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Abstract— In this paper we investigate the application of
Tree-Adjunct Grammars (TAG) to Grammatical Evolution
(GE). The standard type of grammar used by GE, context-
free grammars, produce a subset of the languages that TAGs
can produce, making TAGs, expressively, more powerful. In
this study we shed some light on the effects of TAGs in GE
(called Tree-Adjunct Grammatical Evolution (TAGE) in this
work). We perform an analytic comparison of the performance
of both setups (i.e., GE and TAGE) across a number of classic
genetic programming benchmarking problems taken from the
specialised literature. The results firmly indicate that TAGE has
a better overall performance (measured in terms of finding the
global optima).

I. I NTRODUCTION

Grammatical Evolution (GE) [2], [24], [3], since its in-
ception, has had much success. A large proportion of this
success can be attributed to how easily GE can be extended.
Many different grammars have been explored with GE,
including shape grammars[25], attribute grammars[1] and
logic grammars[15]. In this paper we explore the utility of
TAGs in GE.

The goal of this study is to introduce TAGE, which extends
standard GE by incorporating TAGs in its operation. We
show how the incorporation of TAG in GE translates into a
more effective GE to find solutions on a number of problems
with very different landscape features.

As outlined in [14], the set of languages produced by
CFGs, known as context-free languages (CFLs), are strictly
included in the set of languages produced by TAGs, known
as tree-adjunct languages (TALs), which in turn are strictly
included in indexed languages, which are finally strictly
included in context-sensitive languages. Consequently, this
indicates that TAGS are the next step for GE in terms of
choice of grammar type.

This paper is structured as follows. A brief overview of
GE and its genotype-phenotype mapping process is given in
the following section, including an introduction into TAGs.
The approach taken in this study to utilise TAGs in GE is
described in Section III. The paper continues by describing
the experimental setup in Section IV, the results and discus-
sion in Section V, before closing with some conclusions and
future work in Section VI.

II. BACKGROUND

A. Grammatical Evolution

GE is a grammar-based approach to Genetic Programming
(GP) [16], [26]. GE combines principles from genetics and
molecular biology, the genotype-phenotype mapping, with
the representational power of formal grammars, the abilityto
change the behaviour of the algorithm by simply changing
the structure of the grammar. The grammar, a CFG which is
usually written in Backus-Naur form, can be easily modified
to output programs of an arbitrary language, something that
is not a trivial task in other forms of GP. In addition to
this, GE’s genotype-phenotype mapping means that search
operators can be applied to the genotype (usually an integer
or binary chromosome), as well as the ability to apply
standard GP search operations to the phenotype, therefore
extending the search capabilities of standard GP.

1) Genotype to Phenotype Map:GE’s genotype-
phenotype mapping constructs a derivation tree using a
chromosome and a grammar; it operates as follows (see
Figure 1 for the grammar and chromosome used for this
example). Mapping begins with the start symbol, usually the
first symbol declared in the grammar,<e>. The first codon
(or integer value) is read from the chromosome, in this case
it is the value12 . The number of production rules for the
start symbol are counted,2, <e><o><e> and<v> . Which
rule to choose is decided according to the mapping function
i mod c , wherei is the value of the codon read from the
chromosome andc is the number of choices available, e.g,
12 mod 2 = 0, therefore we chose the zero-th rule and
<e> is expanded to<e><o><e> . This expansion forms
a partial derivation tree with the start symbol as the root,
attaching each of the new symbols as child nodes of the
root. The next symbol to expand is the first non-terminal
leaf node discovered while traversing the tree in a depth
first manner. It should be noted that there is an on going
study into variations on the method used to choose which
node to expand next [21], [22]. This will be the left-most
<e> in the tree. The next codon is read and has a value
of, 3, expanding this<e> to <v> , growing the tree further.
The next symbol is the<v> previously expanded and the
next codon has a value of7, 7 mod 2 = 1, so the rule at
index 1,Y, is chosen, and so on.

This continues until either there are no more non-terminal
leaf nodes left to expand, or until there are no codons



Chromosome: 12,3,7,15,9,10,14

Grammar:
<e> ::= <e> <o> <e> | <v>
<o> ::= + | -
<v> ::= X | Y

Fig. 1. Example context-free grammar and integer chromosome.
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Fig. 2. GE derivation tree.

left to read, i.e., the end of the chromosome has been
reached. If there are no codons left to read and derivation
has not finished, there are still non-terminal leaf nodes in
the derivation tree, derivation can proceed in one of a few
different manners. For example, assign a bad fitness to the
individual, so it is highly unlikely that it will survive. Another
approach can be the use of wrapping. The chromosome
maybe reused for a predefined number of times or wrappings.
If after the wrapping limit is reached and we still have an
invalid individual, we could then assign it a bad fitness.

It should be noted that other approaches might be em-
ployed, such as choosing only those rules which produce
terminals from the grammar when a specific derivation tree
depth [5]. Ensuring that the individuals are valid, i.e., they
have no non-terminal leaf nodes. The complete derivation
tree for this example is shown in Figure 2 (the labels on the
edges indicate the order of expansion).

B. Tree Adjunct Grammars

TAGs, which were introduced first in [13], are a tree gener-
ating system. Originally making use of only one composition
operation, adjunction. TAGs have since been renamed as
tree adjoining grammars and extended to use a second
composition operation, substitution. TAGs have been utilised
with much success (see [12], [17] and more recently [14]).
In particular, in the field of GP in the form of TAG3P [7],
[8], [10], [20], [6], [9]. It should be noted that TAGs (only
adjunction) and tree adjoining grammars (substitution also)
are, formally, as powerful as each other, that is to say, they
produced the same set of languages [7]. The inclusion of
substitution allows for a more compact formalism, i.e., less
trees [14].

This paper is concerned primarily with the original def-
inition of TAGs as outlined in [13], with adjunction as the
only composition operation. With this in mind, married with
the clearer definition of tree adjoining grammars presented
in [14], we present the following definition of TAGs.
A TAG is defined by a quintuple(T, N, I, A, S) where:

1) T is a finite set of terminal symbols;
2) N is a finite set of non-terminal symbols:T ∩N = ∅;
3) S is the start symbol:S ∈ N ;
4) I is a finite set of finite trees. The trees inI are

called initial trees (or α trees). An initial tree has the
following properties:

• the root node of the tree is labelled withS;
• the interior nodes are labeled with non-terminal

symbols;
• the leaf nodes, or the nodes along the frontier are

labeled with terminal symbols;

5) A is a finite set of finite trees. The trees inA are called
auxiliary trees(or β trees). An auxiliary tree has the
following properties:

• the interior nodes are labeled with non-terminal
symbols;

• the leaf nodes, or the nodes along the frontier
are all labeled with terminal symbols apart from
one node; this node is labeled with the same non-
terminal symbol as the root node and is known
as the foot node; the convention outlined in [14]
is followed and foot nodes are marked with an
asterisk (*).

An initial tree is meant to represent a minimal non-recursive
structure or derivation tree produced by the grammar, i.e.
contains no recursive non-terminal symbols. Inversely, an
auxiliary tree of type X represents a minimal recursive
structure, which allows recursion upon the non-terminal X
during derivation [17]. The set of initial trees and the set of
auxiliary trees together form the set ofelementary trees, E;
whereI ∩ A = ∅ andI ∪ A = E.

During derivation, composition operations are used to join
elementary trees together. The adjunction operation takesan
initial or derived treea, creating a new derived tree,d by
combininga with an auxiliary tree,b. A subtree,c is selected
from a. The type of the subtree (the symbol at its root),X ,
is used to select an auxiliary tree,b, of the same type.c is
removed temporarily froma. b is then attached toa as a sub-
tree in place ofc and c is attached tob by settingb’s foot
node as the root ofc (Figure 3 depicts this idea). An example
of TAG derivation is provided in the following section.

III. T REE ADJUNCT GRAMMARS IN GRAMMATICAL

EVOLUTION

TAGs are more powerful than CFGs which are currently
used in standard GE since the set of languages produced
by TAGs, TALs, is a super-set of CFLs, those produced by
CFGs [14]. Unlike CFGs, however, TAGs can also generate
some context-sensitive languages [7], [14]. In addition to
this, it has been shown that for every CFG there is a TAG
that is both weakly and strongly equivalent to it [11]. A
grammar is weakly equivalent to another if it can produce the
same language as the other, whereas a grammar is strongly
equivalent only if it can represent each of the words in
that language using the same structures as the other (i.e.,
derivation trees).
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Fig. 3. Composition operation: Adjunction.

In order to incorporate the power of TAGs into GE, TAGE
was developed. A number of steps were to be taken in order
to achieve this. The first was to translate current CFGs used
in GE into TAGs which could be used by TAGGE. Secondly,
an algorithm for derivation had to be developed in order to
successfully map using a TAG from genotype to phenotype.

A. CFG to TAG

There is a special type of TAG called a lexicalised TAG
(LTAG). A lexicalised grammar has two defining properties:

• it consists of a finite set of structures, each with at least
one terminal symbol, known as the anchor;

• it has at least one operation for composing the structures
together.

The TAGs referenced in this study are LTAGs, since all the
leaf nodes of the elementary trees are labeled with terminal
symbols (apart from the foot nodes). The phrase LTAGs and
TAGs will be inter-changable throughout the remainder of
this paper and will both represent lexicalised tree-adjunct
grammars.

In [14], Joshi and Schabes state that a“finitely ambiguous
CFG1 which does not generate the empty string, then there
is a lexicalised tree-adjunct grammar generating the same
language and tree set as that CFG”. Joshi and Schabes
also provided an algorithm for generating such a TAG. This
algorithm is outlined below.

Take a finitely ambiguous CFG,G = {NT, T, P, S},
where: NT is the set of non-terminal symbols;T is the
set of terminal symbols;P is the set of production rules;
S is the start symbol. Construct a directed graph,g, from
G, where the nodes of the graph are labeled with symbols
from NT and the edges of the graph are labeled with the
productions fromP which map between them. Then find the
set of minimal cycles,c, in the graph such that they contain
no other cycles within them. The productions in P must then
be divided into two separate sets;R is the set of recursive
productions (a production is recursive if it is part of a cycle,

1A grammar is said to befinitely ambiguousif all finite length sentences
produced by that grammar cannot be analysed in an infinite number of ways.

ci); and NR is the set of non-recursive productions in the
grammar.

Using S as the root node, create the set of all possible
derivation trees using only the productions inNR. This is
the set of initial trees,I. Then createA, the set of auxiliary
tree, as an empty set.A = ∅.

For each node in each of the cycles, if there is a tree in
I ∪ A which has the same label as that node, create the set
of all possible derivation trees, using only the productions in
NR and the current cycle, where the current node is the root
node and the leaf node with the same label, as the foot node.
Add this set of trees toA. For a summary of this algorithm
in pseudo-code, see Algorithm 1.

Algorithm 1 Generating a TAG from a CFG

Require: G = {NT, T, P, S}
g = createDiGraph(G);
c = findBaseCycles(g);
R = getRecursiveProductions(P, g);
NR = P − R;
I = generateInitialT rees(S, NR);
A = ∅
for all ci in c do

for all nj in ci do
E = I ∪ A;
if a tree inE has a node labeled the same asnj then

A = A ∪ generateAuxiliaryT rees(nj, ci, NR)
end if

end for
end for

An example of a TAG produced by Algorithm 1 can be
seen in Figure 4, which was generated from the CFG in
Figure 1.

B. Derivation in TAGE

Derivation in TAGGE is different from derivation in GE in
that it is a two step process, first a derivation tree is formed,
and from that the derived tree is produced. The derivation tree
is different to that of standard GE, as it is a tree where each
node itself is representative of an elementary tree. The edges
of the derivation tree are labeled with a node address. This
address leads to a node in the tree represented by the tail of
the edge. It is on this node that a composition operation is to
be applied using the tree at the head of the edge. The derived
tree, is the same as standard GE’s derivation tree. It is the
tree of symbols resulting from the composition operations
listed in the derivation tree. Examples of both types of trees
can be seen in Figure 5.

The derivation tree, the tree of trees, is important when
dealing with TAGs if you intend to do any operations on the
tree itself. For example, sub-tree crossover on the derived
tree could result in altering an elementary tree, the most basic
structure in a TAG. These operations should instead be used
on the derivation tree, allowing whole elementary trees to be
moved about.
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Fig. 4. I (α) and A (β) sets of the TAG produced from the CFG in Figure 1 using the algorithm above.

1) Example Derivation: An example of derivation in
TAGE follows. It is similar to the algorithm used in [8].
Given the TAGG, where
T = {x, y, +,−}, N = {< e >, < o >, < v >}, S =< e >

andI andA are shown Figure 4, derivation proceeds using
the chromosome from Figure 1 and operates as follows. First
an initial tree must be chosen to start the derivation. The first
codon value is read,12 , and is used to choose an initial tree
based on the number of trees inI using the same mapping
function as GE,i mod c . From I, the set ofα trees,12
mod 2 = 0, the zero-th tree is chosen,α0 and set as the
root node of treet , the derivation tree, see Figure 5(a).

Next we enter the main stage of the algorithm. An location
to perform adjunction must be chosen. The set,N, is created
of the adjunctable addresses2 available within all nodes(trees)
contained withint . In this caseN = {α00}, so a codon
is read and an address is selected fromN, 2 mod 1 = 0
indicates which address to choose,N[0]. Adjunction will be
performed atα00, or index0 of treeα0, <e>. An auxiliary
tree is now chosen from the set of trees inA that are of the
type l , i.e., the label of their root node isl , wherel is the
label of the node adjunction is being performed on. In this
casel = <e> . Since there are 8 such trees inA, 3 mod
8 = 3 , β3 is chosen. This is added tot as a child of the
tree being adjoining to, labeling the edge with the address
0, see Figure 5(b). The adjunctable addresses inβ3 will be
added toN on the next pass of the algorithm. This process,
the main part of the algorithm, is repeated until all remaining
codons have been read. The resulting derivation and derived
trees from each stage of this process can be seen in Figure 5.

If the end of the chromosome is reached and the algorithm
is in the middle of execution, the individual is marked as
invalid and is awarded the worst possible fitness.

IV. EXPERIMENTAL SETUP

The focus of this study is to compare the performance of
standard GE to TAGE, and to analyse the results in order
to discover whether TAGs affect the ability of GE to find
correct solutions.

The GEVA v1.1 software [23], [19] was used to conduct
the experiments for this study. It was extended to allow the
use of TAGs. The evolutionary parameters adopted for all

2An adjunctable address in a tree is the breadth first traversal index of a
node labeled with a non-terminal symbol, of which there is anauxiliary tree
of that type, and that there is currently no auxiliary tree already adjoined to
the tree at that index

TABLE I

GRAMMATICAL EVOLUTION PARAMETER SETTINGS ADOPTED FOR EACH

EACH OF THE BENCHMARK PROBLEMS.

Parameter Value
Generations 200
Population Size 100
Initialisation Random
Initial Chromosome Size 15
Max Chromosome Wraps 0
Replacement Strategy Generational
Elitism 10 Individuals
Selection Operation Tournament
Tournament Size 3
One Point Crossover Probability 0.9
Integer Mutation Probability 0.02

the benchmark problems described below are presented in
Table I. A short chromosome size was selected due to TAGs
using the entire chromosome during derivation, unlike stan-
dard GE where the percentage of the chromosome used varies
per individual. This provided TAGE the ability to attempt to
find short solutions to the problems if they existed. Each run
evolved for 200 generations enabling longer solutions to be
explored if needed through chromosome growth by means
of single-point crossover. Wrapping, as described at the end
of Section II-A.1, was disabled for all experiments.

A. Benchmark Problems

Standard GE was compared to TAGE using 5 classic
benchmark problems from specialised GP literature. 100
independent runs were preformed for each of the problems
listed below using each setup. The context free grammars
used in both standard GE and used to generate TAGs for
TAGE are shown in Figure 6.

Even-5-parity This problem attempts to evolve the five
input even-parity boolean function, in which the best fitness
is obtained when the correct output is returned for each of
the 32,25, test cases.

Santa Fe ant trail In this problem a control program
is evolved to control the movements of an artificial ant on a
toroidal grid of size 32 by 32 units. The ant has the ability
to use one of several operations:foodAhead(), right() , left()
or move(). The ant must use these operations to collect all
89 pieces of food located along a broken trail.foodAhead()
enables the ant to check if there is food in the tile directly
facing it. The latter three operations consume one of an
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Fig. 5. The derivation tree and corresponding derived tree at each stage of derivation in TAGE. The shaded areas indicatethe new content added to the
tree at each step.

initial six hundred units of energy.

Symbolic RegressionThe objective is to evolve the
classic quartic function,x + x2 + x3 + x4. Fitness is
measured by the sum of the error across 20 test cases drawn
from the range[−1, 1]. A successful solution is where the
error is less than a certain threshold, or hits criterion, as
described in [16]. In this case there was a hits criterion of
0.01.

Six MultiplexerThis classic GP boolean function problem in
which evolution attempts to find correct two input and four
output line boolean function. A perfect solution generates
the correct output for a given input for all 64 test cases.
Fitness is measured of how many test cases generate an
incorrect output.

Max This problem, as described in [4], aims to evolve
a tree whose growth is constrained by a depth limit, that
when the tree’s phenotype is executed, returns the largest
value possible. A function set of addition and multiplication
operators are used as well as a terminal set of a single value
of 0.5.

V. RESULTS AND DISCUSSION

A. Performance

The results obtained across the 100 runs for each setup
are outlined in Table II. The plots for mean best fitness
per generation for all the problems can be see in Figure 7.
The plots for average chromosome length, average derivation
tree depth and average derivation tree size per generation for
the Max problem and the Even-5-parity problem (which is

TABLE II

A COMPARISON OF RESULTS OBTAINED USING BOTH STANDARDGE

AND TAGE ACROSS THE BENCHMARK PROBLEMS- THE BEST AND

AVERAGE FITNESS VALUES FOR EACH POPULATION AVERAGED ACROSS

ALL 100RUNS FOR THE FINAL GENERATION, AS WELL AS THE NUMBER

OF RUNS WHICH FOUND SUCCESSFUL SOLUTIONS TO THE PROBLEMS.

Best Fitness Average Fitness Successes
Mean (SD) Mean (SD) (/100)

Even-5
GE 2.08 (4.57) 6.15 (3.58) 79
TAGE 0.64 (1.90) 13.12 (0.67) 88
Santa Fe
GE 32.42 (10.59) 42.13 (9.76) 3
TAGE 16.53 (10.99) 69.32 (3.96) 12
Sym.Reg.
GE 0.253 (0.394) 8.700 (13.689) 44
TAGE 0.054 (0.171) 29.053 (9.145) 76
6 Multi.
GE 9.14 (4.19) 11.65 (3.69) 6
TAGE 1.77 (2.66) 16.87 (1.83) 63
Max
GE 2.31 (4.22) 199.88 (125.46) 0
TAGE 2.04 (1.52) 579.79 (335.25) 0

representative of the results found the remaining 3 problems)
have also been included and can be seen in Figure 8 and
Figure 9 respectively.

It is visible from both Table II and Figure 7 that for four
out of the five problems examined, TAGE achieves a better
mean best fitness by the final generation than standard GE, as
well as having more runs which found successful solutions
to those problems. TAGE fails to produce better results for
the Max problem.

In addition, Figure 7 portrays that, on average, TAGE
appears to have the ability to search more efficiently, finding



Even-5 parity grammar: Santa Fe ant trail grammar: Max gramm ar:
<prog> ::= <expr> <prog> ::= <code> <prog> ::= <expr>
<expr> ::= <expr> <op> <expr> <code> ::= <line> | <code> <lin e> <expr> ::= <op> <expr> <expr>

| ( <expr> <op> <expr> ) <line> ::= <condition> | <op> | <var>
| <var> <condition> ::= if(food\_ahead()==1) <op> ::= + | *
| <pre-op> ( <var> ) { <opcode> } <var> ::= 0.5

<pre-op> ::= not else
<op> ::= "|" | & | ˆ { <opcode> }
<var> ::= d0 | d1 | d2 | d3 | d4 <op> ::= left(); | right(); | move( );

<opcode> ::= <op> | <opcode> <op>

Symbolic Regression grammar: Six Multiplexer grammar:
<expr> ::= ( <op> <expr> <expr> ) <B> ::= (<B>) &&(<B>)

| <var> | (<B>) "||"(<B>)
<op> ::= + | - | * | !(<B>)
<var> ::= x0 | 1.0 | (<B>) ? (<B>) : (<B>)

| a0 | a1 | d0| d1 | d2 | d3

Fig. 6. Grammars in Backus-Naur form used for all the benchmark problems.

better solutions in fewer generations than standard GE. This
can be seen for the first four problems with the mean best
fitness initially improving much more rapidly for TAGE, than
GE.

One possible reason for this is that the mean average
fitness values for TAGE in Table II are much larger than
those for standard GE. One expects convergence to happen
as the population finds a local maxima, and indeed this can be
seen to be the case for standard GE where the mean average
fitness values are quite close to the mean best fitness values,
the difference between them being less than the sum of their
standard deviations for four out of the five problems. TAGE
however has mean average fitness values which are much
greater than those of both standard GE’s mean average fitness
values and TAGE’s own mean best fitness values. This might
indicate that TAGE has a much lower locality than standard
GE when mapping between the genotype and phenotype, i.e.
a change to the genotype has a much larger effect to the
phenotype in TAGE than in standard GE. Such a property
causes larger jumps through the search space, promoting
diversity, and as such, deters convergence.

Another possible hypothesis for why TAGE finds more
successful solutions than standard GE is that, as can be
seen in Figure 9, TAGE generates much deeper trees with
a proportionally large amount of nodes than standard GE.
Since the number of solutions with a specific fitness increases
as the length of the solutions, and hence the size of the trees
increase [18], it is possible that TAGE, in generating larger
trees is more effective at finding these longer solutions.

B. Chromosome Length

An unforeseen result of TAGE is that the chromosome
length does not grow in size uncontrollably as it does
standard GE. This can be seen in Figure 9(a). One possible
argument for why this happens is that the mapping process
in standard GE might not use up the entire chromosome,
whereas the mapping process in TAGE does. So every
operation on the chromosome that affects its length has
an effect on the fitness of that individual in TAGE, but
in standard GE this might not always be the case. If it
adversely affects the fitness of an individual in TAGE then
evolution might discard this new individual, preserving the

original chromosome length. In standard GE if the fitness
is not affected then this individual will survive on to the
next generation where the probability that a chromosome
lengthening operation will not affect fitness is increased.

C. Limitations

As a result of making use of adjunction as the only com-
position operation, it was discovered that TAGE could not
operate on complex grammars. During the translation process
from CFG to TAG, the number of elementary trees grows
exponentially with the complexity of the CFG, due to all
possible derivations being explored, see Algorithm 1. With
the introduction of substitution as a composition operation,
this limitation could be overcome, since it allows for a much
more compact grammar.

VI. CONCLUSIONS

This study presents a new form of grammatical evolution,
which adopts tree-adjunct grammars in place of context-free
grammars, TAGE. It demonstrates that the use of TAGs in
GE has a beneficial effect on GE’s ability to move through
the solution search space and to find successful solutions.
However, the derivation trees, and hence the solution sizes,
are much larger, which is beneficial to finding solutions of a
specific fitness, but not always desirable.

TAGE has the ability to take larger steps through the
search space than standard GE, promoting diversity, while
attempting to prevent convergence.

In [8], [20] TAGs were found to have a positive effect on
the performance of GP, results which are shown by this study
to carry over into the field of GE, with interesting results
and properties of its own, such as minimal growth of the
chromosome, and the apparent low locality of the mapping
process between genotype and phenotype, which helps GE
maintain diversity.

It is the intention of this author to continue this study
by extending TAGE to work with tree-adjoining grammars
and the substitution composition operation, and to investigate
further the implications of using TAGs in GE and for what
reasons do they perform better than CFGs in standard GE
do.
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Fig. 7. Mean best fitness plots across 100 runs with error barsof one standard deviation.
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Fig. 8. Result plots for the Max problem.
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