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Abstract—Locality - how well neighbouring genotypes corre- The goal of this paper is to shed some light on the type of
spond to neighbouring phenotypes - has been defined as a keg-el locality present in GP.

ment in Evolutionary Computation systems to explore and exfwit This paper is organised as follows. In the next section,

the search space. Locality has been studied empirically usj the Lot . . . -
typical Genetic Algorithms (GAs) representation (i.e., bistrings), locality |r_1 EC_'S summanged. In Sep'uon I, we desc.rlbe a
and it has been argued that locality plays an important role n well-studied distance metric for tree-like structuresSkction

the performance of evolution. To our knowledge, there are no |V, we describe how we study locality at the genotype-fithess

studies of locality using the typical Genetic Programming GP) |evel in GP. In Section V, we present and discuss our findings.

representation (i.e., tree-like structures). The aim of tlis paper ; ; ; ;
is to shed some light on this matter by using GP. To do so, we Finally, in Section VI we draw some conclusions.

use three different types of mutation taken from the speciased
literature. We then perform extensive experiments by compang

the difference of distances at the genotype level between reat In [14], [15], Rothlauf stated that the understanding of
,ar:jd offsprllringhand.thfeir ?O”‘T,SP‘?”dci;ng ﬁrt]“esse,s- OkL]” ﬁ”]fjing how well neighbouring genotypes correspond to neighbagurin
'(; ;ﬁﬁtgtfoﬁtotn ?rn'ﬁn%doﬁdﬁyc érp])tivep l‘g’nggcgz'g_g these foms phenotypes is a .key. ellement in evolutiongry search_.
To study locality, it is necessary to define a metric on the
l. INTRODUCTION search spac®. In a genotype-phenotype mapping representa-
tion, it is clear thatby is the genotypic search space abglis
The concept of a fitness landscape was first introducedtffe phenotypic search space. Now, based on a defined metric
biology by [18]. This concept has dominated the way genetize can quantify how different or similar two individuals ahe
cists think about biological evolution and has been adoptggs work, Rothlauf claimed that for two different searchcpa
within the Evolutionary Computation (EC) community. In(e'g_, genotypic and phenotypic search space) it is negessa
simple terms, a fitness landscape can be seen as a plot whidithe two different metrics. In Sections 11l and IV we furthe
each point on the horizontal axis represents all the genesgigcuss this.
an individual corresponding to that point. The fitness ot tha The author distinguished two types of locality: low and
individual is plotted as the height against the verticalsaxipjgh |ocality. The author pointed out that a representation
Thus, a fitness landscape is a representation of a searoh SPREsents high locality if all neighboring genotypes copoesd
which may contain peaks, valleys, hills and plateaus. to neighboring phenotypes. On the other hand, a repregentat
How an algorithm explores and exploits such a landscapgesents low locality if some neighboring genotypes do not
is a key element during evolutionary search. In [14], [15korrespond to neighboring phenotypes. The author also men-
Rothlauf mentioned that locality (i.e., how well neighb@i tioned that a representation that has high locality is resogs
genotypes correspond to neighboring phenotypes) must g efficient evolutionary search.
taken into account in EC systems. The author distinguishedrothlauf stated that if a representation shows high localit
two forms of locality: low and high locality. The authorthen any search operator has the same effects in both the geno
pointed out that a representation presents high localigllif type and phenotype space. It is clear then that the difficulty
neighboring genotypes correspond to neighboring pherstypof the problem remains unchanged.
On the other hand, a representation presents low locality ifThis however, changes when a representation has low lo-
some neighboring genotypes do not correspond to neighdorgyjity. To explain how low locality affects evolution, Rédif

phenotypes. The author also mentioned that a representafignsidered three different categofiehese are:
that has high locality is necessary for efficient evolutigna

search (in Section Il we further explain the concept of ligal

In his original studies, Rothlauf used Genetic Algorithms t
conduct his experiments [13]. To our knowledge, we have not
seen any studies on locality using the typical Genetic Raogr
ming (GP) [7], [11] representation (i.e., tree-like stwels).  'These categories were taken from the work presented in [6].

II. Low AND HIGH LOCALITY

« easy in which fitness increases as the global optimum
approaches,

« difficult, for which there is no correlation between fitness
and distance and



« misleading in which fitness tends to increase with theset was composed of a single symbolGiven the difficulties
distance from the global optimum. in calculating distances between tree-like structuresydCie
If a given pr0b|em lies in the first category (i_e_, easy),\ﬂ lo and co-workers started their studies with a restrictiore th

locality representation will change this situation by nmakit nodes below the current node with arity cannot have an
more difficult and now, the problem will lie in the secondrity equal to or greater tham They called this representation
category. According to the author, this is due to low logalitlimited GP.

randomising the search. To explain this, Rothlauf mentione Initially, Clergue et al. defined the distance between two
that representations with low locality lead to uncorredatel’ees as follows:

fitness landscapes, so it is difficult for heuristics to ettra L€t T1 and T2 be two trees. Then,

information. _ )

If a problem lies in the second category, this type of d1(Ts, T2) = [weight(Tz) — weight(T2)| 1)
representation does not change the difficulty of the problegnere weight(T) = 1-nx(T) + 2 - na(T) + 3 - ng(T) + 4-
The author pointed out tha.t t.here are representations #mat fc(T)+ - andny(T) is the number oX symbols in the tree
convert a problem from difficult (class two) to easy (clasg na(T) is the number of symbola in the treeT, ng(T) is
one). However, according to the author, few representsitiope number of symbolB in the treeT, and so on.
have this effect. This first attempt to calculate the distance between pairs

Finally, if the problem lies in the third category, a represe of trees had a major problem: two trees with very different
tation with low locality will transform it and now, the pradi  structures between them can have distance 0.

will lie in the second category. That is, the problem is less pmaking an effort to overcome this problem, they defined a
difficult because the search has become more random. As gl concept of distance. That is, each tree with fiootust

be seen, this is a mirror image of a problem lying in the firgfaye a greater weight than the trees with rpoif and only
category and using a representation that has low locality. if j < i, where:

In his work, Rothlauf mentioned..., _|t remains unclear 1) i,je {X,ABC, -}
as to how the locality of a representation influences problemy) there is an order such th¥t< A<B<C---
difficulty, and if high-locality representations alwaysi®@vo-  gqrmaly, the distance between two trees is given as fotlows
lutionary search]13, page 73]. In this work, we are interested
@n seeing how Iocal_ity affects _problgm d_ifficulty. To do s_o, i o(Ty, T2) = |weight(Ty) — weight(Ty)| )
is necessary to define a metric. This will be presented in the
following section. where weight(T) = 1-nx(T) +2-na(T) +3-ng(T) + 4-

nc(T)+--- + prize(T) and prize(T) is computed as 2 plus
Il. DISTANCE IN TREE-LIKE STRUCTURES the difference between the heaviest tree of matdi) (i.e.,

In this study we examine the traditional tree-based GP remicC) = B) and the lightest tree of rodt). For instance, to
resentation. As such, we do not explicitly distinguish kestw calculate the prize of rodE, we need to compute the heaviest
genotypic (Pg) and phenotypic ®p) search spaces. Insteadree of rootB (i.e., represented b{B (A X) (A X))in prefix
we examine the relationship between the search sp@e (otation) whose weightis 9 and the lightest tree of ©di.e.,
and fitness. represented byC X X X)in prefix notation) whose weight is

When using the traditional GA representation (binary. Adding 2 to the difference 9 2, we obtain the prize for
strings), it is straightforward to calculate the distaneén®en rootC, which is 4. Similarly, we have that the prizes for roots
two given strings. This is accomplished using the Hammirg, E andF are 28, 148 and 788, respectively.
distance. The Hamming distance between two strings ofDespite “rewarding” individuals, Clergue and co-authors
the same length is the number of positions for which thaill had a problem: two individuals that are symmetrical
corresponding symbols are different. This scenario, hewevabout a vertical axis have a distance 0 but their structures a
changes radically when using the traditional GP repretienta different. As can be seen, calculating distance betweess tre

[1], [16], [17] have shown that calculating distances betwe is a very difficult task indeed.
tree-like structures is very difficult. Nevertheless, thehars Finally, they extended their previous distance measures
were able to define a distance that has proved to be reliabltaining a new distance which works for all trees. There are
when it was used to calculate the hardness of a problem [8]ree steps to calculate the distance betweenTyemnd T,:

[4], [16], [17]. In the following paragraphs, we will see how 1) T; and T, must be aligned to the left-most subtrees
this distance works. (Figure 1 illustrates this idea),

In [1], the authors proposed a distance to calcufdie 2) For each pair of nodes at matching positions, the dif-
However, as the authors pointed out in their research, to ference of their codes (typically ¢ is the index of an
calculate distances at genotype level when using the syntax instruction within the primitive set) is calculated, and
tree representation is a difficult task. In their investigiatthey 3) The differences calculated in the previous step are com-
used the same function and terminal sets defined in [12] where bined into a weighted sum (nodes that are closer to the
the function set i§set= {A,B,C, - -- }, whereA is a function of root have greater weights than nodes that are at lower
arity 1, B has arity 2C has arity 3 and so forth. The terminal levels).



T4 T2 Leftmost alignment

a path of food on a 32 x 32 toroidal grid. This problem has

® Q been shown to be difficult for GP for its characteristics (e.g
multimodal-deceptive features)[8, Chapter 9]. Theseufest
are believed to be common in many real-world applications.

X ® ® O Q The terminal set for this problem isT =
<2 @D

{MoveRight Left}. These operations move the ant

forward one square, turn 90to the right and turn 90

to the left, respectively. When the ant performs any of

these operations, it consumes one time unit. The function

X x set is F = {IfFoodAheadProg2,Prog3}. IfFoodAheadis a
conditional function that executes the first argument if dné

Fig. 1. Alignment for measurdist. T; and T» represent two trees taken pPerceives food in front of it, otherwise the second argument

from the population (left), the figure at the right shows witiick circles the  js executed. The remaining functiori&og2 andProg3, have

matching positions when leftmost alignment is applied é@$T; and T,. arity two and three, respectively. Both functions exechisrt

arguments in sequence.

The problem is in itself challenging for many reasons. The
ant must eat all the food pellets (89 in total) along a traek th
has single, double and triple gaps along it. Moreover, tloel fo
k) trail is twisted. For this task, the ant is given a certain bem
2’ of steps (normally 600 steps) to find all the food available in
(3) the grid. Once the ant finds and eats a food pellet, its fitness
where: d(R1,Rz) = (|c(R1) — ¢(Rp)|)? and; childi(Y) is the increases by one (raw fitness) so, the maximum fitness for this
it of the m possible children of a nod¥, if i <m, or the problem is 89.
empty tree otherwise. Note thatevaluated on the root of an  For our studies we have considered the use of three different
empty tree is 0 by convention. The paramétés used to give mutation operators:

different weights to nodes belonging to different levelshe 1) subtree mutation replaces a randomly selected subtree

X X

Formally, the distance between tréBsand T, with roots
R; and Ry, respectively, is defined as follows:

m
dist(Ty, To, k) = d(Ry, Ry) +k Zldist(childi(Rl),childi(Rz),
i=

tree andze N is a parameter of the distance. with another randomly created subtree [7],

The distance shown in Equation 3 has successfully proved?) one-point mutation replaces a point in the individual
to be a reliable distance [3], [4], [16], [17]. This is thetdisce subject to a probability (i.e., more than one can be
that we will use in our experiments. For this purpose, we will changed or none) and
use the code provided in [3] to make such calculations. 3) inflate mutation consists of inserting a terminal node

beneath a function whose aritg is lower than the
maximum arity defined in the function set, then the

In the specialised literature [11], one can find many diffeére function is replaced by another function of ariyt 1
alternatives from the typical GP representation (i.eg-tikee [17].

structures) to represent an individual, and there are manyye know that for the Artificial Ant Problem there are 90
different reasons why researchers have proposed altnajifferent fitness values (including 0 meaning that an irciei
representations. For instance, allowing the reuse of c6fe [gig not eat any food). For each of those 90 different values,
allowing inactive code [9], etc. Nevertheless, GP tree-likye generated 100 different individuals. We achieved this
structures are the most widely adopted. This form of reprgy performing thousands of independent runs until finding
sentation does not consider a genotype-phenotype mappiig different individuals for each of the 90 different fitaes
that is very common in Genetic Algorithms. Of course, thergy es (Table | shows the parameters used to capture these
are variations in GP that allows us to study the relationshiiﬁdividums)_ Once this has been done, for each group of
between the genotype and the phenotype (e.g., [2], [10] &g individuals (i.e., 9000 individuals in total), we perfzed
[9)). _ _ _ _ 2000 mutations for each operator (i.e., one-point, inflaté a
Because we are interested in seeing how locality affects GRytree mutation) independently, as described previouisly

search, we need to consider how a change in the individygk following section, we will present and discuss our firgin
is translated at the fitness level. At this point some quastio

arise: what kind of relation shall we expect from an indivdtiu V. RESULTS AND DISCUSSION
being affected by an operator and its corresponding fithess?n Figures 2, 3 and 4, we show the relation between a
To answer this question we will focus our attention on howew fitness (i.e., fitter individuals or less fit individuakd
different types of mutation affect individuals (both inrtes of compared them with their corresponding distances. Letars st
structure and their corresponding fithesses). by analysing the proportion of “good” resulting offspringg(,

For our experiments, we have used the Artificial Ant Probjitter individuals) and “bad” resulting offspring (i.e.,de fit
lem [7, pages 147-155]. This problem consists of findingiadividuals) after applying a mutation operator (top of trigs
program that can successfully navigate an artificial am@lo2, 3 and 4).

IV. APPROACH



TABLE |

PARAMETERS FOR THEANT PROBLEM. it is quite clear that the mutations presented here present |
. . locality at the ®d-fitness level. However, low-locality affects
Objective Find a program that follows evolutionary search in different ways, as explained pnesiip

the “Santa Fe Ant Trail The most representative case is when one compares subtree

Function set IfFoodAhead, Prog2, Prog3 . . . .

Terminal set Move, Right, Left mutation and one-point mutation, where it can be seen that
Fitness cases The Santa Fe Ant Trail small improvement in fitness correspond to small difference
Fitness Food eaten of distances for the subtree mutation, whereas the oppigsite
Selection Tournament (size 7) true for the one-point mutation.

Wrapper Program repeatedly executed for

So far, we have shown how locality at tlefitness level

600 time steps is different and in what ways for three forms of mutation

Initial Population Ramped half and half (depth 1 to 6)

Population size 500 presented in Section IV. However, it is not clear what change

Independent runs 100 each of these mutations induce. In a mutation-based GP

Operators One-Point Mutation, Inflate Mutation and  system, one can record the changes produced by mutations.
Subtree Mutation In Figure 5, we show the original fithess in theaxis and

Parameters One mutation per individual . . . . .

Termination Maximum number of generatior®— 50 their corresponding new fithesg &xis). For clarity purposes,

we have divided the plots into two categories for each of the
mutation operators: less fit individuals (left of Figure Sida
fitter individuals (right of Figure 5). When a new individual

We know that mutations are well-known for their destructivg, generated by means of a mutation and its corresponding
effects and, in fact, this is corroborated at the top of thegg,oqs is lower than its parent’s fitness, we can see how for
figures. Notice how for any type of the mutation operatory, ye mytations used, there are many occurrences (note log
used for this problem, the.n_umber of fitness improvements Js, . i scale). These occurrences, however, vary. For icstan
less than the number of disimprovement. for the case of subtree mutation we can see a more uniform

Let us go deeper in our analysis by analysing when &haviour, whereas it is the opposite for one-point mutatio
individual is affected by mutation and the resulting offegris = anq inflate mutation. For the latter, this is quite obviousrie
less fit (centre of Figures 2, 3 and 4). The first thing to naBce gpserves that there is a single peak between fithesses 80-89
that by using any of the three mutations explained previoushng drops dramatically (i.e., between 10 and 20) (see tiop-le
the resulting fitness can drop dramatically (e.g, from fénegs Figure 5).

80-89 to 0-40). The corresponding difference of distanee,(i  Now, let us focus our attention when a mutation produces
from an individual to their produced offspring) is also @uit yeneficial effects (e.g., improvement of fitness). This s

big. So one could suggest that there is a strong relatigithe right-hand side of Figure 5. It can be seen how the
between distance and fitness. However, when the fitnesssigne effects shown for a detrimental mutation can be also
in the range of 0-5, the new fitness (now in the range of 1-dyen for a beneficial mutation. That is, individuals withyver
does not correspond with the difference of distances. Ity fagy5g” fitness (e.g., fitness in the region of O to 10) can jump
for all three mutations one can observe how the highest pqﬂg to the region of 80-89 (and it is here where the solution
is in this region. This indicates that small variations ire this). This scenario is present for all the mutations used. For
fi'Fness do not necessarily correspond to a small variation Qipiree mutation, however, this is even more frequent as can
distance. be seen in the bottom-right of Figure 5. This is perhaps one

Now, let us focus our attention when the new fitness i the reasons why by using subtree mutation, a GP system is
better than the original fitness (bottom of Figures 2, 3 and 4ble to find the solution, as shown in [8].

In the case of inflate mutation (see Figure 2), we can observe

that the improvement in fitness does not present big varigtio VI. CONCLUSIONS

(i.e., error bars). This, however, is not the case for orietpo We presented an analysis of the locality of three mutation
mutation (see Figure 3), where there are some cases whgserators for the classic tree-based Genetic Programming
a fitness can have quite a big jump. Now, for the subtreepresentation on the Santa Fe ant trail benchmark problem,
mutation (Figure 4), we have that the behaviour present@éhich has been shown to have multimodal-deceptive features
in the fitness improvement is more less similar compar¢g, Chapter 9]. These features are believed to be common
against inflate mutation. However, there is a big differenes many real-world applications and that is why the problem
when these two mutations are compared. In the case of subt@alysed in our work is significant.

mutation, one can see that the difference of distance betweeResults indicate that the mutation operators examined are
the parent and the offspring is not big, in contrast with whatconsistent with respect to the quality of locality as mead

you can observe with inflate mutation (Figure 2) and one4poipy fitness and structural changes. By carrying out a deeper
mutation (Figure 3). This corresponds to small changeseén thnalysis on the three mutation operators used to conduct our
improvement of fitness. experiments, we have shown how each of the three operators

Within the frame of locality defined and explained by [13gxhibits relatively low-locality, however each operatanwgles
and using the distance proposed and defined in [1], [16], [1Tilew points differently in the search space. Further reseiarc
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one-point and their corresponding distance (bottom).

required to determine if the results presented here geseral (3] . Galvan-Lopez.An Analysis of the Effects of Neutrality on Problem

to other problem domains, and we wish to conduct a similar
analysis for the full suite of Genetic Programming search

operators.
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