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Abstract—Locality - how well neighbouring genotypes corre-
spond to neighbouring phenotypes - has been defined as a key ele-
ment in Evolutionary Computation systems to explore and exploit
the search space. Locality has been studied empirically using the
typical Genetic Algorithms (GAs) representation (i.e., bitstrings),
and it has been argued that locality plays an important role in
the performance of evolution. To our knowledge, there are no
studies of locality using the typical Genetic Programming (GP)
representation (i.e., tree-like structures). The aim of this paper
is to shed some light on this matter by using GP. To do so, we
use three different types of mutation taken from the specialised
literature. We then perform extensive experiments by comparing
the difference of distances at the genotype level between parent
and offspring and their corresponding fitnesses. Our findings
indicate that there is low-locality in GP when using these forms
of mutation on a multimodal-deceptive landscape.

I. I NTRODUCTION

The concept of a fitness landscape was first introduced in
biology by [18]. This concept has dominated the way geneti-
cists think about biological evolution and has been adopted
within the Evolutionary Computation (EC) community. In
simple terms, a fitness landscape can be seen as a plot where
each point on the horizontal axis represents all the genes in
an individual corresponding to that point. The fitness of that
individual is plotted as the height against the vertical axis.
Thus, a fitness landscape is a representation of a search space
which may contain peaks, valleys, hills and plateaus.

How an algorithm explores and exploits such a landscape
is a key element during evolutionary search. In [14], [15],
Rothlauf mentioned that locality (i.e., how well neighboring
genotypes correspond to neighboring phenotypes) must be
taken into account in EC systems. The author distinguished
two forms of locality: low and high locality. The author
pointed out that a representation presents high locality ifall
neighboring genotypes correspond to neighboring phenotypes.
On the other hand, a representation presents low locality if
some neighboring genotypes do not correspond to neighboring
phenotypes. The author also mentioned that a representation
that has high locality is necessary for efficient evolutionary
search (in Section II we further explain the concept of locality).

In his original studies, Rothlauf used Genetic Algorithms to
conduct his experiments [13]. To our knowledge, we have not
seen any studies on locality using the typical Genetic Program-
ming (GP) [7], [11] representation (i.e., tree-like structures).

The goal of this paper is to shed some light on the type of
locality present in GP.

This paper is organised as follows. In the next section,
locality in EC is summarised. In Section III, we describe a
well-studied distance metric for tree-like structures. InSection
IV, we describe how we study locality at the genotype-fitness
level in GP. In Section V, we present and discuss our findings.
Finally, in Section VI we draw some conclusions.

II. L OW AND HIGH LOCALITY

In [14], [15], Rothlauf stated that the understanding of
how well neighbouring genotypes correspond to neighbouring
phenotypes is a key element in evolutionary search.

To study locality, it is necessary to define a metric on the
search spaceΦ. In a genotype-phenotype mapping representa-
tion, it is clear thatΦg is the genotypic search space andΦp is
the phenotypic search space. Now, based on a defined metric
we can quantify how different or similar two individuals are. In
his work, Rothlauf claimed that for two different search spaces
(e.g., genotypic and phenotypic search space) it is necessary to
define two different metrics. In Sections III and IV we further
discuss this.

The author distinguished two types of locality: low and
high locality. The author pointed out that a representation
presents high locality if all neighboring genotypes correspond
to neighboring phenotypes. On the other hand, a representation
presents low locality if some neighboring genotypes do not
correspond to neighboring phenotypes. The author also men-
tioned that a representation that has high locality is necessary
for efficient evolutionary search.

Rothlauf stated that if a representation shows high locality
then any search operator has the same effects in both the geno-
type and phenotype space. It is clear then that the difficulty
of the problem remains unchanged.

This, however, changes when a representation has low lo-
cality. To explain how low locality affects evolution, Rothlauf
considered three different categories1. These are:

• easy, in which fitness increases as the global optimum
approaches,

• difficult, for which there is no correlation between fitness
and distance and

1These categories were taken from the work presented in [6].



• misleading, in which fitness tends to increase with the
distance from the global optimum.

If a given problem lies in the first category (i.e., easy), a low
locality representation will change this situation by making it
more difficult and now, the problem will lie in the second
category. According to the author, this is due to low locality
randomising the search. To explain this, Rothlauf mentioned
that representations with low locality lead to uncorrelated
fitness landscapes, so it is difficult for heuristics to extract
information.

If a problem lies in the second category, this type of
representation does not change the difficulty of the problem.
The author pointed out that there are representations that can
convert a problem from difficult (class two) to easy (class
one). However, according to the author, few representations
have this effect.

Finally, if the problem lies in the third category, a represen-
tation with low locality will transform it and now, the problem
will lie in the second category. That is, the problem is less
difficult because the search has become more random. As can
be seen, this is a mirror image of a problem lying in the first
category and using a representation that has low locality.

In his work, Rothlauf mentioned“..., it remains unclear
as to how the locality of a representation influences problem
difficulty, and if high-locality representations always aid evo-
lutionary search.”[13, page 73]. In this work, we are interested
in seeing how locality affects problem difficulty. To do so, it
is necessary to define a metric. This will be presented in the
following section.

III. D ISTANCE IN TREE-L IKE STRUCTURES

In this study we examine the traditional tree-based GP rep-
resentation. As such, we do not explicitly distinguish between
genotypic (Φg) and phenotypic (Φp) search spaces. Instead
we examine the relationship between the search space (Φ)
and fitness.

When using the traditional GA representation (binary
strings), it is straightforward to calculate the distance between
two given strings. This is accomplished using the Hamming
distance. The Hamming distance between two strings of
the same length is the number of positions for which the
corresponding symbols are different. This scenario, however,
changes radically when using the traditional GP representation.

[1], [16], [17] have shown that calculating distances between
tree-like structures is very difficult. Nevertheless, the authors
were able to define a distance that has proved to be reliable
when it was used to calculate the hardness of a problem [3],
[4], [16], [17]. In the following paragraphs, we will see how
this distance works.

In [1], the authors proposed a distance to calculatefdc.
However, as the authors pointed out in their research, to
calculate distances at genotype level when using the syntax
tree representation is a difficult task. In their investigation, they
used the same function and terminal sets defined in [12] where
the function set isFset= {A,B,C, · · ·}, whereA is a function of
arity 1, B has arity 2,C has arity 3 and so forth. The terminal

set was composed of a single symbolX. Given the difficulties
in calculating distances between tree-like structures, Clergue
and co-workers started their studies with a restriction: the
nodes below the current node with arityn cannot have an
arity equal to or greater thann. They called this representation
limited GP.

Initially, Clergue et al. defined the distance between two
trees as follows:

Let T1 andT2 be two trees. Then,

d1(T1,T2) = |weight(T1)−weight(T2)| (1)

where weight(T) = 1 · nX(T) + 2 · nA(T) + 3 · nB(T) + 4 ·
nC(T)+ · · · andnX(T) is the number ofX symbols in the tree
T, nA(T) is the number of symbolsA in the treeT, nB(T) is
the number of symbolsB in the treeT, and so on.

This first attempt to calculate the distance between pairs
of trees had a major problem: two trees with very different
structures between them can have distance 0.

Making an effort to overcome this problem, they defined a
new concept of distance. That is, each tree with rooti must
have a greater weight than the trees with rootj, if and only
if j < i, where:

1) i, j ∈ {X,A,B,C, · · ·}
2) there is an order such thatX < A < B < C· · ·

Formally, the distance between two trees is given as follows:

d2(T1,T2) = |weight(T1)−weight(T2)| (2)

where weight(T) = 1 · nX(T) + 2 · nA(T) + 3 · nB(T) + 4 ·
nC(T) + · · ·+ prize(T) and prize(T) is computed as 2 plus
the difference between the heaviest tree of rootsucc(i) (i.e.,
succ(C) = B) and the lightest tree of root(i). For instance, to
calculate the prize of rootC, we need to compute the heaviest
tree of rootB (i.e., represented by(B (A X) (A X)) in prefix
notation) whose weight is 9 and the lightest tree of rootC (i.e.,
represented by(C X X X) in prefix notation) whose weight is
7. Adding 2 to the difference 9−2, we obtain the prize for
root C, which is 4. Similarly, we have that the prizes for roots
D, E andF are 28, 148 and 788, respectively.

Despite “rewarding” individuals, Clergue and co-authors
still had a problem: two individuals that are symmetrical
about a vertical axis have a distance 0 but their structures are
different. As can be seen, calculating distance between trees
is a very difficult task indeed.

Finally, they extended their previous distance measures
obtaining a new distance which works for all trees. There are
three steps to calculate the distance between treeT1 andT2:

1) T1 and T2 must be aligned to the left-most subtrees
(Figure 1 illustrates this idea),

2) For each pair of nodes at matching positions, the dif-
ference of their codesc (typically c is the index of an
instruction within the primitive set) is calculated, and

3) The differences calculated in the previous step are com-
bined into a weighted sum (nodes that are closer to the
root have greater weights than nodes that are at lower
levels).
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Fig. 1. Alignment for measuredist. T1 and T2 represent two trees taken
from the population (left), the figure at the right shows withthick circles the
matching positions when leftmost alignment is applied to treesT1 andT2.

Formally, the distance between treesT1 and T2 with roots
R1 andR2, respectively, is defined as follows:

dist(T1,T2,k) = d(R1,R2)+k
m

∑
i=1

dist(childi(R1),childi(R2),
k
2
)

(3)
where: d(R1,R2) = (|c(R1) − c(R2)|)

z and; childi(Y) is the
ith of the m possible children of a nodeY, if i < m, or the
empty tree otherwise. Note thatc evaluated on the root of an
empty tree is 0 by convention. The parameterk is used to give
different weights to nodes belonging to different levels inthe
tree andz∈ N is a parameter of the distance.

The distance shown in Equation 3 has successfully proved
to be a reliable distance [3], [4], [16], [17]. This is the distance
that we will use in our experiments. For this purpose, we will
use the code provided in [3] to make such calculations.

IV. A PPROACH

In the specialised literature [11], one can find many different
alternatives from the typical GP representation (i.e., tree-like
structures) to represent an individual, and there are many
different reasons why researchers have proposed alternative
representations. For instance, allowing the reuse of code [5],
allowing inactive code [9], etc. Nevertheless, GP tree-like
structures are the most widely adopted. This form of repre-
sentation does not consider a genotype-phenotype mapping
that is very common in Genetic Algorithms. Of course, there
are variations in GP that allows us to study the relationship
between the genotype and the phenotype (e.g., [2], [10] and
[9]).

Because we are interested in seeing how locality affects GP
search, we need to consider how a change in the individual
is translated at the fitness level. At this point some questions
arise: what kind of relation shall we expect from an individual
being affected by an operator and its corresponding fitness?
To answer this question we will focus our attention on how
different types of mutation affect individuals (both in terms of
structure and their corresponding fitnesses).

For our experiments, we have used the Artificial Ant Prob-
lem [7, pages 147–155]. This problem consists of finding a
program that can successfully navigate an artificial ant along

a path of food on a 32 x 32 toroidal grid. This problem has
been shown to be difficult for GP for its characteristics (e.g.,
multimodal-deceptive features)[8, Chapter 9]. These features
are believed to be common in many real-world applications.

The terminal set for this problem is T =
{Move,Right,Le f t}. These operations move the ant
forward one square, turn 90◦ to the right and turn 90◦

to the left, respectively. When the ant performs any of
these operations, it consumes one time unit. The function
set is F = {IfFoodAhead,Prog2,Prog3}. IfFoodAhead is a
conditional function that executes the first argument if theant
perceives food in front of it, otherwise the second argument
is executed. The remaining functions,Prog2 andProg3, have
arity two and three, respectively. Both functions execute their
arguments in sequence.

The problem is in itself challenging for many reasons. The
ant must eat all the food pellets (89 in total) along a track that
has single, double and triple gaps along it. Moreover, the food
trail is twisted. For this task, the ant is given a certain number
of steps (normally 600 steps) to find all the food available in
the grid. Once the ant finds and eats a food pellet, its fitness
increases by one (raw fitness) so, the maximum fitness for this
problem is 89.

For our studies we have considered the use of three different
mutation operators:

1) subtree mutation replaces a randomly selected subtree
with another randomly created subtree [7],

2) one-point mutation replaces a point in the individual
subject to a probability (i.e., more than one can be
changed or none) and

3) inflate mutation consists of inserting a terminal node
beneath a function whose aritya is lower than the
maximum arity defined in the function set, then the
function is replaced by another function of aritya+ 1
[17].

We know that for the Artificial Ant Problem there are 90
different fitness values (including 0 meaning that an individual
did not eat any food). For each of those 90 different values,
we generated 100 different individuals. We achieved this
by performing thousands of independent runs until finding
100 different individuals for each of the 90 different fitness
values (Table I shows the parameters used to capture these
individuals). Once this has been done, for each group of
100 individuals (i.e., 9000 individuals in total), we performed
2000 mutations for each operator (i.e., one-point, inflate and
subtree mutation) independently, as described previously. In
the following section, we will present and discuss our findings.

V. RESULTS AND DISCUSSION

In Figures 2, 3 and 4, we show the relation between a
new fitness (i.e., fitter individuals or less fit individuals)and
compared them with their corresponding distances. Let us start
by analysing the proportion of “good” resulting offspring (i.e.,
fitter individuals) and “bad” resulting offspring (i.e., less fit
individuals) after applying a mutation operator (top of Figures
2, 3 and 4).



TABLE I
PARAMETERS FOR THEANT PROBLEM.

Objective Find a program that follows
the “Santa Fe Ant Trail”

Function set IfFoodAhead, Prog2, Prog3
Terminal set Move, Right, Left
Fitness cases The Santa Fe Ant Trail
Fitness Food eaten
Selection Tournament (size 7)
Wrapper Program repeatedly executed for

600 time steps
Initial Population Ramped half and half (depth 1 to 6)
Population size 500
Independent runs 100
Operators One-Point Mutation, Inflate Mutation and

Subtree Mutation
Parameters One mutation per individual
Termination Maximum number of generations,G = 50

We know that mutations are well-known for their destructive
effects and, in fact, this is corroborated at the top of these
figures. Notice how for any type of the mutation operators
used for this problem, the number of fitness improvements is
less than the number of disimprovement.

Let us go deeper in our analysis by analysing when an
individual is affected by mutation and the resulting offspring is
less fit (centre of Figures 2, 3 and 4). The first thing to noticeis
that by using any of the three mutations explained previously,
the resulting fitness can drop dramatically (e.g, from fitness
80-89 to 0-40). The corresponding difference of distance (i.e.,
from an individual to their produced offspring) is also quite
big. So one could suggest that there is a strong relation
between distance and fitness. However, when the fitness is
in the range of 0-5, the new fitness (now in the range of 1-4)
does not correspond with the difference of distances. In fact,
for all three mutations one can observe how the highest peak
is in this region. This indicates that small variations in the
fitness do not necessarily correspond to a small variation of
distance.

Now, let us focus our attention when the new fitness is
better than the original fitness (bottom of Figures 2, 3 and 4).
In the case of inflate mutation (see Figure 2), we can observe
that the improvement in fitness does not present big variations
(i.e., error bars). This, however, is not the case for one-point
mutation (see Figure 3), where there are some cases where
a fitness can have quite a big jump. Now, for the subtree
mutation (Figure 4), we have that the behaviour presented
in the fitness improvement is more less similar compared
against inflate mutation. However, there is a big difference
when these two mutations are compared. In the case of subtree
mutation, one can see that the difference of distance between
the parent and the offspring is not big, in contrast with what
you can observe with inflate mutation (Figure 2) and one-point
mutation (Figure 3). This corresponds to small changes in the
improvement of fitness.

Within the frame of locality defined and explained by [13]
and using the distance proposed and defined in [1], [16], [17],

it is quite clear that the mutations presented here present low
locality at theΦ-fitness level. However, low-locality affects
evolutionary search in different ways, as explained previously.
The most representative case is when one compares subtree
mutation and one-point mutation, where it can be seen that
small improvement in fitness correspond to small difference
of distances for the subtree mutation, whereas the oppositeis
true for the one-point mutation.

So far, we have shown how locality at theΦ-fitness level
is different and in what ways for three forms of mutation
presented in Section IV. However, it is not clear what changes
each of these mutations induce. In a mutation-based GP
system, one can record the changes produced by mutations.
In Figure 5, we show the original fitness in thex axis and
their corresponding new fitness (y axis). For clarity purposes,
we have divided the plots into two categories for each of the
mutation operators: less fit individuals (left of Figure 5) and
fitter individuals (right of Figure 5). When a new individual
is generated by means of a mutation and its corresponding
fitness is lower than its parent’s fitness, we can see how for
all the mutations used, there are many occurrences (note log
z axis scale). These occurrences, however, vary. For instance,
for the case of subtree mutation we can see a more uniform
behaviour, whereas it is the opposite for one-point mutation
and inflate mutation. For the latter, this is quite obvious ifone
observes that there is a single peak between fitnesses 80-89
and drops dramatically (i.e., between 10 and 20) (see top-left
of Figure 5).

Now, let us focus our attention when a mutation produces
beneficial effects (e.g., improvement of fitness). This is shown
in the right-hand side of Figure 5. It can be seen how the
same effects shown for a detrimental mutation can be also
seen for a beneficial mutation. That is, individuals with very
“bad” fitness (e.g., fitness in the region of 0 to 10) can jump
up to the region of 80-89 (and it is here where the solution
is). This scenario is present for all the mutations used. For
subtree mutation, however, this is even more frequent as can
be seen in the bottom-right of Figure 5. This is perhaps one
of the reasons why by using subtree mutation, a GP system is
able to find the solution, as shown in [8].

VI. CONCLUSIONS

We presented an analysis of the locality of three mutation
operators for the classic tree-based Genetic Programming
representation on the Santa Fe ant trail benchmark problem,
which has been shown to have multimodal-deceptive features
[8, Chapter 9]. These features are believed to be common
on many real-world applications and that is why the problem
analysed in our work is significant.

Results indicate that the mutation operators examined are
inconsistent with respect to the quality of locality as measured
by fitness and structural changes. By carrying out a deeper
analysis on the three mutation operators used to conduct our
experiments, we have shown how each of the three operators
exhibits relatively low-locality, however each operator samples
new points differently in the search space. Further research is
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Fig. 2. Proportion of fitter and less fit offspring after applying inflate mutation
mutation (top), less fit individuals after applying inflate mutation and their
corresponding distance (centre) and fitter individuals after applying inflate
mutation and their corresponding distance (bottom).

required to determine if the results presented here generalise
to other problem domains, and we wish to conduct a similar
analysis for the full suite of Genetic Programming search
operators.
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