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ABSTRACT

The study of semantics inGenetic Programming (GP) has increased

dramatically over the last years due to the fact that researchers

tend to report a performance increase in GP when semantic di-

versity is promoted. However, the adoption of semantics in Evolu-

tionary Multi-objective Optimisation (EMO), at large, and in Multi-

objective GP (MOGP), in particular, has been very limited and this

paper intends to �ll this challenging research area. We propose a

mechanism wherein a semantic-based distance is used instead of

the widely known crowding distance and is also used as an objec-

tive to be optimised. To this end, we use two well-known EMO

algorithms: NSGA-II and SPEA2. Results on highly unbalanced bi-

nary classi�cation tasks indicate that the proposed approach pro-

duces more and better results than the rest of the three other ap-

proaches used in thiswork, including the canonical aforementioned

EMO algorithms.
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1 INTRODUCTION

Genetic Programming (GP) [12] has been successfully applied in

a variety of challenging problems. Despite the popularity of GP

and its proven e�ectiveness in the face of challenging problems’

features, it is also well-known that vanilla GP has some serious

limitations and researchers have been interested on various GP as-

pects to make it more reliable.

One popular element studied by GP researchers is semantics

which has been constantly reported to improve GP performance
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by e.g., encouraging semantic diversity via crossover [19], selec-

tion [9] and geometric operators [14].

Semantics is a broad concept that has been studied in di�erent

�elds, making it hard to give a precise de�nition of the concept.

Moreover, the way semantics has been adopted in GP varies sig-

ni�cantly. This work uses a popular version of semantics GP, as

originally proposed in [13], in which the semantics of a (sub)tree is

de�ned as the vector of output values computed by this (sub)tree

for each set of input values in turn (also known as each �tness

case). Several semantic-based approaches have been proposed for

GP which take semantics into account when e.g., choosing and

modifying subtrees, such as the one that has been demonstrated

bene�cial in [19, 20] and it is adopted in this work too.

To the best of our knowledge, however, there is no scien-

ti�c study on the adoption of semantics in Evolutionary Multi-

Objective Optimisation, at large, and in Multi-objective GP

(MOGP), in particular, except from the work conducted by Galván

et al. [10, 11].

The goal of this paper is to incorporate semantics into a

MOGP paradigm. We use two well-known and widely popular

MO paradigms: the Nondominated Sorting Genetic Algorithm II

(NSGA-II) [6] and the Strength Pareto Evolutionary Algorithm

(SPEA2) [25]. We use three di�erent forms of incorporating se-

mantics in a MO approach: (a) semantic similarity-based crossover

(SSC) that is based on a widely known, but computational costly,

form of semantic-based single objective GP approach where the

goal is to promote semantic diversity by applying, potentially, mul-

tiple times crossover between two parents [19], (b) semantic-based

crowding distance (SBCD), which is based on the adoption of a se-

mantic distance incorporated into the core of the MO paradigms

that replaces the crowding distance [10], and �nally, the proposed

approach, (c) semantic-based crowding distance as an objective

(SBCDO) that is based on SBCD and uses the resulting distance

values as another objective in a MO paradigm encouraging diver-

sity.

To study the e�ects of semantic-basedMOGP paradigms, we use

challenging unbalanced binary classi�cation problems. We show

how the adoption of semantics in MOGP optimisation is bene�-

cial. In particular, the SBCDO is able to achieve better results on

the average hypervolume and the Pareto optimal front compared

to the rest of the approaches used in this work including their cor-

responding canonical MO paradigms.

This paper is organised as follows. Next, we present some re-

lated work. In Section 3, we introduce the approaches used in this

work. Section 4 provides details on the experimental setup used.

The results presented in this paper are discussed in Section 5, and

�nally, conclusions and future work are drawn in Section 6.
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2 RELATED WORK

2.1 Semantics in Genetic Programming

Studies of semantics in GP have increased dramatically over the

last years given that it has been consistently reported to be bene�-

cial in GP search [10, 14, 19, 21, 22].

Even though researchers have proposed di�erent mechanisms

to use the semantics of GP programs to guide search, it is com-

monly accepted that semantics refers to the behaviour of a GP pro-

gram once this is executed on a data set (also known as �tness

cases in the GP literature). We give a formal treat of semantics in

Section 3.

Semantics can be categorised in one of two main groups: in-

direct or direct semantics. Indirect semantics approaches refer to

those methods that act on the syntax (genotype) of GP individuals

to indirectly promote semantic diversity. On the other hand, direct

semantic approaches refer to those mechanisms that adapt genetic

operators to work directly on the semantics of GP individuals. A

survey of semantic methods in GP can by found in [22]. Next, we

present a few papers in the area relevant to our work.

Thework conducted byMcPhee et al. [13] paved the way for the

proliferation of indirect semantics works. In their work, McPhee et

al. studied the semantics of subtrees and the semantics of context

(the remainder of a tree after the removal of a subtree). The authors

pointed out how a high proportion of individuals created by the

widely used 90-10 crossover operator are semantically equivalent.

That is, the crossover operator does not have any useful impact in

the semantic space of GP, which in consequence leads to a lack of

performance increase as evolution continues.

With the goal of overcoming the lack of semantic diversity re-

ported by McPhee et al. [13], Beadle and Johnson [2] proposed a

Semantically Driven Crossover (SDC) operator, that promotes se-

mantic diversity. More speci�cally, they used reduced ordered bi-

nary decision diagrams (ROBDD) on Boolean problems to check

for semantic similarity between parents and o�spring. The authors

showed a signi�cant improvement in terms of �tness increased

when promoting semantic diversity using the SDC operator. They

also showed that by using ROBDD on these particular problems,

the SDC operator was able to considerably reduce bloat.

These studies used discrete �tness-valued cases, impeding their

�ndings to be generalised in continuous �tness-valued cases. Uy

et al. [15] addressed this major limitation and multiple works were

inspired by their approach.

Uy et al. [15] measured the semantic equivalence of two given

expressions bymeasuring them against a random set of points sam-

pled from the domain. If the resulting outputs of these two expres-

sion were close to each other, subject to a threshold value, these ex-

pression were regarded as semantically equivalent. In their exper-

imental design, the authors focused their attention on the seman-

tics of subtrees. More speci�cally, the authors tried to encourage

semantic diversity by executing crossover, for a number of trials,

if two subtree were not semantically equivalent. They showed, for

a number of symbolic regression problems, that by promoting se-

mantic diversity, they obtained better results compared when no

semantic diversity was encouraged.

More recently, Forstenlechner et al. [8] showed how it is possi-

ble to compute the semantics of GP individuals for program syn-

thesis. This operates on a range of di�erent data types as opposed

to those working on a single type of data. They computed the se-

mantics of a GP individual by tracing it. To promote semantic di-

versity, the authors used two metrics, named partial change, used

in the �rst instance, and any change, used only if the �rst instance

failed to be satis�ed to try to avoid using standard crossover. Partial

change checks for every variable if there is at least one di�erence

between the semantics from the subtrees in a single entry in the

vector. However, the vectors are not allowed to be completely dif-

ferent. Whereas any change does not have the constraint shown

in partial change. The authors reported that a semantic-based GP

system achieved better results in 4 out of 8 problems used in their

studies.

Indirect semantic has also been used in local search methods.

For example, Dou and Rockett [7] focused their attention on how

the performance of a GP system improves when semantically-

aware local search methods are used. To this end, the authors used

a MOGP paradigm handling both ‘goodness-of-�t’ and model com-

plexity. In their analysis performed on a wide variety of GP and

local search variants, that included the use three subtree selec-

tion methods and four replacement mechanisms to perform local

search, the authors reported interesting �ndings including the fact

that a given local search algorithm following a steady-state global

search performs better than the corresponding algorithm that used

generational local search. It was also reported that whenGP is used

as a local search operator, the steady-state GP does not show any

consistent advantage over the generational GP.

One of the �rst direct semantic approaches that discusses the

idea of acting directly on the semantic space is the one conducted

by Moraglio et al. [14]. The motivation to propose a direct seman-

tic approach was because many of the proposed indirect semantic

approaches are wasteful e.g., [15, 19]. To address this, the authors

used previous theoretical results to de�ne transformations on the

structure of tree-like GP individuals that correspond to geometric

operators, and by doing so, being able to inherit their properties.

Moraglio’s �ndings are encouraging, however there are some

limitations. One of them is the fact that their approach allows the

presence of neutrality which can be harmful on problems with cer-

tain properties (e.g., unimodal landscapes [17]). Another limitation

is that the transformations applied to GP individuals makes them

signi�cantly larger. To deal with this, the authors proposed to sim-

plify the expressions while maintaining the same computed func-

tion. They showed how, by doing so, one can use semantic opera-

tors. However, as pointed by Vanneschi et al. [21], the simpli�ca-

tion step proposed by Moraglio et al. is computationally expensive.

To overcome this problem, they proposed an e�cient cache imple-

mentation of the geometric semantic operators. The approach is

based, among other things, on storing the semantics of individuals

into a table, which makes the process e�cient indeed. As acknowl-

edged by Vanneschi et al., there is at least one limitation with their

approach: because they use tables to store e.g., the semantics of in-

dividuals, syntax of trees; the reconstruction of individuals is di�-

cult or impossible.
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2.2 Works on Multi-Objective Genetic
Programming

In a Multi-objective optimisation (MO) problem, one optimises

with respect to multiple goals or multiple �tness functions. Thus,

the task of the algorithm is to �nd acceptable solutions by consid-

ering all the criteria simultaneously.

One can achieve this in various ways. Broadly speaking, MO in

GP has been adopted in two forms: (a) combining multiple objec-

tives into an aggregate scalar �tness function, and (b) keeping the

objectives separate. The former type of MO has been almost aban-

doned by the GP community given its naive form. Instead, in this

work, we adopt the latter, more elegant, approach.

A natural form of adopting a MO approach in GP is by keeping

the objectives separate and use the notion of Pareto dominance as

adopted in Evolutionary MO (EMO) [5].

EMOo�ers an elegant solution to the problem of optimising two

or more con�icting objectives. As will be seen in Section 3.2, the

aim of EMO is to simultaneously evolve a front of the best trade-

o� solutions along the objectives in a single run. Next, we discuss

just a few GP works that have adopted EMO in their studies.

Bloat (dramatic increase of tree sizes as evolution proceeds) con-

trol has been tackled via the aggregation of objectives into an ag-

gregate �tness function [12]. However, Bleuler et al. [4] took a

more natural approach to control bloat. The authors de�ned two,

potentially, con�icting objectives: the functionality (�tness) of a

program and the size of the tree. They compared their, at the

time, innovative approach against well-adopted techniques (e.g.,

constant parsimony) to control GP bloat. They showed how their

MO approach successfully controls bloat which results in �nding

shorter solutions, so the proposed mechanism evaluates expres-

sions faster and achieves better performance.

MOGP has been used to classify highly unbalanced binary

data [3, 10]. To do so, the authors treated each objective (class) ‘sep-

arately’ using well-known EMO optimisation approaches [6, 25].

Bhowan et al. [3] and Galván et al. [10] shown, independently, how

MOGPwas able to achieve high accuracy in classifying binary data

in con�icting learning objectives (i.e., normally a high accuracy of

one class results in lower accuracy on the other).

In the same vein, Zhao showed how MOGP can be successfully

used to specify partial preferences on the con�icting objectives by

embedding these preferences into the �tness function [23]. The

motivation to do this, as speci�ed by the author, is due to the fact

that very often misclassi�cation errors are not equally costly (e.g.,

it is more costly to approve a bad loan than to deny a good loan).

MOGP has also successfully been used in computer vision prob-

lems. For example, Shao et al. showed how it is possible to auto-

matically generate domain-adaptive global feature descriptors for

the classi�cation of images [18]. Similarly to the work conducted

by Bleuler et al. [4], Shao and co-authors also considered the size

of the trees as one of objectives in MOGP, where the other nat-

ural objective for image classi�cation considered in their studies

was the classi�cation error rate. They tested their approach in four

well-known data sets. The authors showed how their proposed

MOGP approach always produced better results compared to other

14 methods used in their studies.

3 SEMANTIC MOGP METHODS

3.1 Background on Semantics

For clarity purposes, we �rst brie�y give some de�nitions on se-

mantics, based on Pawlak et al. work [16], that will allow us to

describe our approach later in this section.

Let p ∈ P be a program from a programming language P . When

p is applied to an input in ∈ I , p produces an output p (in).

Definition 1. The semantic mapping function s : P → S maps

any program p to its semantics s (p).

This intuitively means that,

s (p1) = s (p2) ⇐⇒ ∀in ∈ I : p1 (in) = p2 (in).

As indicated in [16], the semantics speci�ed in Def. 1 has three

properties. Firstly, every program has only and only one seman-

tics. Secondly, two or more programs can have the same semantics.

Thirdly, programs that produce di�erent outputs have di�erent se-

mantics.

Def. 1 is general as it does not specify how semantics is repre-

sented. This work, as indicated previously, uses a popular version

of semantics GP where the semantics of a program is de�ned as

the vector of output values computed by this program for an input

set (also known as �tness cases). A �tness case is a pair consisting

of a program input and its corresponding desired program output.

Thus, a �tness case is a pair from I ×O . Assuming we use a �nite

set of �tness cases, as normally adopted in GP, we can now de�ne

the semantics of a program.

Definition 2. The semantics s (p) of a program p is the vector of

values from O obtained by executing p on every in from I ,

Thus, we have that the semantics of a program is given by,

s (p) = [p (in1),p (in2), · · · ,p (inl )]

where l = |I | is the size of the set of the �tness cases.

This form of semantics has widely been used in the specialised

literature e.g., [10, 19] and it is also use in this work.

3.2 Background on MO

Multi-objective optimisation (MO) is concerned with the simulta-

neous optimisation of several objectives. When these are in con-

�ict, no single solution exists, and trade-o�s between the objec-

tives must be sought. The optimal trade-o�s are the solutions for

which no objective can be further improved without degrading an-

other objective. This idea is captured in the Pareto dominance re-

lation: a point x in the search space is said to Pareto-dominate an-

other pointy if x is at least as good asy on all objectives and strictly

better on at least one objective.

In this work, the objectives are to bemaximised. Thus, the Pareto

dominance concept is de�ned in Eq. 1. Similarly, solutions are non-

dominated if they are not dominated by any solution in the popu-

lation,

Si ≻ Sj ←→ ∀m[(Si )m ≥ (Sj )m] ∧ ∃k[(Si )k > (Sj )k ] (1)

where (Si )m indicates the performance of solution Si on themth

objective.
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The set of optimal trade-o� solutions of a MO problem can then

be de�ned as the set of points of the search space that are non-

dominated by any other point, and is called the Pareto set of the

problem at hand. The goal of Pareto EMO is to identify the Pareto

set, or a good approximation of it. The Pareto front is the image of

the Pareto set in the objective space.

The notion of Pareto-dominance has inspired di�erent mea-

sures. The most well-known are dominance rank [6] and domi-

nance count [4]. The former measure refers to the number of so-

lutions in the population that dominate a given solution (lower is

better). The latter measure refers to the number of other solutions

that a particular solution dominates (higher is better).

There are two popular EMO approaches that use these mea-

sures and that are used in this work: the Nondominated Sorting

Genetic Algorithm II (NSGA-II) [6] that uses dominance rank, and

the Strength Pareto Evolutionary Algorithm (SPEA2) [4] that em-

ploys both dominance rank and dominance count.

In NSGA-II, the dominance rank determines the �tness of solu-

tion Si : the number of other solutions in the population that dom-

inate Si . This is expressed in Eq. 2. Thus, the best �tness value of

a solution is 0 (nondominated solution). Similarly, a solution with

high �tness indicates a solution dominated by many individuals.

NSGA-II(Si ) = |{j |j ∈ Pop ∧ Sj ≻ Si }|. (2)

In SPEA2, as aforementioned, both dominance rank and domi-

nance count measures are considered when computing the �tness

of a solution. First, each solution in the population is assigned a

strength value D. This denotes the number of solutions that Si
dominates (dominance count for solution Si ).

D (Si ) = |{j |j ∈ Pop ∧ Si ≻ Sj }|.

To determine the �tness of a solution in SPEA2, we then use the

strengths of all its dominators. This is expressed as follows,

SPEA2(Si ) =
∑

j ∈Pop,Si ≻Sj

D (Sj ). (3)

The �tness value for a solution Si in SPEA2 is then the sum

of all dominance counts of other solutions in the population that

are dominated by Si . As in NSGA-II, �tness in SPEA2 is to be min-

imised where nondominated solutions have the best �tness value

of 0.

3.2.1 Crowding Distance. Because Pareto dominance is not a

total order, some additional criterion must be used so as to allow

the comparison of any pair of points of the search space. To this

end, we also use a crowding distance measure. Crowding is the

Manhattan distance between solutions in objective space, where

sparsely populated regions are preferred over densely populated

regions. The crowding distance is only used to resolve selection

when the primary �tness is equal between two or more individu-

als. Thus, the crowding distance promotes diversity among individ-

uals having the same Pareto rank: in objective space, for each ob-

jective, the individuals in the population are ordered, and the par-

tial crowding distance for each of them is the di�erence in �tness

between its two immediate neighbours. The crowding distance is

the sum over all objectives of these partial crowding distances [6].

Intuitively, it can be seen as the Manhattan distance between the

extreme vertices of the largest hypercube containing the point at

hand and no other point of the population. Selecting points with

the largest crowding distance amounts to favour the low-density

regions of the objective space, thus favouring diversity.

3.3 Semantic Similarity-based Crossover MOGP

To incorporate semantics in a MOGP paradigm, we �rst use a se-

mantic similarity-based crossover (SSC) mechanism originally pro-

posed by Uy et al. [19] which was used in a single-objective GP sys-

tem. The idea is to promote semantic diversity by computing the

sampling semantic distance. Using Def. 2, the authors computed

this distance by calculating the average of the addition of di�er-

ence values for every in ∈ I between parent and o�spring. If the

distance value lies within a range, de�ned by α = 0.01 and β = 0.5,

then crossover is promoted to generate o�spring. Because this con-

ditionmay be hard to satisfy, the authors tried to encourage seman-

tic diversity by repeatedly applying crossover up to 20 times. If af-

ter this, the condition is not satis�ed, then crossover is executed as

normal. We use the same approach with the recommended α and

β values in both NSGA-II and SPEA2.

3.4 Semantic-based Crowding Distance MOGP

Another form to adopt semantics into a MOGP paradigm is to in-

corporate it into the core of the MO algorithm itself.

As indicated previously, we use the well-known NSGA-II and

the SPEA2 algorithms and the adoption of semantics is per-

formed by replacing the crowding distance (see Section 3.2.1) by

a semantic-based indicator denominated Semantic-based Crowd-

ing Distance (SBCD) �rst used in [10]. This is computed in the fol-

lowing way: a pivot is chosen, being the individual from the �rst

Pareto front (Rank 1) that is the furthest away from the other in-

dividuals of this front using the crowding distance. For each point,

its semantic distance is computed using Def. 2. We count the num-

ber of absolute di�erence values between each in ∈ I from the

pivot and each individual that it is greater than 0.5 as suggested

in [10]. Once these values are calculated, the SBCD is computed,

similarly to the crowding distance, as the average of the semantic

distance di�erences with its closest neighbours in each direction.

The higher values yielded by SBCD are favored during the selec-

tion step of NSGA-II and SPEA2. This allows us to have a set of

individuals that are spread in the semantic space, therefore, pro-

moting semantic diversity, the same way NSGA-II and SPEA2 pro-

mote diversity (‘spreadness’) in the objective space.

3.5 Semantic-based Crowding Distance as an
Objective MOGP

Semantic-based Crowding Distance as an Objective (SBCDO) con-

siders elements from the semantic-based distance approach men-

tioned previously. SBCDO is also adopted into the core of the MO

algorithms used in this study (NSGA-II and SPEA2). Before explain-

ing this approach, let us brie�y remind the reader a few elements

considered in these two canonical EMO approaches. From a given

population of size N , N o�spring are created using standard varia-

tion operators (crossover and mutation). Parents and o�spring are
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merged, and the resulting population, of size 2N , is ordered us-

ing non-dominated sorting, and a crowding distance is used as sec-

ondary criterion. The best N individuals according to this ranking

are selected to survive at the next generation.

Because the underlying idea within NSGA-II and SPEA2 is to

favour behavioural diversity, but only considering the �tness as

a whole, it can be hoped that introducing semantic diversity in

these algorithms can only enforce this idea. Thus, this distance is

used in two forms, it replaces the crowding distance as done with

the SBCD approach de�ned before and it is used as another ob-

jective to be optimised by the algorithm. More speci�cally, in our

proposed SBCDO approach, this new objective is the semantic dis-

tance from each individual in 2N w.r.t. to the pivot taken from the

�rst front as done with the SBCD method. This semantic distance

is computed as described in Section 3.4. By doing so, we encourage

semantic diversity in the objective space with the hope to favour

more ‘spreadness’ in the space. The completion of the new pop-

ulation, if this is the case, is performed using the semantic-based

crowding distance explained before.

4 EXPERIMENTAL SETUP

To study the e�ects of semantics in MOGP, we used challenging

binary highly unbalanced classi�cation problems taken from the

well-known UCIMachine Learning repository [1]. These problems

are of di�erent nature and complexity, e.g., they have from a few

features up to dozens of them, these features include binary, inte-

ger, and real-valued features. Table 1, adapted from [3], gives the

details for all datasets used in this work. These have been used ‘as

is’ i.e., we did not try to balance the classes out. For each dataset,

half of the data (with the same class balance than in the whole

dataset) was used as a training set and the rest as a test set. All

reported results are on the latter.

The terminals are the problem features. The function set con-

sists of the typical four standard arithmetic operators: F =

{+,−, ∗, /}, where the latter operator is the protected division,

which returns the numerator if the denominator is zero. These

functions are used to build a classi�er (e.g., mathematical expres-

sion) that returns a single value for a given input (data example

to be classi�ed). This number is mapped onto a set of class labels

using zero as the class threshold. In our work, an example is as-

signed to the minority class if the output of the classi�er is greater

or equal to zero. It is assigned to the majority class, otherwise.

The common way to measure the �tness of a classi�er for classi-

�cation tasks is the overall classi�cation accuracy: for binary clas-

si�cation, the four possible cases are shown in Table 2. Assuming

the minority class is the positive class, the accuracy is given by

Acc =
TP +TN

TP +TN + FP + FN
(4)

The drawback of using Eq. 4 alone is that it rapidly biases the

evolutionary search towards the majority class [3].

A better approach is to treat each objective (class) ‘separately’

using a multi-objective approach. Two objectives are considered:

the true positive rate given by

TPR =
TP

TP + FN
(5)

and the true negative rate given by

TNR =
TN

TN + FP
(6)

These measure the distinct accuracy for the minority (Eq. 5) and

majority class (Eq. 6).

The experimentswere conducted using a generational approach.

The parameters used in this study are shown in Table 3. To obtain

meaningful results, we performed an extensive empirical experi-

mentation (2,400 independent runs in total)1.

5 RESULTS

5.1 Front Hypervolume

In order to compare the di�erent approaches, we use the hyper-

volume [5] of the evolved Pareto approximations as a measure of

performance. For bi-objectives problems, the hypervolume of a set

of points in objective space, using reference point (0, 0), is easily

computed as the sum of the areas of all trapezoids �tted under

each point. Such measure was chosen as being the only known

Pareto-compliant indicator to-date [24]: the larger the hypervol-

ume, the better the performance. We also computed the Pareto-

optimal front (POF) with respect to all 50 runs, i.e., the set of non-

dominated solutions after merging all 50 Pareto-approximated

fronts.

Tables 4 and 5 report, for each problem de�ned in Table 1, both

the average hypervolume over 50 runs, and the hypervolume of the

POF using the NSGA-II and SPEA2, with their associated semantic-

basedmethods, respectively. In these tables, the highest POF values

are underlined. Furthermore, the statistical signi�cance for the re-

sults on the average hypervolume was computed using Wilcoxon

Test at 95% level of signi�cance, independently comparing each of

the semantic-based approaches (SBCDO, SSC and SBCD) against

NSGA-II and SPEA2. Those results that are statistically signi�cant

are in boldface.

Let us focus �rst our attention on the results achieved by NSGA-

II and the semantic-based MOGP methods. These are shown in Ta-

ble 4. As can be observed, our proposed SBCDO approach achieves

better results when considering the average hypervolume. That is,

in all the problems, our approach �nds the best results compared

to the other three methods (NSGA-II, NSGA-II SSC and NSGA-II

SBCD). From these, �ve out of six are statistically signi�cant and

these are indicated in boldface. Moreover, our approach achieves

the highest values on the Pareto-optimal front in �ve out of six

problems used in our work (these results are underlined in Ta-

ble 4). It is, however, worth mentioning that in one problem (Abal1)

our approach �nds the same POF value compared to NSGA-II and

NSGA-II SSC. On the other hand, when using theAbal2 dataset, our

approach �nds the second best POF value among all the methods,

although the di�erence is minimum (0.865 obtained by NSGA-II

SSC vs. 0.864 achieved by NSGA-II SBCDO).

Let us now focus our attention on the results achieved by SPEA2

and the semantic-based MOGP methods. These are shown in Ta-

ble 5.We can see, again, that our proposed SPEA2 SBCDO achieves

the highest results in all the problems when considering the aver-

age hypervolume and in four of the six problems, these results are

150 independent runs, 6 problems, 4 MOGP approaches, 2 canonical MO methods
(NSGA-II, SPEA2).
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Table 1: Binary imbalanced classi�cation data sets used in our research.

Data set Classes Number of examples Imb. Features

Positive/Negative (Brief description) Total Positive Negative Ratio No. Type

Ion Good/bad (ionsphere radar signal) 351 126 (35.8%) 225 (64.2%) 1:3 34 Real

Spect Abnormal/normal (cardiac tom. scan) 267 55 (20.6%) 212 (79.4%) 1:4 22 Binary

Yeast1 mit/other (protein sequence) 1482 244 (16.5%) 1238 (83.5%) 1:6 8 Real

Yeast2 me3/other (protein sequence) 1482 163 (10.9%) 1319 (89.1%) 1:9 8 Real

Abal1 9/18 (biology of abalone) 731 42 (5.75%) 689 (94.25%) 1:17 8 Real

Abal2 19/other (biology of abalone) 4177 32 (0.77%) 4145 (99.23%) 1:130 8 Real

Table 2: Confusion Matrix.

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)

Actual negative False Positive (FP) True Negative (TN)

Table 3: Summary of parameters.

Parameter Value

Population Size 500

Generations 50

Type of Crossover 90% internal nodes, 10% leaves

Crossover Rate 0.60

Type of Mutation Subtree

Mutation Rate 0.40

Selection Tournament (size = 7)

Initialisation Method Ramped half-and-half

Initialisation Depths:

Initial Depth 1 (Root = 0)

Final Depth 5

Maximum Length 800

Maximum Final Depth 8

Independent Runs 50

Semantic Thresholds 0.5 (SBCDO, SBCD)

α = 0.01 and β = 0.5 (SSC)

statistically signi�cant (indicated in boldface). As for the Pareto

optimal front, SPEA2 SBCDO achieves the highest results in all six

problems.

5.2 Pareto-optimal Front

Let us now focus on more detail on the coverage of the objective

space achieved by the MOGP semantic-based methods and canon-

ical NSGA-II and SPEA2, shown in the top and in the bottom of

Figure 1, respectively. Due to space constraints, we only show the

results on the Ion, Spect and Abal2 datasets. These plots show the

50 Pareto front approximations obtained from the 50 independent

runs for each of the methods and each of the datasets used in this

work.

We decided to show the results on the aforementioned datasets

because it is relatively clear to see how our proposed NSGA-II

SBCDO approach, denoted by red hollow square symbols, has a

better coverage of the objective space compared with the rest of

the semantic-based approaches as well as the canonical NSGA-II

approach (denoted by black hollow circles). The coverage of the

objective space achieved by our approach compared to the other

methods in the other three data sets, Yeast1, Yeast2 and Abal1, not

shown in the paper, is fairly similar between each other as inferred

by the POF indicators reported in Table 4.

If we now turn our attention on the coverage of the objec-

tive space achieved using SPEA2, shown at the bottom of Fig-

ure 1, we can see a similar trend: our proposed SPEA2 SBCDO,

denoted by red hollow circles, has a better coverage compared to

the other three methods, including the canonical SPEA2. This is

clearer when using the Ion and Abal2 datasets and less clear when

using the Spect dataset.

The POF indicator is useful to determine, for instance, what ap-

proach has better coverage compared to another. However, it does

not provide detailed information on all the Pareto fronts generated

in all independent runs by a givenmethod used in this work.We ad-

dress this by plotting evolved solutions that were exclusively found

by either one method or another and this is why some blank areas

may be visible in some plots, in particular when using the Spect

dataset. This is depicted in Figure 2. We only report the evolved so-

lution using the NSGA-II against any of the semantic-based meth-

ods used in this work and using the Ion, Spect and Abal2 datasets.

Let us see how our proposed SBCDO approach behaves in com-

parison to the NSGA-II shown in the left-hand side of Figure 2. It

is clear to see that our SBCDO solutions (denoted by green hollow

squares) yields signi�cantly more solutions compared to those pro-

duced by NSGA-II (denoted by black hollow circles), regardless of

the dataset used (the same is observed for the Yeast1, Yeast2 and

Abal1 datasets not shown in the paper). Moreover, it is important

to note that there are more solutions yield by SBCDO that have

higher accuracy in both the majority (x-axis) and the minority (y-

axis) compared to the results produced by NSGA-II as well as the

results produced by NSGA-II SSC and NSGA-II SBCD. The same

tendency is observed when using SPEA2: our proposed SBCDO

produces many more and better solutions compared to the rest of

the algorithms.

When we continue comparing, now NSGA-II vs. NSGA-II SSC

(centre) and NSGA-II vs. NSGA-II SBCD (right-hand side), we can

see a mirror image: the canonical NSGA-II tends to produce better

solutions compared to these semantic-based methods. The same

trend is also observed when using SPEA2, again not shown in the

paper due to space limitations.
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Table 4: Average (± standard deviation) hypervolume,where the reference point is (0,0), of evolved Pareto-approximated fronts,

Pareto optimal front (POF) for the four MOGP used in this work: NSGA-II, NSGA-II SBCDO, NSGA-II SSC and NSGA-II SBCD,

over 50 runs. Boldface numbers are statistical signi�cant (read text) compared to the results yield by canonical NSGA-II. The

highest POF values are underlined.

Data Set

NSGA-II NSGA-II SBCDO NSGA-II SSC NSGA-II SBCD

Hypervolume Hypervolume Hypervolume Hypervolume

Average POF Average POF Average POF Average POF

Ion 0.766 ± 0.114 0.938 0.860 ± 0.031 0.953 0.753 ± 0.124 0.935 0.793 ± 0.076 0.939

Spect 0.534 ± 0.024 0.647 0.588 ± 0.019 0.675 0.539 ± 0.030 0.635 0.536 ± 0.058 0.644

Yeast1 0.838 ± 0.011 0.876 0.850 ± 0.006 0.881 0.834 ± 0.029 0.875 0.804 ± 0.093 0.875

Yeast2 0.950 ± 0.009 0.976 0.960 ± 0.008 0.980 0.944 ± 0.028 0.976 0.946 ± 0.017 0.979

Abal1 0.847 ± 0.058 0.961 0.875 ± 0.066 0.961 0.812 ± 0.086 0.961 0.809 ± 0.098 0.956

Abal2 0.576 ± 0.122 0.842 0.631 ± 0.126 0.864 0.534 ± 0.102 0.865 0.564 ± 0.112 0.828

Table 5: Average (± standard deviation) hypervolume,where the reference point is (0,0), of evolved Pareto-approximated fronts,

Pareto optimal front (POF) for the four MOGP used in this work: SPEA2, SPEA2 SBCDO, SPEA2 SSC and SPEA2 SBCD, over

50 runs. Boldface numbers are statistical signi�cant (read text) compared to the results yield by canonical SPEA2. The highest

POF values are underlined

Data Set

SPEA2 SPEA2 SBCDO SPEA2 SSC SPEA2 SBCD

Hypervolume Hypervolume Hypervolume Hypervolume

Average POF Average POF Average POF Average POF

Ion 0.776 ± 0.105 0.948 0.865 ± 0.032 0.955 0.767 ± 0.121 0.936 0.801 ± 0.066 0.934

Spect 0.539 ± 0.026 0.657 0.591 ± 0.021 0.674 0.536 ± 0.022 0.659 0.530 ± 0.045 0.644

Yeast1 0.834 ± 0.021 0.876 0.847 ± 0.006 0.880 0.824 ± 0.062 0.875 0.789 ± 0.160 0.878

Yeast2 0.947 ± 0.015 0.977 0.962 ± 0.008 0.979 0.947 ± 0.010 0.977 0.950 ± 0.011 0.978

Abal1 0.832 ± 0.085 0.960 0.862 ± 0.097 0.966 0.854 ± 0.082 0.965 0.803 ± 0.122 0.961

Abal2 0.552 ± 0.124 0.837 0.594 ± 0.151 0.851 0.518 ± 0.125 0.829 0.546 ± 0.141 0.842

Ion Spect Abal2
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Figure 1: Pareto-Optimal fronts for Ion, Spect and Abal2 using NSGA-II and its semantic-basedMO variants (top row) and using

SPEA2 and its semantic-based MO variants (bottom row).
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Figure 2: Evolved solutions that were exclusively found by either NSGA-II (indicated by black hollow circles symbols) and

the rest of each of the methods used in this work: SBCDO (left-hand side), SSC (middle), SBCD (right-hand side), indicated by

green hollow square symbols using the Ion dataset (top row), Spect dataset (middle row) or Abal2 dataset (bottom row).

6 CONCLUSIONS AND FUTURE WORK

In Genetic Programming, semantics is commonly de�ned as the

behaviour of syntactically correct programs. In canonical GP, se-

mantics is represented by the output vector of the tree for di�er-

ent known inputs and the similarity between the semantics of two

trees gives a much smoother idea of the similarity between the

trees than either the syntactic description of the trees or their raw

�tness.

This work proposes a new form to add semantics into the core

of a Multi-objective Genetic Programming (MOGP) using the well-

known the Nondominated Sorting Genetic Algorithm II (NSGA-II)

and the Strength Pareto Evolutionary Algorithm (SPEA2). Our ap-

proach, named semantic-based crowding distance as an objective

(SBCDO) consists of using a semantic distance as another objective

in the MOGP with the hope to promote more ‘spreadness’ in the

objective space. We also use this distance in lieu of the crowding

distance at the heart of the aforementioned EMO algorithms.

We have shown that this form of semantics achieves better

results compared to other forms of semantics used in EMO ap-

proaches as well as the canonical NSGA-II and SPEA2 algorithms.

We have learned how it is feasible to promote semantic diversity

in a MOGP by using a well-de�ned semantic-based distance.

Our immediate goal is to perform an in-depth study on the

threshold values used in semantic-based methods that are neces-

sary to continuous �tness-valued cases problems with the hope to

make sound suggestions on the values that should be used in these

type of problems.
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