
Towards an Understanding
of Locality in Genetic Programming

Edgar Galván-López
Natural Computing Research

& Applications Group
University College Dublin, Ireland

edgar.galvan@ucd.ie

James McDermott
Natural Computing Research

& Applications Group
University College Dublin, Ireland

jamesmichaelmcdermott@gmail.com

Michael O’Neill
Natural Computing Research

& Applications Group
University College Dublin, Ireland

m.oneill@ucd.ie

Anthony Brabazon
Natural Computing Research

& Applications Group
University College Dublin, Ireland

anthony.brabazon@ucd.ie

ABSTRACT
Locality – how well neighbouring genotypes correspond to
neighbouring phenotypes – has been defined as a key ele-
ment affecting how Evolutionary Computation systems ex-
plore and exploit the search space. Locality has been studied
empirically using the typical Genetic Algorithm (GA) rep-
resentation (i.e., bitstrings), and it has been argued that
locality plays an important role in EC performance. To our
knowledge, there are few explicit studies of locality using
the typical Genetic Programming (GP) representation (i.e.,
tree-like structures). The aim of this paper is to address this
important research gap. We extend the genotype-phenotype
definition of locality to GP by studying the relationship be-
tween genotypes and fitness. We consider a mutation-based
GP system applied to two problems which are highly diffi-
cult to solve by GP (a multimodal deceptive landscape and
a highly neutral landscape). To analyse in detail the locality
in these instances, we adopt three popular mutation opera-
tors. We analyse the operators’ genotypic step sizes in terms
of three distance measures taken from the specialised liter-
ature and in terms of corresponding fitness values. We also
analyse the frequencies of different sizes of fitness change.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$5.00.

General Terms
Algorithms

Keywords
Locality, Problem Hardness, Fitness Landscape, Difficulty,
Genetic Programming, Neutrality

1. INTRODUCTION
The concept of a fitness landscape [23] has dominated

the way geneticists think about biological evolution and has
been adopted within the Evolutionary Computation (EC)
community. In simple terms, a fitness landscape can be seen
as a plot where each point on the horizontal axis represents
all the genes in an individual corresponding to that point.
The fitness of that individual is plotted as the height against
the vertical axis. Thus, a fitness landscape is a representa-
tion of a search space which may contain peaks, valleys, hills
and plateaus.

How an algorithm explores and exploits such a landscape
is a key element during evolutionary search. Rothlauf [17,
19] has described and analysed the importance of locality in
performing an effective evolutionary search of landscapes.
Locality refers to how well neighbouring genotypes corre-
spond to neighbouring phenotypes. This research distin-
guished two forms of locality, low and high. A representation
has high locality if all neighbouring genotypes correspond to
neighbouring phenotypes. On the other hand, a representa-
tion has low locality if many neighbouring genotypes do not
correspond to neighbouring phenotypes. It is demonstrated
that a representation of high locality is necessary for effi-
cient evolutionary search. In Section 2 we further explain
the concept of locality.

In his original studies, Rothlauf used bitstrings to conduct
his experiments [17] (and more recently he further explored
the idea of locality using grammatical evolution at the chro-
mosome level [19]). To our knowledge, no studies on locality
exist using the typical Genetic Programming (GP) [11, 16]
representation (i.e., tree-like structures). For this purpose
we will extend the definition of locality to GP, and due to

the lack of distinction between genotype and phenotype, we
will study the locality of the genotype-fitness mapping. The
goal of this paper then is to shed some light on the type of
locality present in GP. We use three different mutation oper-
ators, three different genotypic distance measures, and two
problems with significantly different landscape features: the
artificial ant problem (a multimodal deceptive landscape)
[13] and the even-3-parity problem (a highly neutral land-
scape) [3].

The motivation for studying locality is as an indicator of
problem difficulty. The principle of strong causality states
that for successful search, a small change in genotype should
result in a small change in fitness [1].

This paper is organised as follows. In the next section,
locality in EC is summarised. In Section 3, we describe
three well-defined distance metrics for tree-like structures.
In Section 4, we describe how we study the locality of the
genotype-fitness mapping in GP. In Section 5, we present
and discuss our findings. Finally, in Section 6 we draw some
conclusions.

2. LOCALITY
Understanding of how well neighbouring genotypes corre-

spond to neighbouring phenotypes is a key element in un-
derstanding evolutionary search [17, 19]. In the abstract
sense, a mapping has locality if neighbourhood is preserved
under that mapping1. In EC this generally refers to the
mapping from genotype to phenotype. This is worthy of
study because if neighbourhood is not preserved, then the
algorithm’s attempts to exploit the information provided by
an individual’s fitness will be misled when the individual’s
neighbours turn out to be very different.

Rothlauf [17] is perhaps the authoritative work on the
topic of locality in EC. It and other work on locality [19, 18]
has shed new light on several problems. The definition of lo-
cality used in [17] assumes that a distance measure exists on
both genotype and phenotype spaces, that for each there is a
minimum distance, and that neighbourhood can be defined
in terms of minimum distance. In standard GP, there are
no phenotypes distinct from genotypes. It is common there-
fore to study the locality of the mapping from genotype to
fitness [12], and we take this approach here.

It can be stated that there are two types of locality: low
and high locality. A representation is said to have the prop-
erty of high locality if all neighbouring genotypes correspond
to neighbouring phenotypes. On the other hand, a repre-
sentation has low locality if some neighbouring genotypes
do not correspond to neighbouring phenotypes. Rothlauf
claims that a representation that has high locality will be
more efficient at evolutionary search. If a representation has
high locality then any search operator has the same effects
in both the genotype and phenotype space. It is clear then
that the difficulty of the problem remains unchanged com-
pared to an encoding in which no genotype-phenotype map
is required.

This, however, changes when a representation has low lo-
cality. To explain how low locality affects evolution, Roth-
lauf considered three different categories2. These are:

1The term locality has also been used in an unrelated con-
text, to refer to the quasi-geographical distribution of an EC
population[5].
2These categories were taken from the work presented in [9].

• easy, in which fitness increases as the global optimum
approaches,

• difficult, for which there is no correlation between fit-
ness and distance and,

• misleading, in which fitness tends to increase with the
distance from the global optimum.

If a given problem lies in the first category (i.e., easy),
a low-locality representation will change this situation by
making it more difficult and now, the problem will lie in
the second category. This is due to low locality randomising
the search. This can be explained by the fact that represen-
tations with low locality lead to uncorrelated fitness land-
scapes, so it is difficult for heuristics to extract information.

If a problem lies in the second category, a low-locality
representation does not change the difficulty of the prob-
lem. There are representations that can convert a problem
from difficult (class two) to easy (class one). However, such
representations are rare.

Finally, if the problem lies in the third category, a rep-
resentation with low locality will transform it so that the
problem will lie in the second category. That is, the problem
is less difficult because the search has become more random.
As can be seen, this is a mirror image of a problem lying in
the first category and using a representation that has low
locality.

In his original studies, Rothlauf mentioned the existence
of high and low locality. Contrary to other measures of
complexity (e.g., fitness distance correlation [9] where Jones
set thresholds to categorise problems’ difficulty), Rothlauf
focused his attention on correspondence of genotypic and
phenotypic neighbourhoods. In this work, we are going to
adopt the notion of high locality corresponding to a single
unit of fitness change (i.e., fitness distance = 13). When
distance > 1, low locality is present (in Section 5 we further
discuss this).

In this work, we are interested in seeing what kind of lo-
cality is present in GP by using three different mutation
operators. For this purpose, it is necessary to define a geno-
typic distance measure.

We will present three distance measures in the following
section and highlight the results they give in Section 5.

3. TREE DISTANCE MEASURES FOR GP
Several tree distance measures have been used for Genetic

Programming (e.g., [20, 15, 21, 22]). No single distance
measure can be regarded as universally most appropriate.
Each measure emphasises different aspects of similarity and
leads to different results. In this section, we therefore review
and give motivation for three contrasting measures:

Edit Distance is integer-valued and reflective of a very in-
tuitive notion of the distance between trees, based on
the number of individual edits required to transform
one into the other.

Tree Alignment Distance is a good general-purpose
measure which reflects the fact that the roots of syn-

3Notice that in this work we are using problems of discrete
values and so, it is reasonable to adopt this notion of high
neutrality. We also make a distinction with neutral muta-
tion, where the fitness distance = 0.

tactic trees tend to be more important than their lower
levels.

Normalised Compression Distance using a preorder
serialisation of trees is entirely unbiased and unin-
formed by any prior ideas of similarity of trees, which
may count both as an advantage and a disadvantage.

3.1 Edit Distance
O’Reilly [15] proposed an approach, called edit distance,

with the main goal of having a metric that specifies the
degree of dissimilarity between two individuals in the form of
tree-like structures. The idea of edit distance is to calculate
the minimum cost (number of moves) that is required to
transform a given tree to a target tree step by step. For
this purpose, the author defined the use of three types of
edits: (a) Substitution: changing a node into another, (b)
Insertion: adding a node within the tree and (c) Deletion:
removing a node from the tree. This distance is notable
because it is closely aligned with a mutation operator defined
in the same paper. This property is desirable because of
the principle stated by [9] in the context of fitness-distance
correlation that each operator induces its own landscape.

3.2 Tree Alignment Distance
The tree distance proposed by Vanneschi and colleagues

[21, 22] is based on that proposed by [8]. Formally, the
distance between trees T1 and T2 with roots R1 and R2,
respectively, is defined as follows:

dist(T1, T2, k) = d(R1, R2)+k

m
X

i=1

dist(childi(R1), childi(R2),
k

2
)

where: d(R1, R2) = (|c(R1)− c(R2)|)
z and; childi(Y) is the

ith of the m possible children of a node Y , if i < m, or the
empty tree otherwise. Note that c evaluated on the root of
an empty tree is 0 by convention. The parameter k is used to
give different weights to nodes belonging to different levels
in the tree and z ∈ N is a parameter of the distance. The
depth-weighting is well-motivated, in that GP trees’ roots
tend to be more important than their lowest levels. Code
for this calculation is available in [6].

This distance is notable because, for k = 1 (i.e. without
depth-weighting) and for a particular function/terminal set,
the distance is coherent with a specially-constructed pair of
mutation operators. This means that the distance between
a pair of trees and the number of mutations required to
transform one into the other are linearly related. This idea
is closely related to the work of [15]. However, operator-
distance coherence can not hold for typical operators, such
as subtree crossover and subtree mutation, which can trans-
form any individual into any other.

3.3 Normalised Compression Distance
The so-called “universal similarity metric” is a theoretical

measure of similarity between any two data structures (for
example strings), defined in terms of Kolmogorov complex-
ity [14]. This is defined as the length of the shortest pro-
gram which creates the given string. Informally, two strings
are very similar if the Kolmogorov complexity of their con-
catenation is close to the complexity of just one of them.
This idea was made practical by [2]: they approximated the
(uncomputable) Kolmogorov complexity of a string by the

Table 1: Parameters used to create our sampling.
Selection Tournament (size 7)
Initial Population Ramped half and half (depth 1 to 6)
Population size 500
Generations 50
Runs 50
Operators Crossover

Subtree Mutation
Crossover rate 70%
Mutation rate 30%

length of its compressed version, as calculated by off-the-
shelf compression software. The “normalised compression
distance” or NCD is defined as follows:

d(x, y) =
C(xy) − min(C(x), C(y))

max(C(x), C(y))

where x and y are two strings, xy is their concatenation, and
the function C gives the length of the compressed version of
its argument.

The NCD has been used as a distance measure for trees in
fields other than EC [2] and has been used for linear struc-
tures within EC [7], and GP has been used to approximate
Kolmogorov complexity [4]. However, to the authors’ knowl-
edge the NCD has not yet been used to measure distance
between GP trees. It can be applied to trees simply by en-
coding them as strings in preorder format. For fixed node
arities, this encoding is injective, i.e. distinct trees will give
distinct preorder strings. It has the advantage that a single
mutation in a large tree will have a smaller effect on distance
than a single mutation in a small tree. On the other hand,
mutations near the root have the same weight as deeper
ones. It shares this disadvantage with, for example, tree
edit distance. Such distances are general-purpose, in that
they are intended for general trees, not only the syntactic
trees as used in standard GP.

4. EXPERIMENTAL SETUP
We are interested in determining how locality affects GP

search, and as such we need to consider whether neighbour-
ing genotypes have similar fitness values. In this study we
define genotypic neighbourhood via mutation operators: two
individuals are neighbours if one is transformed into the
other by a single mutation event. We therefore focus on the
sizes of the fitness changes induced by the three mutation
operators. At this point some questions arise: What kind
of relationship should we expect between the genotypic step
size of an operator and the corresponding change in fitness?
What will be the proportions of individuals of higher, lower,
and unchanged fitness after being affected by operators? To
answer these questions we will focus our attention on how
different types of mutation affects individuals, in terms of
both genotypic structure and fitness.

For our analysis, we have used two problems. The first,
the Artificial Ant Problem [11, pp. 147–155], consists of find-
ing a program that can successfully navigate an artificial ant
along a path of 89 pellets of food on a 32 x 32 toroidal grid.
When the ant encounters a food pellet, its (raw) fitness in-
creases by one, to a maximum of 89. The terminal set used
for this problem is T = {Move, Right, Left} and the func-
tion set is F = {IfFoodAhead, P rog2, P rog3} (see [11] for a

full description of them). This problem has been shown to
be difficult for GP for its characteristics (e.g., multimodal-
deceptive features)[13, Chapter 9]. These features are be-
lieved to be common in many real-world applications. The
problem is in itself challenging for many reasons. The ant
must eat all the food pellets (normally in 600 steps) along a
track that has single, double and triple gaps along it. More-
over, the food trail is twisted.

The second problem is the Boolean even-3-parity where
the goal is to evolve a function that returns true if an even
number of the inputs evaluate to true, and false otherwise.
This type of function is difficult for GP if no bias favorable to
their induction is added in any part of the algorithm (e.g. the
function set). The terminal set used for this problem is
the number of inputs (three) and the function set is defined
as F = {NOT, OR, AND}. The maximum fitness for this
problem is 8 (23).

For our studies we have considered the use of three dif-
ferent mutation operators: (a) subtree mutation replaces a
randomly selected subtree with another randomly created
subtree [11]; (b) one-point mutation replaces a node (leaf
or internal) in the individual subject to a probability (i.e.,
more than one can be changed or none); and (c) structural
mutation, which is composed of inflate mutation and deflate
mutation. The former consists of inserting a terminal node
beneath a function whose arity a is lower than the maximum
arity defined in the function set and replacing the function
by another of arity a + 1; the latter consists of deleting a
terminal beneath a function whose arity is at least 1 and
replacing that function by another of arity a − 1 [22]

To have sufficient statistical data, we created 1,250,000 in-
dividuals for each of the three mutation operators described
previously (in total 3,750,000 individuals). These samplings
were created using traditional GP runs which used all three
mutation operators, to avoid bias (see Table 1).

For each data point in the sample data, we created an
offspring via mutation. In the following section we present
and describe the results on locality using these mutations on
the artificial ant problem and on the even-3-parity problem.

5. RESULTS AND DISCUSSION
Let us start by analysing the occurrences of individuals

which are fitter, less fit and equally-fit after applying the
three mutations (i.e., subtree, structural and one-point) ex-
plained in Section 4. For the artificial ant problem, it has
been shown in [13, Chapter 9], that the number of individ-
uals with very low fitness (e.g., fitness < 15) regardless of
their length is much larger compared with individuals of very
high fitness (e.g., fitness > 80). This explains why the high-
est peak in occurrences is within this region (fitness < 15, see
top of Figure 1). There are also peaks in the range [50− 70]
and at 79−80 and 85. These peaks occur in the original dis-
tribution and thus tell us about the distribution of fitness
values in the search space (and the method of sampling),
rather than about the behaviour of the operators.

There is, however, one element that is quite interesting in
the range (fitness < 15): most of the mutations that take
place have a neutral effect [10] and, in fact, there is a good
number of such mutations within the range of [50−70] also4.

This situation is similar on the even-3-parity problem (see

4It is worth mentioning that this finding corresponds to that
reported for grammatical evolution in [19], where Rothlauf

bottom of Figure 1), but on the range of highly fit individ-
uals (fitness > 5), where a great number of mutations are
fitness-neutral, in particular for subtree and one-point muta-
tion. The lack of occurrences in the region of [0−2] happens
because the sampling process creates very few individuals
whose fitness lies in this range.

The locality is high if the corresponding phenotypes are
similar to each other. Figure 2 shows the frequency of each
possible fitness distance between individuals, for the two
problems. Let us first focus our attention on the even-3-
parity problem (8 fitness cases and 9 possible fitness values,
including 0). As can be seen from Figure 2 (right) there is
a good number of neutral mutations (i.e., fitness distance
= 0). Regarding to the locality of the operators, we can
see that structural mutation presents the highest locality
among the three operators used in this work. Subtree and
one-point mutation both present low locality (i.e., fitness
distance > 1). This last finding is quite interesting due to
the data shows that subtree mutation has a “higher” locality
compared to one-point mutation. This in itself is revealing
because one could imagine the opposite given the nature of
the operators. That is, subtree mutation could change an
entire subtree (and in fact the whole tree), whereas one-
point mutation changes one node by another. This trend
continues throughout the rest of the fitness distance (i.e.,
fitness distance ≥ 2).

For the artificial ant problem and for clarity purposes, we
have plotted the first 9 fitness values (see left of Figure 2).
Again, as in the previous problem, we can see that a high
number of changes translates into neutral mutations (fit-
ness distance = 0). Focusing our attention on the locality
of the operators for this problem, we observe a similar story
compared to the even-3-parity problem. Structural muta-
tion presents the highest locality among the three opera-
tors. The remaining two operators, subtree and one-point
mutation, show a very similar locality.

So far we have seen the overall locality present on three
different mutation operators on two problems: the artificial
ant problem and the even-3-parity problem. However, we
can not say how the step size (both in terms of distance and
fitness difference between parent and offspring) occurred.
We will now analyse separately the cases where mutation is
beneficial, detrimental, and fitness-neutral. In each case we
will examine the genotypic step-size of the mutation which
gave rise to the given effect on fitness. For clarity and due
to space limitations, we will further examine the locality
properties of these mutation operations on the even-3-parity
problem only.

Let us focus our attention on the case where the resulting
offspring has higher fitness than the parent. As can be seen
in Figure 3, for high values of original fitness, only relatively
small genotypic distances between parent and offspring re-
sult in increased fitness. This is true regardless of the muta-
tion operator used (i.e., subtree, structural, onepoint). The
opposite can be observed for low original fitness values (i.e.,
fitness < 4): fitness can be improved by mutations of rel-
atively large genotypic distance. This is very interesting
because it suggests that the closer the individual is to the
global optimum, smaller changes are required at the geno-
typic level. In other words, a small genotypic step-size is
needed to achieve this. This is consistent throughout the

mentioned “... in about 90% of cases a mutation of a geno-
type does not change the corresponding phenotype”

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5
x 10

4

Fitness

O
cc

ur
re

nc
es

Subtree Mutation

New fitness: Higher
New fitness: Lower
New fitness: Same

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5
x 10

4

Fitness

O
cc

ur
re

nc
es

Structural Mutation

New fitness: Higher
New fitness: Lower
New fitness: Same

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5
x 10

4

Fitness

O
cc

ur
re

nc
es

OnePoint Mutation

New fitness: Higher
New fitness: Lower
New fitness: Same

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
x 10

5

Fitness

O
cc

ur
re

nc
es

Subtree Mutation

New fitness: Higher
New fitness: Lower
New fitness: Same

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
x 10

5

Fitness

O
cc

ur
re

nc
es

Structural Mutation

New fitness: Higher
New fitness: Lower
New fitness: Same

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
x 10

5

Fitness

O
cc

ur
re

nc
es

OnePoint Mutation

New fitness: Higher
New fitness: Lower
New fitness: Same

Figure 1: Results on the artificial ant problem (top) and on the even-3-parity problem (bottom). Occurrences
of individuals after applying subtree (left), structural (middle) and one-point mutation (right).

three distances used in this work, where tree-alignment and
normalised compression distance are the most illustrative.

Now, we turn our attention on detrimental mutations
(i.e., where resulting offspring’s fitness are lower compared
to their parent’s fitness). Figure 4 illustrates this scenario,
where we see a similar effect of what happens in the pres-
ence of beneficial mutations (i.e., where resulting offspring’s
fitness are higher compared to their parent’s fitness). That
is, the distance between parent-offspring at the genotypic
level is lower when it is closer to the global optimum. This
supports our previous findings (i.e., beneficial mutations).

Finally, let us discuss the effects when we do not see any
effect at the fitness level. This is shown in Figure 5. As
it has been shown in [3], the even-3-parity problem has a
highly neutral landscape. By definition of neutrality, we
know that we will not see any change at fitness level (see
left of Figure 5), but we do not know what are the distances
that one may find on this scenario. As we can see we have
a symmetrical image where the highest distance peak is at
fitness 4 (regardless of the distance metrics and mutation
operators used). This suggest that the closer the individual
is to the half of the global optimum the bigger the changes
are at the genotypic level.

6. CONCLUSIONS
When analysing the relative effects of mutations of large

and small genotypic step-size starting at high- and low-
fitness individuals, we observed that when the original fit-
ness is high, mutations of large genotypic distance tend to

be quite detrimental. When the original fitness is low, large
genotypic jumps can lead to fitness improvements. This is
an instance of the balance between exploration and exploita-
tion: when the population is relatively poor, exploration is
beneficial, but when the population has begun to converge
on high-quality areas of the search space, smaller, exploita-
tive mutations are better. Strategies which vary mutation
rates to achieve a varying balance between exploration and
exploitation have been used in the past; our results on the
genotypic step-sizes of the three mutations operators sug-
gest that varying the mutation operator itself could have
the same effect.

The most important result we have obtained is that it is
structural mutation which gives rise to the highest locality
among the operators used in this paper. This is not sur-
prusing given the nature of the operator. That is, the result
of applying this operator on a tree results on similar tree
that is smaller o larger by one node. It must be empha-
sised that structural mutation was originally developed for
problems such as the royal tree problem, where every node
type has a distinct arity and an individual’s semantics are
defined purely by genotypic structure, and so structural mu-
tation functioned as a “minimal” mutation [21, 22]. In other
problems, such as the two we have studied, structural muta-
tion is not the minimal mutation. The other two operators,
one-point and subtree mutation, give rise to relatively low
locality, where subtree mutation, surprisingly shows a higher
locality compared to one-point mutation. This encorage us
to explore the possibility of increasing the locality of these
two operators.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fitness distance

F
re

qu
en

cy
Artificial Ant Problem

Structural Mutation
OnePoint Mutation
Subtree Mutation

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fitness distance

F
re

qu
en

cy

Even−3−Parity Problem

Structural Mutation
OnePoint Mutation
Subtree Mutation

Figure 2: Distribution of fitness distance vs. frequency. Results on the artificial ant problem (left) and on
the even-3-parity problem (right) using structural, one-point and subtree mutation. Notice that for clarity
purposes we are taken the first 9 fitness values for the artificial ant problem (left).

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Original Fitness

H
ig

he
r

F
itn

es
s

Subtree Mutation

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Original Fitness

E
di

t D
is

ta
nc

e

Subtree Mutation

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Original Fitness

N
or

m
al

is
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

Subtree Mutation

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Original Fitness

T
re

e−
al

ig
nm

en
t D

is
ta

nc
e

Subtree Mutation

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Original Fitness

H
ig

he
r

F
itn

es
s

Structural Mutation

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Original Fitness

E
di

t D
is

ta
nc

e

Structural Mutation

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

Original Fitness

N
or

m
al

is
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

Structural Mutation

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Original Fitness

T
re

e−
al

ig
nm

en
t D

is
ta

nc
e

Structural Mutation

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Original Fitness

H
ig

he
r

F
itn

es
s

OnePoint Mutation

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original Fitness

E
di

t D
is

ta
nc

e

OnePoint Mutation

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Original Fitness

N
or

m
al

is
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

OnePoint Mutation

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Original Fitness

T
re

e−
al

ig
nm

en
t D

is
ta

nc
e

OnePoint Mutation

Figure 3: Results after applying subtree (top), structural (middle) and one-point mutation (bottom) using
the even-3-parity problem. Original fitness versus higher fitness (first column) and distance metrics using
edit (second column), normalised compression (third column) and tree-alignment distance (fourth column).

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Original Fitness

Lo
w

er
 F

itn
es

s

Subtree Mutation

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Original Fitness

E
di

t D
is

ta
nc

e

Subtree Mutation

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

Original Fitness

N
or

m
al

is
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

Subtree Mutation

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Original Fitness

T
re

e−
al

ig
nm

en
t D

is
ta

nc
e

Subtree Mutation

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Original Fitness

Lo
w

er
 F

itn
es

s

Structural Mutation

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Original Fitness

E
di

t D
is

ta
nc

e

Structural Mutation

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

Original Fitness

N
or

m
al

is
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

Structural Mutation

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Original Fitness

T
re

e−
al

ig
nm

en
t D

is
ta

nc
e

Structural Mutation

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Original Fitness

Lo
w

er
 F

itn
es

s

OnePoint Mutation

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original Fitness

E
di

t D
is

ta
nc

e

OnePoint Mutation

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Original Fitness

N
or

m
al

is
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

OnePoint Mutation

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

Original Fitness

T
re

e−
al

ig
nm

en
t D

is
ta

nc
e

OnePoint Mutation

Figure 4: Results after applying subtree (top), structural (middle) and one-point mutation (bottom) using
the even-3-parity problem. Original fitness versus lower fitness (first column) and distance metrics using edit
(second column), normalised compression (third column) and tree-alignment distance (fourth column).

Acknowledgments
This research is based upon works supported by Science
Foundation Ireland under Grant No. 08/IN.1/I1868 and
by the Irish Research Council for Science, Engineering and
Technology under the Empower scheme.

7. REFERENCES
[1] H. Beyer and H. Schwefel. Evolution strategies–A

comprehensive introduction. Natural Computing,
1(1):3–52, 2002.

[2] R. Cilibrasi and P. M. B. Vitanyi. Clustering by
compression. IEEE Transactions on Information
theory, 51(4):1523–1545, 2005.

[3] M. Collins. Finding needles in haystacks is harder with
neutrality. In GECCO ’05: Proceedings of the 2005
conference on Genetic and evolutionary computation,
pages 1613–1618, New York, NY, USA, 2005. ACM.

[4] I. De Falco, A. Iazzetta, E. Tarantino,
A. Della Cioppa, and G. Trautteur. A Kolmogorov
complexity based genetic programming tool for string
compression. In Proceedings of the Genetic and
Evolutionary Computation Conference
(GECCO-2000), 2000.

[5] P. D’haeseleer and J. Bluming. Effects of locality in

individual and population evolution. In K. E. Kinnear,
editor, Advances in Genetic Programming, pages
177–198. MIT Press, 1994.

[6] E. Galván-López. An Analysis of the Effects of
Neutrality on Problem Hardness for Evolutionary
Algorithms. PhD thesis, School of Computer Science
and Electronic Engineering, University of Essex,
United Kingdom, 2009.

[7] F. J. Gomez. Sustaining diversity using behavioral
information distance. In Proceedings of the 11th
Annual conference on Genetic and evolutionary
computation, pages 113–120, Montréal, Canada, 2009.
ACM.

[8] T. Jiang, L. Wang, and K. Zhang. Alignment of trees
– an alternative to tree edit. Theoretical Computer
Science, 143(1):137–148, 1995.

[9] T. Jones. Evolutionary Algorithms, Fitness Landscapes
and Search. PhD thesis, University of New Mexico,
Albuquerque, 1995.

[10] M. Kimura. The Neutral Theory of Molecular
Evolution. Cambridge University Press, Cambridge,
UK, 1983.

[11] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Original Fitness

S
am

e
F

itn
es

s

Subtree Mutation

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Original Fitness

E
di

t D
is

ta
nc

e

Subtree Mutation

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

Original Fitness

N
or

m
al

is
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

Subtree Mutation

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Original Fitness

T
re

e−
al

ig
nm

en
t D

is
ta

nc
e

Subtree Mutation

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Original Fitness

S
am

e
F

itn
es

s

Structural Mutation

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Original Fitness

E
di

t D
is

ta
nc

e

Structural Mutation

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

Original Fitness

N
or

m
al

is
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

Structural Mutation

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Original Fitness

T
re

e−
al

ig
nm

en
t D

is
ta

nc
e

Structural Mutation

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Original Fitness

S
am

e
F

itn
es

s

OnePoint Mutation

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Original Fitness

E
di

t D
is

ta
nc

e

OnePoint Mutation

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Original Fitness

N
or

m
al

is
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

OnePoint Mutation

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

Original Fitness

T
re

e−
al

ig
nm

en
t D

is
ta

nc
e

OnePoint Mutation

Figure 5: Results after applying subtree (top), structural (middle) and one-point mutation (bottom) using
the even-3-parity problem. Original fitness versus unchanged fitness (first column) and distance metrics using
edit (second column), normalised compression (third column) and tree-alignment distance (fourth column).

Selection. The MIT Press, Cambridge, Massachusetts,
1992.

[12] W. Langdon and R. Poli. Why ants are hard. In J. R.
Koza, editor, Proceedings of the Third Annual
Conference on Genetic Programming, pages 193–201.
Morgan Kaufmann, Madison, USA, 1998.

[13] W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer, Berlin, 2002.

[14] M. Li and P. Vitanyi. An introduction to Kolmogorov
complexity and its applications. Springer Verlag, 1997.

[15] U.-M. O’Reilly. Using a distance metric on genetic
programs to understand genetic operators. In IEEE
International Conference on Systems, Man, and
Cybernetics: Computational Cybernetics and
Simulation, volume 5, 1997.

[16] R. Poli, W. B. Langdon, and N. F. McPhee. A field
guide to genetic programming. Published via
http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[17] F. Rothlauf. Representations for Genetic and
Evolutionary Algorithms. Physica-Verlag, 2nd edition,
2006.

[18] F. Rothlauf. On the bias and performance of the

edge-set encoding. IEEE transactions on evolutionary
computation, 13(3):486–499, June 2009.

[19] F. Rothlauf and M. Oetzel. On the Locality of
Grammatical Evolution. In P. Collet, M. Tomassini,
M. Ebner, S. Gustafson, and A. Ekart, editors,
EuroGP, volume 3905 of Lecture Notes in Computer
Science, pages 320–330. Springer, 2006.

[20] V. Slavov and N. I. Nikolaev. Fitness Landscapes and
Inductive Genetic Programming. In G. D. Smith,
N. C. Steele, and R. F. Albrecht, editors, Artificial
Neural Nets and Genetic Algorithms: Proceedings of
the International Conference, ICANNGA97,
University of East Anglia, Norwich, UK, 1997.
Springer-Verlag.

[21] M. Tomassini, L. Vanneschi, P. Collard, and
M. Clergue. A study of fitness distance correlation as
a difficulty measure in genetic programming.
Evolutionary Computation, 13(2):213–239, 2005.

[22] L. Vanneschi. Theory and Practice for Efficient
Genetic Programming. PhD thesis, Faculty of Science,
University of Lausanne, Switzerland, 2004.

[23] S. Wright. The Roles of Mutation, Inbreeding,
Crossbreeding and Selection in Evolution. In D. F.
Jones, editor, Proceedings of the Sixth International
Congress on Genetics, volume 1, pages 356–366, 1932.

