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Abstract—In this paper we investigate the application of Il. BACKGROUND
Tree-Adjunct Grammars (TAG) to Grammatical Evolution . .
(GE). The standard type of grammar used by GE, context- A. Grammatical Evolution

free grammars, produce a subset of the languages that TAGS  p js 5 grammar-based approach to Genetic Programming
can produce, making TAGs, expressively, more powerful. In

this study we shed some light on the effects of TAGs in GE (GP) [16], [26]. GE combines principles from genetics and
(called Tree-Adjunct Grammatical Evolution (TAGE) in this ~ molecular biology, the genotype-phenotype mapping, with
work). We perform an analytic comparison of the performance the representational power of formal grammars, the akiity

of both setups (i.e., GE and TAGE) across a number of classic change the behaviour of the algorithm by simply changing
genetic programming benchmarking problems taken from the o trcture of the grammar. The grammar, a CFG which is
specialised literature. The results firmly indicate that TAGE has . . . e

a better overall performance (measured in terms of finding te USually written in Backus-Naur form, can be easily modified
global optima). to output programs of an arbitrary language, something that
is not a trivial task in other forms of GP. In addition to
this, GE’s genotype-phenotype mapping means that search
operators can be applied to the genotype (usually an integer
or binary chromosome), as well as the ability to apply
standard GP search operations to the phenotype, therefore

Grammatical Evolution (GE) [2], [24], [3], since its in- extending the search capabilities of standard GP.
ception, has had much success. A large proportion of this 1) Genotype to Phenotype Map:GE's genotype-
success can be attributed to how easily GE can be extendBJ€NOtyPe mapping constructs a derivation tree using a
Many different grammars have been explored with gechromosome and a grammar; it operates as follows (see

including shape grammars[25], attribute grammars|[i] arfgigure 1 for the grammar and chromosome used for this
logic grammars[15]. In this paper we explore the utility of€X@mple). Mapping begins with the start symbol, usually the
TAGs in GE. first symbol declared in the grammate>. The first codon

The goal of this study i o ntoduce TAGE, which extendy”i "y 0 K150 & 280 B0 00 COQURTTn 0 0B Fose
standard GE t_)y mcorpqratmg TAG; in its operatlor_]. W%tart symbol are counte@, <e><o><e> and<v>. Which
show how t_he mcorpqratlon Of TAG in GE translates into Rule to choose is decided according to the mapping function
wi(t)r:evzf:e(gi%e GE tlo f'gd SOIUtf'OHS on a number of problem§ mod c , wherei is the value of the codon read from the

y different landscape features. chromosome ang is the number of choices available, e.g,

As outlined in [14], the set of languages produced by mod 2 = 0, therefore we chose the zero-th rule and
CFGs, known as context-free languages (CFLs), are stricthp> s expanded to<e><o><e>. This expansion forms
included in the set of languages produced by TAGs, knowa partial derivation tree with the start symbol as the root,
as tree-adjunct languages (TALs), which in turn are syrictiattaching each of the new symbols as child nodes of the
included in indexed languages, which are finally strictlyoot. The next symbol to expand is the first non-terminal
included in context-sensitive languages. Consequertly, t |eaf node discovered while traversing the tree in a depth
indicates that TAGS are the next step for GE in terms afrst manner. It should be noted that there is an on going
choice of grammar type. study into variations on the method used to choose which

This paper is structured as follows. A brief overview ofnode to expand next [21], [22]. This will be the left-most
GE and its genotype-phenotype mapping process is givense> in the tree. The next codon is read and has a value
the following section, including an introduction into TAGs of, 3, expanding thiske> to <v>, growing the tree further.
The approach taken in this study to utilise TAGs in GE iSThe next symbol is thewv> previously expanded and the
described in Section Ill. The paper continues by describingext codon has a value @, 7 mod 2 = 1, so the rule at
the experimental setup in Section IV, the results and discusdex 1,Y, is chosen, and so on.
sion in Section V, before closing with some conclusions and This continues until either there are no more non-terminal
future work in Section VI. leaf nodes left to expand, or until there are no codons

I. INTRODUCTION



Chromosome: 12,3,7,15,9,10,14 . .. .
1) T is a finite set of terminal symbols;

Grammar: 2) N is a finite set of non-terminal symbol&N N = §;
<e> = <e> <0> <e> | <v> .

<0> = + | - 3) S is the start symbolS € N;

V= XY 4) I is a finite set of finite trees. The trees ihare

calledinitial trees (or « trees). An initial tree has the

Fig. 1. Example context-free grammar and integer chromesom ] >
following properties:

<e> « the root node of the tree is labelled with
0 la N\is « the interior nodes are labeled with non-terminal
symbols;
[<e2 | [0 ] [<e2 ] « the leaf nodes, or the nodes along the frontier are
1 4 6 labeled with terminal symbols;
[« ] [=>] [=~ ] 5) Ais afinite set of finite trees. The treesdnare called

auxiliary trees(or 3 trees). An auxiliary tree has the
following properties:
« the interior nodes are labeled with non-terminal
symbols;
« the leaf nodes, or the nodes along the frontier
are all labeled with terminal symbols apart from

Fig. 2. GE derivation tree.

left to read, i.e., the end of the chromosome has been one node; this node is labeled with the same non-
reached. If there are no codons left to read and derivation terminal symbol as the root node and is known
has not finished, there are still non-terminal leaf nodes in as the foot node; the convention outlined in [14]
the derivation tree, derivation can proceed in one of a few is followed and foot nodes are marked with an
different manners. For example, assign a bad fitness to the asterisk (*).

individual, so it is highly unlikely that it will survive. Aather An initial tree is meant to represent a minimal non-recwsiv
approach can be the use of wrapping. The chromosorstfucture or derivation tree produced by the grammar, i.e.
maybe reused for a predefined number of times or wrapping®ntains no recursive non-terminal symbols. Inversely, an
If after the wrapping limit is reached and we still have arauxiliary tree of type X represents a minimal recursive
invalid individual, we could then assign it a bad fitness.  structure, which allows recursion upon the non-terminal X
It should be noted that other approaches might be erguring derivation [17]. The set of initial trees and the skt o
ployed, such as choosing only those rules which produ@xiliary trees together form the set elementary tregsE;
terminals from the grammar when a specific derivation treehereI N A= andI UA = E.
depth [5]. Ensuring that the individuals are valid, i.egyth ~ During derivation, composition operations are used to join
have no non-terminal leaf nodes. The complete derivatioglementary trees together. The adjunction operation takes
tree for this example is shown in Figure 2 (the labels on thigitial or derived treea, creating a new derived tred, by

edges indicate the order of expansion). combininga with an auxiliary treep. A subtree¢ is selected
) from a. The type of the subtree (the symbol at its rodf),
B. Tree Adjunct Grammars is used to select an auxiliary trel, of the same typec is

TAGs, which were introduced first in [13], are a tree generemoved temporarily from. b is then attached te as a sub-
ating system. Originally making use of only one compositioftree in place ofc andc is attached td by settingb’s foot
operation, adjunction. TAGs have since been renamed aede as the root af (Figure 3 depicts this idea). An example
tree adjoining grammars and extended to use a secoofiTAG derivation is provided in the following section.
composition operation, substitution. TAGs have beensetili
with much success (see [12], [17] and more recently [14]). !l: TREEADJUNCT GRAMMARS IN GRAMMATICAL
In particular, in the field of GP in the form of TAG3P [7], EVOLUTION
[8], [10], [20], [6], [9]. It should be noted that TAGs (only TAGs are more powerful than CFGs which are currently
adjunction) and tree adjoining grammars (substitutiom)als used in standard GE since the set of languages produced
are, formally, as powerful as each other, that is to say, thdéyy TAGs, TALs, is a super-set of CFLs, those produced by
produced the same set of languages [7]. The inclusion @FGs [14]. Unlike CFGs, however, TAGs can also generate
substitution allows for a more compact formalism, i.e.slessome context-sensitive languages [7], [14]. In addition to
trees [14]. this, it has been shown that for every CFG there is a TAG

This paper is concerned primarily with the original defthat is both weakly and strongly equivalent to it [11]. A
inition of TAGs as outlined in [13], with adjunction as thegrammar is weakly equivalent to another if it can produce the
only composition operation. With this in mind, married withsame language as the other, whereas a grammar is strongly
the clearer definition of tree adjoining grammars presentegfjuivalent only if it can represent each of the words in
in [14], we present the following definition of TAGs. that language using the same structures as the other (i.e.,
A TAG is defined by a quintupléT’, N, I, A, S) where: derivation trees).



¢;); and NR is the set of non-recursive productions in the

: ° ‘ grammar.
Using S as the root node, create the set of all possible
A X derivation trees using only the productionsR. This is

the set of initial trees/. Then created, the set of auxiliary
tree, as an empty setl = (.

X For each node in each of the cycles, if there is a tree in
I U A which has the same label as that node, create the set
of all possible derivation trees, using only the producion

N R and the current cycle, where the current node is the root
node and the leaf node with the same label, as the foot node.
Add this set of trees tol. For a summary of this algorithm

in pseudo-code, see Algorithm 1.

Fig. 3. Composition operation: Adjunction.

Algorithm 1 Generating a TAG from a CFG
Require: G = {NT,T,P,S}
In order to incorporate the power of TAGs into GE, TAGE 4 — create DiGraph(G);
was developed. A number of steps were to be taken in order, — findBaseCycles(g);
to achieve this. The first was to translate current CFGs usedR — get Recursive Productions(P, g)
in GE into TAGs which could be used by TAGGE. Secondly, NR =P — R;
an algorithm for derivation had to be developed in order to | — generateInitialTrees(S, NR)
successfully map using a TAG from genotype to phenotype. 4 — ¢

for all ¢; in cdo

b

)

A. CFG 10 TAG for all n; in ¢; do
There is a special type of TAG called a lexicalised TAG E=1UA4;
(LTAG). A lexicalised grammar has two defining properties: if a tree inE' has a node labeled the samengghen
« it consists of a finite set of structures, each with at least A " AU generate AuziliaryTrees(n;, c;, NR)
one terminal symbol, known as the anchor; end if
« it has at least one operation for composing the structuresen((ajn]%rfor

together.

The TAGs referenced in this study are LTAGS, since all the A le of a TAG duced by Algorithm 1 b
leaf nodes of the elementary trees are labeled with terminal n _exaFmp e 04 a hich produced Ly dg?rlt mh ngee.
symbols (apart from the foot nodes). The phrase LTAGS argfen In Fgure <, which was generated from the n
TAGs will be inter-changable throughout the remainder ofigure 1.
this paper and will both represent lexicalised tree-adjung parivation in TAGE
grammars. o . o i

In [14], Joshi and Schabes state thatfitely ambiguous Derivation in TAGGE is different from derivation in GE in

CFG! which does not generate the empty string, then thefbiat it is a two step process, first a derivation tree is formed
is a lexicalised tree-adjunct grammar generating the Samgnd_fromthat the derived tree is produqeq. The derivaties tr
language and tree set as that CFGJoshi and Schabes is different to that of standard GE, as it is a tree where each

also provided an algorithm for generating such a TAG. Thigode itself is representative of an elementary tree. Theedg
algorithm is outlined below. of the derivation tree are_labeled with a node address. Th|s
Take a finitely ambiguous CFGZ = {NT.,T, P, 5}, address leads to a node in the tree represented by the tail of
the edge. It is on this node that a composition operation is to
set of terminal symbolsP is the set of production rules: be applied using the tree at the head of the edge. The derived

S is the start symbol. Construct a directed graphfrom tree, is the same as standard GE’s derivation tree. It is the
G, where the nodes of the graph are labeled with symbo{&€€ ©f symbols resulting from the composition operations
from NT and the edges of the graph are labeled with thisted in the d.erlvgtlon tree. Examples of both types ofdree
productions fromP which map between them. Then find thetan be segn '_n Figure 5. o

set of minimal cyclesg, in the graph such that they contain The derlvatlon tr_ee, th_e tree of trees, is |mp9rtant when
no other cycles within them. The productions in P must thefi€aling with TAGs if you intend to do any operations on the
be divided into two separate sefB:is the set of recursive tree itself. For example, sub-tree crossover on the derived

productions (a production is recursive if it is part of a cl tree could_ result in altering an elementary tree_, the masitba
structure in a TAG. These operations should instead be used

1A grammar is said to bénitely ambiguousf all finite length sentences on the derivation tree, aIIowmg whole elememary treeseto b
produced by that grammar cannot be analysed in an infinitbruof ways. moved about.

where: NT' is the set of non-terminal symbolg; is the
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Fig. 4. | (o) and A () sets of the TAG produced from the CFG in Figure 1 using theréfymn above.

TABLE |
GRAMMATICAL EVOLUTION PARAMETER SETTINGS ADOPTED FOR EACH
EACH OF THE BENCHMARK PROBLEMS

1) Example Derivation: An example of derivation in
TAGE follows. It is similar to the algorithm used in [8].
Given the TAGG, where

T={x,y,+ -} N={<e><o><v>},5=<e> Farameter \Z’S'C‘JJe
and/ and A are shown Figure 4, derivation proceeds using Population Size 100
the chromosome from Figure 1 and operates as follows. First Initialisation _ Random
an initial tree must be chosen to start the derivation. Tt fir Initial Chromosome Size 15
. . L Max Chromosome Wraps 0

codon value is read,2, and is used to choose an initial tree Replacement Strategy Generational
based on the number of trees fnusing the same mapping Elitism _ 10 Individuals
function as GEj mod ¢ . From I, the set ofa trees,12 Selection Operation Tournament

_ . Tournament Size 3
mod 2 = 0, the zero-th tree is choseny an_d set as the One Point Crossover Probability 0.9
root node of tred , the derivation tree, see Figure 5(a). Integer Mutation Probability 0.02

Next we enter the main stage of the algorithm. An location
to perform adjunction must be chosen. The 8ktis created
of the adjunctable addressdewailable within all nodes(trees)
contained withint . In this caseN = {«,0}, so a codon
is read and an address is selected fidp2 mod 1 = 0
indicates which address to choo$é0]. Adjunction will be
performed aiv0, or index0 of tree ay, <e>. An auxiliary

the benchmark problems described below are presented in
Table I. A short chromosome size was selected due to TAGs
using the entire chromosome during derivation, unlike -stan
dard GE where the percentage of the chromosome used varies
tree is now chosen from the set of treesdrthat are of the Po. individual. Thls provided TAGE t.he ab|I|ty. to attempt to

: . . find short solutions to the problems if they existed. Each run
typel , i.e., the label of their root node Is, wherel is the . . .

.evolved for 200 generations enabling longer solutions to be

label of the node adjunction is being performed on. In th'%x lored if needed throuah chromosome arowth by means
casel = <e> . Since there are 8 such treesin 3 mod P 9 9 y

8 = 3, 3 is chosen. This is added fo as a child of the of single-point crossover. Wrapping, as described at tlte en

tree being adjoining to, labeling the edge with the addresosl,c Section II-A.1, was disabled for all experiments.

0, see Figure 5(b). The adjunctable addresseS;imill be  A. Benchmark Problems

added toN on the next pass of the algorithm. This process, standard GE was compared to TAGE using 5 classic
the main part of the algorithm, is repeated until all remaini penchmark problems from specialised GP literature. 100
trees from each stage of this process can be seen in Figurgi&ed below using each setup. The context free grammars

If the end of the chromosome is reached and the algorithjzeq in both standard GE and used to generate TAGs for
is in the middle of execution, the individual is marked asfaAGE are shown in Figure 6.

invalid and is awarded the worst possible fitness.

Even-5-parity This problem attempts to evolve the five
input even-parity boolean function, in which the best fimes
The focus of this study is to compare the performance ¢§ obtained when the correct output is returned for each of
standard GE to TAGE, and to analyse the results in ordéte 32,25, test cases.
to discover whether TAGs affect the ability of GE to find
correct solutions. Santa Fe ant trail In this problem a control program
The GEVA v1.1 software [23], [19] was used to conducis evolved to control the movements of an artificial ant on a
the experiments for this study. It was extended to allow throidal grid of size 32 by 32 units. The ant has the ability
use of TAGs. The evolutionary parameters adopted for aib use one of several operatiofisodAhead(), right() , left()
or move() The ant must use these operations to collect all
2An adjunctable address in a tree is the breadth first traverdex of a  gg pieces of food located along a broken trisbdAhead()
node labeled with a non-terminal symbol, of which there isaxiliary tree . . . . .
enables the ant to check if there is food in the tile directly

of that type, and that there is currently no auxiliary treeady adjoined to ’ > .
the tree at that index facing it. The latter three operations consume one of an

IV. EXPERIMENTAL SETUP



() (d)

Fig. 5. The derivation tree and corresponding derived ttesaeh stage of derivation in TAGE. The shaded areas indibatenew content added to the
tree at each step.

TABLE Il
A COMPARISON OF RESULTS OBTAINED USING BOTH STANDARIGE
AND TAGE ACROSS THE BENCHMARK PROBLEMS THE BEST AND

initial six hundred units of energy.

Symbolic RegressionThe objective is to evolve the
classic quartic functiong + z2 + 2> + 2*. Fitness is
ALL 100RUNS FOR THE FINAL GENERATION AS WELL AS THE NUMBER
measured by the sum of the error across 20 test cases drawn
. . OF RUNS WHICH FOUND SUCCESSFUL SOLUTIONS TO THE PROBLEMS
from the range/—1, 1]. A successful solution is where the

AVERAGE FITNESS VALUES FOR EACH POPULATION AVERAGED ACROSS

error is less than a certain threshold, or hits criterion, as Best Fitness | Average Fitness| Successes
. . . . . Mean (SD) Mean (SD) (/200)
described in [16]. In this case there was a hits criterion of Evens
0.01. GE 2.08 (4.57) 6.15 (3.58) 79
TAGE 0.64 (1.90) 13.12 (0.67) 88
. . . . . . Santa Fe
Six Mult|plex_erTh|s classic GP boolean funcn_on problem in GE 32.42 (10.59)| 42.13 (9.76) 3
which evolution attempts to find correct two input and four TAGE 16.53 (10.99)| 69.32 (3.96) 12
i i ; Sym.Reg.
ohutput line booleanf functhn. A_ perfefct SO”|UtI0n generates ok 0.253 (0.394)| 8.700 (13.689) a4
t.e corr(_act output for a given input for all 64 test cases. TAGE 0.054 (0.171)| 29.053 (9.145) 76
Fitness is measured of how many test cases generate an 6 Mult.
; GE 9.14 (4.19) 11.65 (3.69) 6
incorr i
correct output TAGE 1.77 (2.66) 16.87 (1.83) 63
Max
Max This problem, as described in [4], aims to evolve GE 2.31 (4.22) | 199.88 (125.46) 0
a tree whose growth is constrained by a depth limit, that _TAGE 204 (1.52) | 579.79 (33525)] O

when the tree’'s phenotype is executed, returns the largest
value possible. A function set of addition and multiplicati

gggrgtors are used as well as a terminal set of a single Valrueepresentative of the results found the remaining 3 progjem

have also been included and can be seen in Figure 8 and
Figure 9 respectively.
It is visible from both Table Il and Figure 7 that for four
A. Performance out of the five problems examined, TAGE achieves a better
The results obtained across the 100 runs for each setopean best fitness by the final generation than standard GE, as
are outlined in Table Il. The plots for mean best fitneswell as having more runs which found successful solutions
per generation for all the problems can be see in Figure T those problems. TAGE fails to produce better results for
The plots for average chromosome length, average denivatithe Max problem.
tree depth and average derivation tree size per generation f In addition, Figure 7 portrays that, on average, TAGE
the Max problem and the Even-5-parity problem (which isppears to have the ability to search more efficiently, fipdin

V. RESULTS AND DISCUSSION



Even-5 parity grammar: Santa Fe ant trail grammar: Max gramm ar:

<prog> = <expr> <prog> = <code> <prog> := <expr>
<expr> = <expr> <op> <expr> <code> = <line> | <code> <lin e> <expr> ;= <op> <expr> <expr>
| ( <expr> <op> <expr> ) <line> = <condition> | <op> | <var>
| <var> <condition> ::= if(food\_ahead()==1) <op> = + | *
| <pre-op> ( <var> ) { <opcode> } <var> = 0.5
<pre-op> := not else
<op> =& { <opcode> }
<var> x=d0 | d1 | d2 | d3 | d4  <op> = left(); | right(); | move( );
<opcode> 1= <op> | <opcode> <op>
Symbolic Regression grammar: Six Multiplexer grammar:
<expr> ;= ( <op> <expr> <expr> ) <B> ;= (<B>) &&(<B>)
| <var> | (<B>) "||'(<B>)
<op> =] -] * | (<B>)
<var> = x0 | 1.0 | (<B>) ? (<B>) : (<B>)

| a0 | al | do| d1 | d2 | d3

Fig. 6. Grammars in Backus-Naur form used for all the benckrpaoblems.

better solutions in fewer generations than standard GE Thiriginal chromosome length. In standard GE if the fitness
can be seen for the first four problems with the mean bes not affected then this individual will survive on to the
fitness initially improving much more rapidly for TAGE, than next generation where the probability that a chromosome
GE. lengthening operation will not affect fitness is increased.
One possible reason for this is that the mean average
fitness values for TAGE in Table Il are much larger tharfC. Limitations
those for standard GE. One expects convergence to happeng 3 result of making use of adjunction as the only com-
as the population finds a local maxima, and indeed this can B%sition operation, it was discovered that TAGE could not
seen to be the case for standard GE where the mean avergggrate on complex grammars. During the translation peoces
fitness values are quite close to the mean best fitness valuggm cFG to TAG, the number of elementary trees grows
the difference_ b_etween them being Iess_than the sum of th%i%ponentially with the complexity of the CFG, due to all
standard deviations for four ou_t of the five probl_ems. TAGFpossibIe derivations being explored, see Algorithm 1. With
however has mean average fitness values which are mygl iniroduction of substitution as a composition operatio

greater than those of both standard GE's mean average fitnggs |imitation could be overcome, since it allows for a much
values and TAGE’s own mean best fitness values. This migh{ore compact grammar.

indicate that TAGE has a much lower locality than standard

GE when mapping between the genotype and phenotype, i.e. VI. CONCLUSIONS

a change to the genotype has a much larger effect to the_ . )
phenotype in TAGE than in standard GE. Such a property This study presents a new form of grammatical evolution,

causes larger jumps through the search space, promoUWBiCh adopts tree-adjunct grammars in place of conte>et-fr_e
diversity, and as such, deters convergence. grammars, TAGE. It demonstrates that the use of TAGs in

Another possible hypothesis for why TAGE finds morSE has a beneficial effect on GE’s gbility to move through
successful solutions than standard GE is that, as can B Solution search space and to find successful solutions.
seen in Figure 9, TAGE generates much deeper trees wiipwever, the deriva_tion_ trees, z_in_d hen_ce _the solu'_[ion sSizes
a proportionally large amount of nodes than standard G/ much larger, which is beneficial to finding solutions of a
Since the number of solutions with a specific fitness increas&PECfiC fitness, but not always desirable.
as the length of the solutions, and hence the size of the treestAGE has the ability to take larger steps through the
increase [18], it is possible that TAGE, in generating |argesearch space than standard GE, promoting diversity, while

trees is more effective at finding these longer solutions. attempting to prevent convergence. -
In [8], [20] TAGs were found to have a positive effect on

B. Chromosome Length the performance of GP, results which are shown by this study
An unforeseen result of TAGE is that the chromosom& carry over into the field of GE, with interesting results
length does not grow in size uncontrollably as it doeand properties of its own, such as minimal growth of the
standard GE. This can be seen in Figure 9(a). One possilgleromosome, and the apparent low locality of the mapping
argument for why this happens is that the mapping procepsocess between genotype and phenotype, which helps GE
in standard GE might not use up the entire chromosommaintain diversity.
whereas the mapping process in TAGE does. So everylt is the intention of this author to continue this study
operation on the chromosome that affects its length hdxy extending TAGE to work with tree-adjoining grammars
an effect on the fitness of that individual in TAGE, butand the substitution composition operation, and to ingas#
in standard GE this might not always be the case. If iturther the implications of using TAGs in GE and for what
adversely affects the fithess of an individual in TAGE themeasons do they perform better than CFGs in standard GE
evolution might discard this new individual, preserving th do.
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