
Transfer Learning in Multi-Agent Systems
Through Parallel Transfer

Adam Taylor tayloral@tcd.ie
Ivana Dusparic ivana.dusparic@scss.tcd.ie
Edgar Galván-López edgar.galvan@scss.tcd.ie
Siobhán Clarke siobhan.clarke@scss.tcd.ie
Vinny Cahill vinny.cahill@scss.tcd.ie

School of Computer Science and Statistics, Trinity College Dublin, College Green, Dublin 2, Ireland

Abstract

Transfer Learning(TL) has been shown to
significantly accelerate the convergence of a
reinforcement learning process. TL is the
process of reusing learned information across
tasks. Information is shared between a source
and a target task. Previous work has required
that the target task wait until the source task
has finished learning before transferring in-
formation. The execution of the source task
prior to the target task considerably extends
the time required for the target task to com-
plete. This paper proposes a novel approach
allowing both source and target task to learn
in parallel. This allows the transfer to be
bi-directional, so processes can act as both
source and target simultaneously. This, in
consequence, allows tasks to learn from each
other’s experiences and thereby reduces the
learning time required. The proposed ap-
proach is evaluated on a multi-agent smart-
grid scenario.

1. Introduction

The basic pattern underlying Reinforcement Learning
(RL) (Sutton & Barto, 1999) is to observe the envi-
ronment, choose and execute an action to affect the
environment and see how good that action was. An
agent (a process that implements RL) can learn to
perform optimally for a given state of the environ-
ment by executing this process multiple times. In
large-scale, multi-agent systems, to learn to achieve ac-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

ceptable performance can take a significant amount of
time (Busoniu et al., 2008). Each agent must learn how
its own actions affect the environment. In the single-
agent case, this is achievable as the agent can try an
action and observe the result. In the multi-agent case,
this approach becomes significantly slower and less re-
liable as the environment is also being affected by the
actions of neighbouring agents. The actions taken by
other agents in the system can cause the outcome of
an agent’s action to differ from previous experiences.
If an agent selects a constant action for a given state
of the environment, its results will vary based on what
other local agents (neighbours) do as each neighbour
is also affecting the environment. As the number of
agents grows, this effect becomes more extreme.

An agent has goals that it is trying to learn to satisfy;
a goal is represented by a policy. Learning in multi-
agent systems is made more complex when multiple
policies are considered. Each policy can, at any time,
be used to select an action. This increase in the vari-
ability in action selection for a particular agent will
cause the agents behaviour to be more dynamic than
in the single-policy case. As RL requires that each
state of the environment be visited many times so that
the system can learn to perform well in that particu-
lar state, the larger the environment the longer it will
take for the value function to converge.

For RL to be useful in real world multi-agent systems
such as the smart-grid (Dimeas & Hatziargyriou, 2010;
Galvan et al., 2012), the learning process will need
to be accelerated while exploration is occurring, the
agent cannot meet its goals. Some substandard per-
formance is necessary, as for an agent to know a partic-
ular action is suboptimal the agent must experience it.
There have been many attempts to accelerate learning
in RL (Powell & Ma, 2011; Drummond, 2011). Trans-
fer Learning (TL) for RL (Taylor & Stone, 2009) is



Parallel Transfer Learning

Figure 1. Information flow in Sequential Transfer Learning.

an emerging field in this area. It is based on an idea
borrowed from psychology. When learning how to ac-
complish a task, knowledge from a related task is often
used as a starting point. When applying this concept
to RL, it can be accomplished by sharing informa-
tion about states of the environment and good actions
amongst different agents. The agent that provides the
experience to others is called the source task, those
that receive information are called target tasks. The
goal of TL, as indicated before, is to reduce learning
time in the target task. Providing information from a
good source has been shown to significantly accelerate
learning in the target (Taylor et al., 2007) but a large
amount of time is required to learn in the source task
which is not reduced. If this time is considered as part
of the execution time for the target, then the increase
in speed is significantly reduced (Ammar et al., 2012).
In this paper this type of TL will be called sequential
because, the source task is executed prior to the target
task. The transfer is unidirectional following a sequen-
tial order (see Figure 1). This figure shows the flow of
data in sequential TL. Source Task 1 is passing infor-
mation to Target Tasks 1 and 2, while Source Task 2
provides data to Target Tasks 2 and 3. This all hap-
pens prior to the execution of the target tasks. In this
work evaluation will be done in a smart-grid scenario.
Agent-based approaches are of particular applicabil-
ity to the smart-grid. The smart-grid vision (Mas-
soud Amin & Wollenberg, 2005) applies information
and communication technologies to the current grid
while incorporating distributed renewable generation.
Due to the wide scale of the electrical grid, centralised
control is impractical. A distributed solution will need
to be self-organising to allow for changes in structure,
usage and demand. This solution will need to be ca-
pable of adapting to the changing environment and
improving its performance over time. This will allow
for the continued adaptation of distributed, renewable,
electricity generation.

The rest of this paper is organised as follows: the next

section will provide background in reinforcement learn-
ing and transfer learning. Following that, in section 3
this paper’s contribution, parallel transfer learning,
will be discussed. The experiments conducted using
parallel transfer learning will be discussed in section 4.
Finally, this paper closes with conclusions.

2. Background Information

2.1. Reinforcement Learning for Multi-Agent
Systems

A Reinforcement Learning (RL) (Sutton & Barto,
1999) system has an agent and a representation of the
environment. The agent will have a reward function,
a policy and a value function. A policy is effectively a
set of instructions telling the agent what to do in a par-
ticular circumstance. The reward function informs the
agent how good a particular state of the environment
is (there is not necessarily feedback for every state).
The value function represents how good the current
state of the environment is, it is usually based on ex-
pected future reward as well as current reward. The
value function has a value for each state, as the agent
learns the value function moves towards the true value
for each state1. The goal of RL is to find the optimal
policy. The optimal policy is the sequence of actions
that return the highest cumulative reward value possi-
ble. As the reward value represents the agent’s goals,
the optimal policy is the best way to satisfy them. RL
requires no user input to function, as a result it is ap-
plicable for use in large-scale, self-organising systems.

RL often uses a Markov Decision Process (MDP) to
describe the problem space and environment. In an
MDP, one combination of the parameters that describe
the environment is called a state, the MDP contains
all possible states of the environment. The complete
set of all states is commonly called the state-space.
Each state has a set of actions that are available to the
agent at that state. The actions cause the environment
to transition to another state (or remain in the same
state).

Multi-agent systems (MAS) (Sycara, 1998) are sys-
tems consisting of more that one intelligent agent.
MAS can be either collaborative, competitive or the
agents can be unaware of each other (Stone & Veloso,
2000). In MAS the global state of the system is a
combination of all local states; a global action is the

1RL agents will only converge to a fixed value if the
reward function and the environment stabilises. As this is
unlikely in a multi-agent system, the term ‘true value’ will
be used to mean a value that the agent appears to settle
at, there is no guarantee this value is final.



Parallel Transfer Learning

combination of all local actions. This leads to an ex-
ponential increase in the state-action space (Guestrin
et al., 2002). The size of the state-space in MAS is nor-
mally enormous making it intractable for the agents to
learn effectively. There are two approaches to learning
in MAS. Agents can optimise their own actions in a
hope to reach the global optimum these are called in-
dependent learners. Joint action learners collaborate
with a subset of agents in the system to find locally
and globally good decisions (in the scale of the agents
involved in the collaboration). The idea is that from
combining these partial global actions, a good global
action will emerge (Nikos, 2003).

Joint action learners (JAL) need to communicate or
observe the actions of their neighbours (Bianchi &
Bazzan, 2012). JALs need a representation of how
their own actions affect the environment and how their
actions affect their neighbours. The representation
used is usually an MDP for the agent’s own actions
and view of the environment and others for each of its
neighbours.

2.2. Transfer Learning in Multi-Agent Systems

At a high level, there is only one requirement to suc-
cessfully transfer information from one task to another.
That is a common understanding between both tasks
that allows information from one task to intelligible
to the other. Commonly, this is achieved through ei-
ther a shared representation (i.e., both problems have
been cast so they have the same representation) or
some form of translation is done. If the agents are
homogeneous, they already share a representation, so
no translation is required. Alternately, when trans-
ferring between heterogeneous agents, the information
will need to be recast so that the target task can un-
derstand it. This is necessary as different agents will
have different ways of representing the environment
related to their individual concerns.

Determining how information should be translated is
an open problem in TL (Pan & Yang, 2010). In past
work, the mapping of information from source to tar-
get has been hand-coded (Taylor et al., 2007). This
is obviously not a scalable solution and if TL is to be
applicable to self-organising systems there needs to be
a way for a system to determine how to map informa-
tion independently. Ammar & Taylor (2012) attempt
this through the use of a common subspace. The sub-
space is of a lower dimensionality than that of either
the source or target; it is composed of shared features
found in both tasks. Each state in source and target is
then projected on to the subspace. Each state in the
source is matched to a state in the target. In a more

recent work by Ammar et al. (2012), an approach is
adopted that maps tasks onto a high dimension inter-
mediate space. This approach is broadly similar to
the above work in that it uses a common subspace to
facilitate mapping. The major difference is the dimen-
sionality of the common subspace when compared to
that of the source and target tasks and the process
that produces it. The dimensionality of the interme-
diate space can be used to provide a heuristic as to
if there is useful knowledge to transfer. If the com-
mon space’s dimensionality is very high (close to the
source’s plus the target’s dimensionality) when com-
pared to that of the other tasks, it is likely worse as
little commonality between source and target has been
found. This follows as two completely unrelated tasks
will often have very little overlap in the basis vectors
needed to represent each of them individually.

Most work on TL for RL has focused on single-agent
systems. The MAS could benefit from transfer learn-
ing as there are several different scopes for transfer to
occur at. It can occur within one agent, transferring
from an MDP containing information about how ac-
tions affect one neighbour to another for a different
neighbour. It can also happen between agents. In this
case the agent could transfer information about how
its own actions affect it or how its actions affect its
neighbours. Transfers outside of these would be pos-
sible but are less likely to have useful information to
share. The problem of determining if there is useful
information to share is discussed below.

Boutsioukis et al. (2012) focuses on evaluating the ap-
plicability of transfer to multi-agent RL. They discuss
transferring from a single-agent system to multi-agent
one and from one MAS to another. They particu-
larly focus on the issues in applying transfer to MASs.
Many of the problems are similar to those in the single-
agent setting. They propose a framework in which
mapping from source to target can be achieved by
generalising knowledge dependent on the number of
agents or information specific to an individual agent.
In their experiments they find that transfer can be ef-
fective in MASs but that using a multi-agent source
task has no benefit over a single-agent source task.
As these are empirical results there is no guarantee
they will generalise, particularly given the complexity
of MAS.

Another limitation of TL is that there is no guaran-
tee that there will be any benefit to doing transfer-
ring information. While transfer learning can improve
performance, it can also be detrimental to it, this is
called negative transfer (Taylor & Stone, 2009). To
avoid this, the tasks chosen should be closely related,



Parallel Transfer Learning

this increases the likelihood that there is useful infor-
mation to share. For example, an agent that solves a
maze could be the source task for one which must learn
to avoid obstacles. In some instances tasks will only be
partially related and in these cases only some knowl-
edge should be transferred. There is no reliable way
of determining prior to performing transfer learning if
there is useful information to transfer. This issue is re-
lated to selecting what to transfer and when in Parallel
TL and will be examined later in this section.

Taylor & Stone (2009) propose a set of metrics than
can be used to determine if TL is proving effective.
The metrics cover three of the possible benefits of TL;
better early performance, better final performance and
speed of learning. All three are required as TL ef-
fectively changes the way in which an agent explores
its environment. The knowledge provided changes the
policy the agent learns, it may prove better on some
of the metrics but not others.

The calculation of the time required for a TL agent’s
learning to stabilise (this does not mean it has finished
learning or even that the value function is correct, it
just means that the actions selected as best for a par-
ticular state are no longer changing with time) can
be calculated in two ways. It can be the time from
when the target agent begins learning having already
been given the source’s information or it can include
the source task time and mapping time. The former is
only applicable when the source task has already been
executed and its information can effectively be recy-
cled. If the source task must be executed specifically
to speed up the target task then its time should be
counted. Both are applicable as in a real world system
both scenarios will arise. For example in a MAS it is
possible that a library of possible source tasks could
be maintained and looked up whenever a new learning
process was to start, this would use the latter method.

In summary, prior work on TL for RL has been fo-
cused mainly on single-agent systems. This meant that
learning in the source task had to occur prior to learn-
ing in the target task. This sequential approach could
also be applied to MAS. However, doing so has several
drawbacks. It does not take advantage of the fact that
agents in the MAS are related to each other and are
likely learning similar things. It would require source
tasks to be selected for each individual MAS that will
have useful information to transfer. This introduces
a considerable amount of preparatory work to deploy-
ing a system. For use in self-organising systems, the
process of selecting suitable source task may not be
possible to automate. Finally the source information
must be available before an agent begins learning; the

Figure 2. Information flow in Parallel Transfer Learning.

source tasks have to be run. This will further extend
the time required to deploy such systems.

3. Parallel Transfer Learning

To address the issues of requiring source information
and selecting source tasks, this work proposes Paral-
lel Transfer Learning (PTL). In PTL the source and
the target task can run simultaneously (see Figure 2,
for example). This means at the beginning of a PTL
system there is no learned information available to be
transferred. Instead, transfer occurs when it is deemed
to be useful to the target agent. By having source and
target learn at the same time, there is no need for
the transfer process to be unidirectional. Any pair of
agents may have had different experiences, this means
that both will have information useful to the other.
They need not begin learning at the same time, this
gives much more flexibility to learning in MAS as not
all agents need to be present at the start of the system
(i.e., an agent joining the system can benefit from the
experiences of agents already present). Learning can
overlap, happen concurrently or sequentially. The Fig-
ure 2 shows potential transfers between pairs of agents.
These transfers could take place at any time during the
execution of the MAS.

At each time step, if an agent decides it has useful
information to share with another agent, it sends the
information to that agent. It then checks its own com-
munications buffer to see if any information has been
received from other agents in the system. If it has,
it decides whether to accept this information or dis-
card it. Through repeating this procedure, over time
learned information will propagate through the sys-
tem.

Parallelising TL in this way removes the need for run-
ning the source task prior to the target; this overcomes
some of the issues with sequential TL. As the agents in
a MAS will likely be learning similar value functions,
it removes the need to identify good source tasks. It



Parallel Transfer Learning

can efficiently utilise rare experiences. If one agent ex-
periences a state that is seldom visited, this experience
is essentially more valuable as this particular state will
take a considerable amount of time to converge. By
being able to share this with its peers, performance
in these rare states can improve much faster than it
otherwise would. This approach is particularly ad-
vantageous if an agent joins the system after it has
run for some time. In this case there will already be
good information available, so the joining agent’s ini-
tial performance will be improved significantly by the
knowledge of its peers.

An agent acting as both a source and target is compat-
ible with the idea of sequential TL. There is no reason
a single target task cannot have several source tasks.
This means that an agent in a system need not be
limited to only transferring to and from one other. It
can select partners based on the information they have
and how applicable it is. This means the whole MAS
becomes more of a learning mesh than a collection of
learning agents. Through the interchange of transfer
partners useful information will be distributed much
more quickly that if it were being learned by sequen-
tial TL learners.

There are several interesting questions to be answered
in the design of a PTL system.

• What particular states have interesting informa-
tion to transfer?

• When should this information be shared and how
frequently?

• How should received information be incorporated
into the target task’s state-space?

• How can good pairs of agents to function as source
and target tasks be identified?

3.1. When to Transfer

In PTL deciding what to transfer to neighbours and
when to do so is of utmost importance. There are
many possible schemes to manage this. It could be
driven by the target task requesting specific informa-
tion, but any such scheme would be impractical be-
cause of the amount of computation and communi-
cation required for each transfer, so we will focus on
source driven methods.

In RL the expected value of a state only become rep-
resentative of the true value after this state has been
experienced several times. From this, there are two
approaches as to when the information about a state
should be transferred. Information can be transferred

every time it changes. The advantage of this is that
there is little chance of the target task not having in-
formation when it has to make a decision about the
state to which the information pertains. This method
uses more bandwidth and there is a chance that what
is being transferred may not be representative of the
true value of a state as it has been only sparsely sam-
pled. The alternate method is to only transfer infor-
mation when a value appears to have converged (that
being that the value changes more slowly than it pre-
viously did). This approach will use less bandwidth,
has less risk of transferring inaccurate information but
may not provide data in a timely manner.

No single method will be suitable for all states all of
the time. The optimal frequency of transfer will de-
pend on the frequency at which the target agent visits
the state in question. It will also depend on how far
into the learning process the agents are. At the be-
ginning, information will be less reliable and as agents
are encouraged to explore early on any information
transferred will likely not be used to guide action se-
lection, so, an initially low frequency of transfer would
be best. As information becomes more reliable then
the frequency can increase before tapering off when
there is nothing left to learn.

3.2. What to Transfer

Related to determining the optimal frequency of trans-
fer is selecting what data to transfer. Again there are
several options; the preferable option in a particular
system will depend on the nature and dynamics of that
system. Transfer of the most recently visited states
makes most sense as this information is freshest and
is unlikely to have already been transferred. Sharing
the most converged or most visited states are plausible
schemes but they will tend to share the same informa-
tion every time and in some systems agents will tend
to have the same commonly visited states. This means
that there will be little benefit in sharing that infor-
mation. These schemes, however, will rarely pass on
information received from other agents, so informa-
tion will not propagate through the system particu-
larly quickly. To ensure that transferred information
gets shared quickly, an addition to the above schemes
to promote propagation of transferred information can
be used. Alternatively a scheme that transfers states
that have experienced greatest change in values since
last transfer to a particular target would accomplish
this aim. Several of these methods for what to transfer
and when will be analysed in the following section.



Parallel Transfer Learning

3.3. Receiving Information

Having identified suitable information to transfer and
done so, the target agent needs to add this informa-
tion to that which it already has. In this work, we
will assume all agents can be trusted to only sharing
properly formatted, correct information. The problem
faced by the target agent is how best to determine
if the received information is more accurate or better
represents the environment than its current informa-
tion. Maintaining statistics about how often a state
has been visited and comparing this to how often the
information received was sampled and accepting the
most sampled value is a possible approach. It would,
however, fail if the environment does not change the
same way in response to each agent. This is particu-
larly true if mapping from a distinctly different source
and target, as there may not be a one to one correla-
tion of convergence rates. This method will have little
variation in the information it tends to transfer.

As only selecting either the transferred information or
the local information will not permit agents to use mul-
tiple sources transferring information efficiently, lo-
cal and received information will have to be merged.
If merging the new information can move a partic-
ular value towards its true value, then it should be
done otherwise the received information should be dis-
carded. As the true value of a state cannot be known
until the learning process is finished, estimates will
have to suffice to determine if merging should occur. If
there is no prior information for a given state then the
received information should be accepted. The more
difficult decision is merging if there is already infor-
mation available. In this case the received information
needs to be evaluated to determine if it is likely to be
closer to the true value. Due to the way RL updates
the value of a state-action pair, it will tend to move
towards the true value over several visits to a state,
this means that a direction of movement can be de-
termined, this direction can then be used to see if the
received information is in the right area for the true
value. The steps towards the true value should get
smaller the closer to convergence the value is, if the
steps have already become small then it is probably not
worth merging the received information. This merging
scheme works reasonably well for the tested problems,
however there is room for improvement. The informa-
tion being transferred is not intended to provide the
final exact value but to give an approximation so that
fewer samples are needed to converge. This the signif-
icance attached to received data should drop as values
approach convergence.

3.4. Source and Target Selection

With the mechanism to transfer information set, the
agents must be able to determine which other agents
may benefit from the information they hold. As
the individual transfers are unidirectional, there are
N(N − 1) possible transfers at any one time, where N
is the number of agents. It is not feasible in terms of
bandwidth or computation to have all of these trans-
fers happen in addition to the communications the
agents in the system are already executing nor is it
scalable, so particularly useful transfers must be pri-
oritised. Much like the other issues in PTL, knowing
what is a good pair is not easily determined due to
the fact that an agent’s final, converged values are not
known until learning has finished. This issue can be
partially avoided by prioritising transfers that are di-
rected to unvisited states. Transferring to unvisited
states allows the agent to have prior knowledge about
these states when first visiting them, so these trans-
fers can be particularly beneficial. At a higher level,
this means that an agent should preferentially share
knowledge with agents exploring different parts of the
environment than necessarily with its near neighbours.
These pairs can be identified through a correlation
function, where low correlation pairs will probably be
good matches. This may not be feasible as it will re-
quire the whole state-space for all agents be available
to each agent. A more practical approach is to look at
the updates being shared in the multi-agent RL learn-
ing scheme, these will indicate what an agent is expe-
riencing at a much lower cost.

As the converged source task is not available as is the
case with sequential TL, PTL will see fewer benefits in
terms of initial performance and learning time reduc-
tion. As parallelising TL can reduce the early effects
of transfer, it needs to be determined which method
is applicable for a particular system. This is a related
problem to knowing if there is useful information to
transfer. Obviously running both versions of the same
system and comparing performance would solve this
but in many large MASs this is infeasible.

4. Evaluation

This section will evaluate Parallel Transfer Learn-
ing. This will be done using a smart-grid scenario.
The charging of electric vehicles (EV) will be coordi-
nated by intelligent agents with one agent per vehi-
cle. The experiments will be run using Distributed
W-Learning (DWL) (Dusparic & Cahill, 2012) and
GridLAB-D (Chassin et al., 2008). GridLAB-D is an
electrical grid simulator developed by the US Depart-
ment of Energy. DWL is a multi-agent RL method



Parallel Transfer Learning

Figure 3. The smart-grid scenario used for these experi-
ments.

that uses joint action learners. In joint action learner
algorithms that use communication it is natural to ap-
ply Parallel TL as the agents are already sharing in-
formation about their state and reward scheme. The
scenario covers one neighbourhood with 6 houses each
with an EV (see Figure 3). The electric vehicles will
need to coordinate their charging to prevent overload-
ing the transformer while leaving sufficient capacity for
the uncoordinated load from the houses (Taylor et al.,
2012). They must also provide each EV with a suffi-
cient battery charge to complete their daily journeys.
The transformer is specified such that it can handle
only two vehicles charging simultaneously. Each EV
requires 5 hours charging to fully charge their bat-
tery. To charge sufficiently to meet their normal usage
demand requires an average of 3.5 hours charging is
needed. They are available for charging for 11.5 hours,
this means it should be possible for each EV to have
the required charge for all its journeys. As indicated
before, there will be an agent representing each EV,
they are capable of communicating with any other EV
in the neighbourhood. At each time step they will re-
ceive a notification of the load on the transformer prior
to their actions.

Performance will be measured based on two factors.
The number of times the transformer is over its target
load and number of times an EV returns home hav-
ing run out of electricity (indicating it was not suffi-
ciently charged prior to departing). The more rapidly
good performance is achieved, the faster the agents
are learning. Of particular interest will be early per-
formance and improvement over the experiment. Two
experiments will be run.

• Evaluation of differing data selection methods for
Parallel Transfer Learning.

• Evaluation of Parallel Transfer Learning against
Sequential Transfer Learning and no Transfer
Learning.

The first experiment will compare different methods
of selecting data to transfer. This will establish which

Figure 4. Moving average of number of times over desired
transformer load using the Greatest Change, Most Visited
and Converged methods.

of the discussed method of data selection is best in
this scenario. The data selection methods used are (a)
Greatest Change, (b) Most Visited and (c) Converged.
The Greatest Change method will transfer which ever
state has had the largest absolute change in value be-
tween two consecutive time steps. The Most Visited
method will share the state that has been visited most
often. The Converged method will select at random a
state that has settled at a non-zero value, in effect it
is transferring data that the agent is confident will not
change dramatically as it has been well sampled. The
experiments were run three times and for a period of
30 months.

Figure 4 shows the performance of three different
methods of data selection. It compare three possible
methods. The X-axis is the number of twelve day bins,
the Y-axis is how many times in that particular bin did
actual transformer load exceed target load. All meth-
ods show similar performance in terms of EV return-
ing home completely discharging (i.e., not sufficiently
charged prior to departure), with approximately 1 dis-
charged EV every three days. As can be seen in Fig-
ure 4 the Greatest Change method shows poor initial
performance. This is because in the early stages which
ever state is visited is the state experiencing the great-
est change. If a bad state-action with small positive
reward is transferred to a state that has no other in-
formation, the action with information will tend to be
selected at the neighbour. It takes time for this ini-
tial biasing to be overcome, once it is the performance
steadily improves. The Converged method show a
much slower improvement characterised by the gentler
slope. As it waits for converged values to transfer, it
has practically no effect until converged information is
available. From this point some improvement is gained
through transfer. Initially Most Visited performs best.
This is because it is sharing information that has been
sampled several time an therefore is more reliable. Its



Parallel Transfer Learning

Figure 5. Moving average of number of times over de-
sired transformer load using No Transfer Learning, Parallel
Transfer Learning and Sequential Transfer Learning.

performance stabilities faster as the same pieces of in-
formation tend to be shared, this also inhibits its final
performance as it does not find a final policy as good as
other methods. This experiment shows that Greatest
change is the best method evaluated here as it achieves
superior final performance.

The second experiment will compare the performance
of a system using no transfer learning, with that of
both parallel and sequential TL. The sequential TL
will be provided initial information from three different
sources. All based on the same scenario but one with
a smaller transformer, one with a larger transformer
and one with a different reward structure but the same
transformer.

The graph in Figure 5 shows a comparison of not using
TL, using PTL and using STL with different sources
tasks. The STL methods used are all given initial data
from the end of a 30 month run. One uses a smaller
transformer and the same reward structure, one uses
a larger transformer and the same reward structure
and the other one uses the same transformer and dif-
ferent reward structure. The final STL method will
perform best as despite having different absolute val-
ues, their relative sizes will cause the same actions to
be selected as were learned in the training run. The
PTL system will be using the Greatest Change method
to select data. All of the methods evaluated show sim-
ilar EV charging performance when compared to the
first experiment described before, so only transformer
performance will be examined.

The early performance of PLT is, as expected, com-
paratively poor, it does significantly improve achiev-
ing final performance similar to that of the best STL
method (the one trained on a the same scenario but
with a different reward structure). It performs bet-
ter than No TL after 7.74 months, this is when it
overcomes the initial drop in performance due to us-

ing Greatest Change selection. It takes another 1.93
months to outperform STL using different sized trans-
formers. This is the point information in the PTL sys-
tem becomes more useful than the initial STL informa-
tion. Catching up with the performance of these other
methods demonstrates that the PLT scheme is learning
faster than they are, this trend continues throughout
its run.

The effectiveness of any TL system depends on how
good the source information is. In the STL experi-
ments with different sized transformers, the informa-
tion was useful to a point but eventually the informa-
tion available to the PTL system became more rele-
vant. The STL information with a different reward
structure had the best information to improve system
performance and as a result it took significantly longer
for PTL to match its performance.

These results show that PTL can be effective at im-
proving the performance of a RL system but that it
takes some time before it can outperform STL. As
there is no requirement to have a source task prior
to starting the system, there are benefits to offset the
inferior initial performance.

5. Conclusions

To accelerate learning in a MAS this paper has pro-
posed a new approach called Parallel Transfer Learn-
ing (PTL). Through allowing the source and target
tasks to run simultaneously, agents in the system can
learn from their peers’ experiences. Previous work on
TL had required that the source task be completed
before the target task could begin. This necessitated
transfer occurring only at the start of the target task’s
execution. By allowing transfer to occur throughout
execution, information can be shared as soon as it be-
comes available. This means an agent can share in-
formation learned during execution not just what is
available prior to commencing the learning process. It
also takes advantage of the fact that, typically, agents
in a MAS learn similar behaviours. Leveraging these
experiences allows information to be utilised to its
fullest extent, this being particularly beneficial in ap-
plications where individual experiences are expensive
or rarely occur. The results show that PTL improves
final performance and allows learning to occur more
quickly once the initial cost of not having converged
source information is overcome. PTL takes less time to
reach a given performance level when compared to the
time Sequential TL takes if the source task learning
time is counted.



Parallel Transfer Learning

Acknowledgements

This research was supported by Science Foundation
Ireland (SFI) under the Principal Investigator research
program 10/IN.1/I2980 Self-organizing Architectures
for Autonomic Management of Smart Cities and by
SFI grant 10/CE/I1855 to Lero - the Irish Software
Engineering Research Centre (www.lero.ie).

References

Ammar, H. and Taylor, M. Reinforcement learn-
ing transfer via common subspaces. Adaptive and
Learning Agents, pp. 21–36, 2012.

Ammar, H. B., Tuyls, K., Taylor, M. E., Driessens,
K., and Weiss, G. Reinforcement Learning Trans-
fer via Sparse Coding. In AAMAS 2012: Proceed-
ings of the eleventh international conference on au-
tonomous agents and multiagent systems, pp. 4–8,
2012.

Bianchi, R.A.C. and Bazzan, A.L.C. Combining in-
dependent and joint learning: a negotiation based
approach. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent
Systems-Volume 3, pp. 1395–1396, 2012.

Boutsioukis, G., Partalas, I., and Vlahavas, I. Transfer
learning in multi-agent reinforcement learning do-
mains. Recent Advances in Reinforcement Learning,
(Section 3):249–260, 2012.

Busoniu, L., Babuska, R., and De Schutter, B. A
Comprehensive Survey of Multiagent Reinforcement
Learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 38
(2):156–172, 2008.

Chassin, D. P., Schneider, K., and Gerkensmeyer, C.
Gridlab-d: An open-source power systems model-
ing and simulation environment. In Transmission
and Distribution Conference and Exposition, 2008.
T&D. IEEE/PES, pp. 1–5. IEEE, 2008.

Dimeas, A.L. and Hatziargyriou, N.D. Multi-agent
reinforcement learning for microgrids. In Power and
Energy Society General Meeting, 2010 IEEE, pp. 1–
8. IEEE, 2010.

Drummond, C. Accelerating reinforcement learning
by composing solutions of automatically identified
subtasks. arXiv preprint arXiv:1106.1796, 2011.

Dusparic, I. and Cahill, V. Autonomic multi-policy
optimization in pervasive systems: Overview and
evaluation. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 7(1):11, 2012.

Galvan, E., Harris, C., Dusparic, I., Clarke, S., and
Cahill, V. Reducing electricity costs in a dynamic
pricing environment. In Proc. Third IEEE Interna-
tional Conference on Smart Grid Communications
(SmartGridComm), pp. 169 – 174, Tainan, Taiwan,
november 2012. IEEE Press.

Guestrin, C., Lagoudakis, M., and Parr, R. Coor-
dinated reinforcement learning. In Proceedings of
IMCL 2002, The Ninetenth International Confer-
ence on Machine Learning, pp. 227– 234, 2002.

Massoud Amin, S. and Wollenberg, B. F. Toward
a smart grid: power delivery for the 21st cen-
tury. Power and Energy Magazine, IEEE, 3(5):34–
41, 2005.

Nikos, V. A Concise Introduction to Multiagent Sys-
tems and Distributed AI. Morgan and Claypool Pub-
lishers, 2003.

Pan, S. J. and Yang, Q. A survey on transfer learning.
Knowledge and Data Engineering, IEEE Transac-
tions onransactions on, 22(10):1345–1359, 2010.

Powell, W. B. and Ma, J. A review of stochastic algo-
rithms with continuous value function approxima-
tion and some new approximate policy iteration al-
gorithms for multidimensional continuous applica-
tions. Journal of Control Theory and Applications,
9(3):336–352, July 2011.

Stone, P. and Veloso, M. Multiagent systems: A
survey from a machine learning perspective. Au-
tonomous Robots, 8(3):345–383, 2000.

Sutton, R. and Barto, A. Reinforcement learning: An
introduction. 1999.

Sycara, K. P. Multiagent systems. AI magazine, 19
(2):79, 1998.

Taylor, A, Galván-López, E, Clarke, S, and Cahill,
V. Management and control of energy usage and
price using participatory sensing data. In 3rd Inter-
national Workshop on Agent Technologies for En-
ergy Systems (ATES), at AAMAS 2012, pp. 111–
119, 2012.

Taylor, M. E. and Stone, P. Transfer Learning for
Reinforcement Learning Domains: A Survey. The
Journal of Machine Learning Research, 10:1633–
1685, 2009.

Taylor, M. E., Stone, P., and Liu, Y. Transfer learn-
ing via inter-task mappings for temporal difference
learning. Journal of Machine Learning Research, 8:
2125–2167, 2007.


