR values. These two results combined show an reduction on

the strain that the transformers in the grid would be under, potentially leading

to a longer lifespan for the transformers and/or a reduction in the amount of

maintenance they would require.

With relation to final SoC, we see a lower level on average to the greedy approach,

but consistently within less than 10% difference. This may be undesirable for

a number of reasons, some users may need 100% charge every day, or there

may be adverse effects on battery lifespan when consistently only reaching 90%

charge. As such, if choosing to implement this approach, or any of the other GAs
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developed, this reduced expected final SoC would need to be weighed against the

benefits of the greedy approach in a real-world scenario. Alternatively, time could

be taken to tune these fitness functions so as to increase the final SoC, potentially

at the cost of some of the benefits of PAR and transformer load.

7.1.2 Standard Deviation Fitness Function

This algorithm showed much further improvement in PAR than even the steady

charging fitness function, under a 30 EV load on the grid, the second fitness

function was able to consistently achieve a PAR of almost exactly 1.0. This is

a huge improvement over the greedy approach and with an average transformer

load at the same/slightly lower level to the first fitness function, this approach

could give even better improvement in transformer lifespan and maintenance

costs. These savings could be passed to the consumers in a competitive electricity

market.

This approach however shows a slightly lower final SoC to the first fitness function

under 30 and 60 EV loads. Once again, the fitness function could be tuned to

increase the final SoC at the cost of a slightly higher average load or a slightly

higher PAR. An alternate concept could be to allow users to demand 100% when

needed (or at regular intervals to reduce the risk of impaired battery lifespan),

at a higher cost for the electricity used, leaving other users who may need a very

low final SoC the ability to avail of a lower cost to charge their EVs.

7.1.3 Pricing Signal Fitness Function

The final fitness function implemented had a different objective to the first two,

this targeted a lower cost to the consumers for electricity used during the simu-

lated time period. As is illustrated by the results in the previous chapter, this

goal was achieved in all simulated scenarios. In the 10 EV simulation this fitness

function reduced the costs of electricity by over a third when compared with the

greedy approach, whilst the other fitness functions reduced the costs by just over

20%. This result was gained at the cost of final SoC; however, from the results in

the previous chapter, we have seen that when the results are normalised to the

same amount of power supplied to the EVs, there is still a reduction in cost of
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over 30% over the greedy approach, as well as a reduction of just under 20% for

the first two fitness functions.

The final SoC within this approach is lower than the greedy approach, as well as

the two other fitness functions implemented. As with the other fitness functions

implemented, this could be improved at the cost of PAR, cost, and/or average

transformer load through tuning the algorithm. The use of a standard deviation

calculation on either side of the price change gives us a very low overall PAR

with this fitness function, so this could be sacrificed to improve the gains in other

areas if deemed less important.

7.1.4 Greedy Approach

While the implemented fitness functions under the GA approach all provide im-

provements over the greedy approach in a number of ways, it is the only one that

can consistently achieve 100% final SoC under these experimental parameters.

There are many situations in which this could be the most important factor,

particularly to the consumers; as such, this must be balanced against the im-

provements in other areas. It must also be taken into account that this, being

the standard approach, requires no computation from the grid or any smart grid

hardware/software to be implemented, while all other approaches would require

initial investment to be implemented.

7.2 Future Work

There are a number of areas that could be investigated further through future

work; in this section we will discuss some of these possibilities at a high level.

7.2.1 Real-Valued Encoding

One of the key areas that would be recommended after this dissertation would

be in the use of real values in the individuals so that the EV chargers have any

number of potential states of ‘charging’ instead of a binary on/off representation.

This would mean that even though an EV charger would have a plug-in charging

rate of 1700W, for example, we could generate a schedule such that in any time

43



7. Conclusions/Future Work

slot, the EV could be charged at any power from 0W-1700W, so that a more

fine-grained schedule can be generated. This could potentially lead to a further

improved PAR, final SoC closer to 100%, and reduced cost to the consumer due

to the higher level of control the GA would have over the schedules. This could

be implemented through the use of a Real-Value encoded GA.

In the early stages of this dissertation, this concept was investigated; a basic

real-valued system was implemented and designed to operate in the same way as

the GAs used. However, the fitness functions used for the GAs did not trans-

fer directly to the new real-valued encoding and did not converge on a solution

in the same way as the binary approach. This led to poor performance of the

results output by the GA with this encoding, despite the potential for a better

result than the binary encoding; as such, these results were not included in this

dissertation. The reason for the failure of the real-valued GA implemented was

in the fitness functions used; it was very difficult to design a fitness function that

operated well on both the real-value and binary encodings, but a fitness function

designed specifically for a real-valued encoding in this scenario holds the potential

to yield even better results than the approach used, and is a recommended area

for future research.

7.2.2 Use of Real-World Models within GridLAB-D

The focus of this dissertation was on the charging of EVs in the grid; as such,

only EVs were simulated on the grid within GridLAB-D. However, a more accu-

rate and informed view of the grid could be used alongside this or similar logic,

to show the gains of the different algorithms under these realistic circumstances.

There would then also be other issues to consider, such as the peak times of basic

household appliance electricity usage, and how this could be balanced alongside

EV charging. Research could also be undertaken to analyse how the existing

DSM ideas for household appliances could be integrated with the approach of

this dissertation, to give further improvements for both electricity consumers and

producers.
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7.2.3 Higher Numbers of EVs & The Use of Energy Stor-

age Units

Another area available to investigate lies in using higher numbers of EVs in the

grid simulations, to the point that the standard electric grid is unable to handle

to the same level as with 10, 30, or 60 EVs. Another angle would be to use a

variety of battery capacities, including ones much higher than the Nissan Leaf’s

standard 24kWh (examples include the Tesla Roadster’s 53kWh capacity, or the

Tesla Model S which has 60kWh or 85 kWh capacity, depending on specifica-

tion). In implementing these alternate scenarios, energy storage units could be

investigated as a means of mitigating the burden on the grid.

Alternatively, in the mentioned example of a higher number of EVs, the EVs

could, for example, have a higher range of initial SoC from 40%-90%, with a

target of 80% to be achieved by the morning. This would mean that at peak

times while appliances are used, we could use some of the >80% SoC EVs to

power household appliances to alleviate the load on the grid, whilst being able to

charge a small number of EVs (ones with the lowest initial SoC) simultaneously.

This could potentially lead to a more balanced load on transformers, as well as

proving feasibility of very large numbers of EVs on the grid.
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Appendix

Figures 1 and 2 illustrate the simulation scenario of 10 EVs using 3300W plug-in

charging power.

Figure 1: A comparison of the transformer loads under the 3 fitness functions
used, as well as with the greedy approach (the results shown are for 10 EVs
charging at 3300W).
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Figure 2: Cost comparison for the 10 EV simulation charging at 3300W, showing
the overall cost of the greedy approach alongside the three fitness functions used.
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