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EC Methods (1/2)

◮ Evolutionary Computation (EC) techniques allow computer
systems to learn.

◮ EC methods (e.g., Genetic Algorithms, Genetic Programming)
are inspired by biological mechanisms of evolution.
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EC Methods (2/2)

◮ Despite the effectiveness of EC systems (e.g., see Hummies),
they also have limitations.
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Neutral Theory

◮ Neutral Theory was defined by Kimura 1960s. The theory
suggests that different forms of the same gene are
indistinguishable in their effects.
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Controversial Claims on Neutrality!

◮ ’Finding Needles in Haystacks is not Hard with Neutrality’ by Yu
and Miller, EvoStar 2002.

◮ ’Finding Needles in Haystacks is Harder with Neutrality’ by Collins,
GECCO 2005.

◮ Both papers were nominated as best papers in their

conference tracks!
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Confusion regarding neutrality has several reasons (1/2):

◮ there is a lack of mathematical frameworks that explain how
and why neutrality affects evolution;

◮ many studies have based their conclusions on performance
statistics (i.e., on whether or not a system with neutrality
could solve a particular problem faster or better than a system
without neutrality), rather than a more in-depth analysis based
on problem hardness measures and search characteristics;

◮ studies have often considered problems, representations and
search algorithms that are relatively complex; as a
consequence, results represent the compositions of multiple
effects (e.g., bloat or spurious attractors in genetic
programming);
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Confusion regarding neutrality has several reasons (2/2):

◮ there is not a single definition of neutrality, and different
studies have added neutrality to systems in radically different
ways;

◮ very often studies focused their attention on particular
‘properties’ of neutrality without properly defining them; and

◮ the features of a problem’s landscape and the behaviour of
the search operators change when neutrality is artificially
added, but rarely effort has an been made to understand in
exactly what ways.
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Fitness Distance Correlation (fdc)

◮ Fitness distance correlation (fdc) measures the hardness of a
landscape according to the correlation between the distance from
the optimum and the fitness of the solution.

◮ Given a set given a set F = {f1, f2, ..., fn} of fitness values of n
individuals and the corresponding set D = {d1, d2, ..., dn} of
distances to the nearest optimum, we compute the correlation
coefficient r ,

r =
CFD

σFσD

,

where:

CFD =
1

n

n
∑

i=1

(fi − f )(di − d)
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Classification of hardness in fdc

◮ According to Jones, a problem can be classified in one of
three classes:

1. misleading (r ≥ 0.15), in which fitness tends to increase with
the distance from the global optimum,

2. difficult (−0.15 < r < 0.15), for which there is no correlation
between fitness and distance, and

3. easy (r ≤ −0.15), in which fitness increases as the global
optimum approaches.
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Samples of fitness distance scatter plots
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Figure : 1. A scatter plot for a fully deceptive function (fdc = 1.0) and a
scatter plot for a multimodal problem of difficulty easy (fdc = −0.8553),
shown in the left and right panels, respectively.
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Figure : 1. Creation of a typical GA individual using Constant Neutrality.
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We try to shed some light on neutrality. That is:

◮ We consider a mutation based, binary GA without crossover.

◮ We analise performance figures and population flows from and
to the neutral network and the basins of attraction of the
optima.

◮ We use two problems: a unimodal landscape where we expect
neutrality to always be detrimental and a multimodal
deceptive landscape, where there are conditions where
neutrality is more helful than others.
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For analysis purposes:

◮ In the presence of the form of neutrality discussed above, the
landscape is therefore divided into two areas of identical size,
which we call neutral layer and normal layer.

◮ For bit strings of length l there are 2l points in each layer.
However, we still only have one global optimum.

◮ Neutrality is often reported to help in multimodal landscapes,
so, in the case of our multimodal deceptive problem, should
we expect a uniform neutral network to increase performance?
And what sort of population dynamics should we expect?

◮ For analysis purposes we further divide the layers depending
on which of the two basins of attraction a string belongs to.
That is: “global neutral”, “local neutral”, “global normal”
and “local normal”.
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Majority Encoding

genotype1 01 01 1 0 0 1 0

1 0

0 nxl

n bits

l bits

phenotype

T = 3
= 5n
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Parity Encoding

genotype1 01 01 1 0 0 1 0

0 1

0 nxl

n bits

l bits

phenotype
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Truth Table encoding

genotype1 01 011 1 1 1 1

1 0

0 nxl

n bits

l bits

phenotype

X0 X1 X2 X3 X4 Out

1 01 01

1 1 1 1 1

0

1
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Search Space VS. Solution Space

◮ Because each bit is encoded using n bits, the same phenotype
can be obtained from different genotypes, and so, neutrality is
artificially added.

◮ The search of the search space is 2ℓn, where ℓ is the length of
a bit string and n is the number of bits required to encode
each bit.

◮ With the types of encodings explained earlier, we have
increased not only the size of the search space but also the
size of the solution space.

◮ Neutrality is often reported to help in multimodal landscapes,
in that it can prevent a searcher from getting stuck in local
optima.
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OneMax problem

◮ The first problem used is the OneMax problem which consist
in maximizing the number of ones of a bitstring. Seen as a
function of unitation the problem is represented by f (u) = u

or f (x) = u(x).
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Multimodal problem generator

◮ For the second problem, we used the multimodal problem
generator. The idea is to create problem instances with a
certain degree of multimodality

Peakn(x) = argmin
i

H(Peaki , x)

f (x) =
ℓ− H(x ,Peakn(x))

ℓ
× Height(Peakn(x))
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Trap function

◮ The third problem is a Trap function, which is a deceptive
function of unitation. For this example, we have used the
function:

f (x) =

{

a
umin

(umin − u(x)) if u(x) ≤ umin,
b

ℓ−umin
(u(x)− umin) otherwise

where a is the deceptive optimum, b is the global optimum,
and umin is the slope-change location.
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Example of a Trap Function
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Figure : . Trap function used in our experiments (umin = 13, a=39,
b = 40).
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MAX-SAT Problem Class

◮ The target in Boolean satisfiability problem (SAT) is to
determine whether it is possible to set the variables of a given
Boolean expression in such a way to make the expression true.
The expression is said to be satisfiable if such an assignment
exists.

◮ A related problem, known as the Maximum Satisfiability
problem, or MAX-SAT, consists in determining the maximum
number of clauses of a given Boolean formula that can be
satisfied by some assignment. MAX-k-SAT is the maximum
satisfiability problem for k-SAT instances.
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MAX-SAT Problem Class

◮ We treat MAX-3-SAT as an optimisation problem with the
following objective function:

f (x) =
c

∑

i=1

Si (x),

where Si (x) is 1 if clause i is satisfied by assignment x and 0
otherwise. A clause is satisfied if at least one of the literals it
contains is true. Since our random MAX-3-SAT instances are
all satisfiable, we declared a MAX-3-SAT problem as solved as
soon as a string x such that f (x) = c was generated by the
EA.
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Calculations

fdcn =
3
8(fn − f̄p) +

1
2CFD

√

(fn−f̄p)2

4 + 1
2σ

2
F ×

√

1
2 + σ2

D

. (1)
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Figure : Fitness distance correlation in OneMax in the presence of
constant neutrality as a function of fn for ℓ = 14.
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fdc for OneMax Under Parity Bitwise Neutrality.

fdc =
−1

4
√

1
4

√

1
4

= −1.
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fdc for OneMax Under Truth Table Bitwise Neutrality.

fdc ≈ −
1
4 + 2−n−2

√

1
4 + 2−n

√

1
4

= −2(−n−1) + 1
2

√

2−n + 1
4

.
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fdc for OneMax Under Majority Bitwise Neutrality.

fdc ≈ − 0.315 + 0.185
√
n

√

0.133 n − 0.117
√
n + 0.263

.
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Figure : Effective phenotypic mutation rate for invertible fitness functions
as a function of the genotypic mutation rate for strings of length ℓ = 14
and different values of the selection probability for strings outside the
neutral network induced by constant neutrality.
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Bitwise Neutrality

Table : Phenotypic mutation rates corresponding to different genotypic
mutation rates for different forms of bitwise neutrality.

Type of pm = 0.01 pm = 0.06 pm = 0.1
redundancy

Parity (n bits = 5) 0.0480 0.2361
✿✿✿✿✿✿

0.3362
Parity (n bits = 6) 0.0571 0.2678 0.3689
Parity (n bits = 7) 0.0659 0.2957 0.3951
Parity (n bits = 8) 0.0746

✿✿✿✿✿

0.3202 0.4161
Truth Table (n bits = 5) 0.0245 0.1331 0.2048
Truth Table (n bits = 6) 0.0293 0.1551 0.2343
Truth Table (n bits = 7) 0.0340 0.1758 0.2609
Truth Table (n bits = 8) 0.0386 0.1952 0.2848

Majority (n = 5,T = 2.5) 0.0168 0.0916 0.1530
Majority (n = 7,T = 3.5) 0.0204 0.1072 0.1725
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Parameters

Table : Parameters used for the experiments using constant and bitwise
neutrality for the OneMax, Trap and multimodal problems.

Parameter Value

Length of the genome 14
Population Size 80
Generations 100
Mutation Rate (per bit) 0.01, 0.06, 0.1
Generation gap 1
Independent Runs 1,000
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Performance of a mutation-based EA on the OneMax
problem using Constant Neutrality

fdc pm = 0.01 pm = 0.06 pm = 0.1
Avr. Gen% Suc. Avr. Gen% Suc. Avr. Gen% Suc.

No neutrality -1.0 21.11 100.0 14.39 100.0 16.47 100.0
fn = 11 -0.1645 38.12 63.0 29.60 99.0 31.81 99.1
fn = 12 -0.0914 38.79 19.8 46.15 68.9 44.77 82.1
fn = 13 -0.0396 27.47 2.0 48.63 12.3 43.14 13.1
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Performance of a mutation-based EA on the Trap function
with and without constant neutrality.

fdc pm = 0.01 pm = 0.06 pm = 0.1
Avr. Gen% Suc. Avr. Gen% Suc. Avr. Gen% Suc.

No neutrality 1.0 1 0.6 1 0.6 1 0.6
fn = 30 0.5909 - 0.0 38.37 1.6 39.91 3.6
fn = 38 0.4908 28.66 0.3 44.34 2.9 51.33 5.3
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Fitness distance correlation in MAX-3-SAT problems of
increasing complexity.

fn=c/2

fn=c-1

no neutrality

Figure : fdc with two different values of fn: fn = c/2 where c is the
number of clauses and fn = c − 1 (c is also the fitness of the global
optimum in our SAT problems). The data are averages over 100 random
satisfiable 3-SAT instances.
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Plots of success rate of a mutation-based EA on
MAX-3-SAT problems.
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Figure : MAX-3-SAT problems with 14 variables as a function of the problem difficulty, the genotypic mutation
rate and the fitness of the neutral network induced by constant neutrality (solid lines). The correspondence between
these and success rates in the absence of neutrality (dashed lines) is indicated by the curved arrows on the right.
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fdc estimated for the OneMax problem, the Multimodal
Problem generator and the Trap function

Type of OneMax Multimodal Trap
redundancy Problem Problem Function

No neutrality -1 0.5114 1
Parity (n = 5) -1 0.5190 0.9925
Parity (n = 6) -1 0.5190 0.9999
Parity (n = 7) -1 0.5144 0.9999
Parity (n = 8) -1 0.5086 0.9999

Truth Table (n = 5) -0.9999 0.5102 0.9999
Truth Table (n = 6) -1 0.5374 0.9925
Truth Table (n = 7) -1 0.5264 0.9999
Truth Table (n = 8) -0.9999 0.5233 0.9925

Majority (n = 5,T = 2.5) -0.8488 0.4444 0.8434
Majority (n = 7,T = 3.5) -0.8308 0.4471 0.8308
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Performance of a mutation-based EA on the OneMax
problem

Table : Pairs of numbers in boldface, underlined, doubly underlined and
✿✿✿✿✿✿✿

underlined
with a wavy line represent situations with almost identical phenotypic mutation rates.

Type of pm = 0.01 pm = 0.06 pm = 0.1
redundancy Avr. Gen% Suc. Avr. Gen% Suc. Avr. Gen% Suc.

No neutrality 21.35 100 14.39 100 16.58 100
Parity (n = 5) 14.55 100 36.06 90.1 44.02

✿✿

62.7

Parity (n = 6) 14.46 100 38.38 82.6 45.14 54.4
Parity (n = 7) 14.49 100 40.09 73.3 42.12 49.7
Parity (n = 8) 15.06 100 43.26

✿✿

68.2 44.56 47.6

Truth Table (n = 5) 16.63 99.9 20.02 99.5 29.21 95.0
Truth Table (n = 6) 16.89 100 22.87 99.4 33.14 90.5
Truth Table (n = 7) 15.89 100 24.41 97.5 35.49 84.5
Truth Table (n = 8) 15.01 100 28.16 97.4 38.89 78.8

Majority (n=5, T=2.5) 23.39 99.8 17.26 99.7 22.08 99.3
Majority (n=7,T=3.5) 23.51 99.8 17.93 100 22.50 98.6
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Fitness distance correlation estimated for MAX-SAT
problems of various degrees of difficulty

Encoding

no neutrality 3 bits 5 bits 7 bits

no neutrality
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Plots of the success probability as a function of the
genotypic mutation rate and the phenotypic mutation rate
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Figure : Distribution of phenotypic mutation rates with 7-bit bitwise
neutrality for different encodings and genotypic mutation rates.
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Performance of an EA on the Trap function

Table : Pairs of numbers in boldface, underlined, doubly underlined and
✿✿✿✿✿✿✿

underlined
with a wavy line represent situations with almost identical phenotypic mutation rates.

Type of pm = 0.01 pm = 0.06 pm = 0.1
redundancy Avr. Gen% Suc. Avr. Gen% Suc. Avr. Gen% Suc.

No neutrality 0.6 0.3 7.2 0.7 4.55 0.7
Parity (n = 5) 1 0.5 47.77 10.4 44.85

✿✿

22.0

Parity (n = 6) 1 0.8 45.96 15.6 44.73 23.8
Parity (n = 7) 1 0.6 48.62 15.4 46.82 32.0
Parity (n = 8) 13.57 0.7 46.27

✿✿

20.2 46.69 31.5

Truth Table (n = 5) 1 0.7 13.05 1.4 41.49 6.3
Truth Table (n = 6) 1.25 0.6 35.16 2.1 47.19 7.8
Truth Table (n = 7) 1 0.1 32.36 3.5 47.32 10.9
Truth Table (n = 8) 1 0.9 34.44 4.8 58.54 13.0

Majority (n=5,T=2.5) 1 1.1 4.4 1.2 19.91 2.3
Majority (n=7,T=3.5) 1 0.5 1.16 0.6 28.15 1.9
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Performance of an EA on the Multimodal function

Table : Pairs of numbers in boldface, underlined, doubly underlined and
✿✿✿✿✿✿✿

underlined
with a wavy line represent situations with almost identical phenotypic mutation rates.

Type of pm = 0.01 pm = 0.06 pm = 0.1
redundancy Avr. Gen% Suc. Avr. Gen% Suc. Avr. Gen% Suc.

No neutrality 8.56 3.2 5.22 2.7 11.54 1.9
Parity (n = 5) 5.61 3.4 41.2 5.8 44.07

✿✿

14.2

Parity (n = 6) 4.76 3.4 45.27 7.2 50.41 19.4
Parity (n = 7) 2.80 2.1 44.41 9.9 46.31 24.6
Parity (n = 8) 4.85 2.1 42.14

✿✿

12.7 46.94 23.2

Truth Table (n = 5) 6.41 3.6 15.86 2.5 34.11 3.5
Truth Table (n = 6) 8.18 2.5 20.27 2.2 34.32 4.8
Truth Table (n = 7) 6.59 2.6 24.07 3.1 44.44 5.6
Truth Table (n = 8) 4.95 3.6 19.10 3.2 33.03 7.9

Majority (n=5,T=2.5) 11.41 2.0 23.6 1.4 15.62 1.9
Majority (n=7,T=3.5) 9.76 2.3 9.44 2.2 25.42 2.4
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Simplest definition

◮ We have used two problems to analyse neutrality. The first
one is the OneMax problem. Naturally this problem has only
one global optima in 111...1, and the landscape is unimodal.

◮ The second problem has two optima: a global optimum at
position 111...1 and a local optimum at position 000...0. The
global optimum is given a fitness n while the local optimum
has fitness n-1. The remaining points in the landscape are
assigned values that decrease with the distance from one of
the optima.

◮ In our experiments we use the chromosomes of length l = 8
and n = 40.
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Table : Parameters used for the experiments using constant and bitwise
neutrality.

Parameter Value

Length of the genome 14
Population Size 80
Generations 100
Mutation Rate (per bit) 0.01, 0.06, 0.1
Number of extra − bits 1
(Constant Neutrality)
Independent Runs 1,000
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The OneMax problem

Table : 2. Average number of generations required to reach the optimal
solution for the OneMax problem.

Population Without Value on Value on
size neutral layer neutral 7 neutral 5

20 9.6 111.3 17
40 6.5 101.2 11.6
60 5.4 82.3 8.2
80 4.5 64.6 7.5
100 3.5 50.5 6.7
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The Deceptive problem

Table : 3. Percentage of runs that reached the optimal solution for the
Deceptive problem. Random initialisation.

Population Without Value on Value on
Size neutral layer neutral 38 neutral 23

20 61% 42% 51%
40 78% 56% 60%
60 81% 67% 72%
80 85% 81% 75%
100 93% 94% 84%
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Table : 4. Percentage of runs that were able to reach the optimal
solution for the Deceptive problem. Fixed initialisation.

Population Without Value on Value on
Size neutral layer neutral 38 neutral 23

20 7% 26% 2%
40 9% 48% 6%
60 17% 68% 12%
80 17% 74% 21%
100 31% 86% 23%
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Figure : 1. Number of individuals situated in one of the four parts of the
landscape. Fixed initialisation. Fitness of neutral layer 23 (left) and 38
(right).
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More on Neutrality

Details of this presentation can be found in [2]. Other revelant
readings include the following [1, 3, 4, 5, 6, 9, 10, 7, 8, 11].
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E. Galván-López, S. Dignum, and R. Poli.

The effects of constant neutrality on performance and problem hardness in gp.
In M. O’Neill, L. Vanneschi, S. Gustafson, A. Esparcia-Alcázar, I. D. Falco, A. D. Cioppa, and E. Tarantino,
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