
Reusing Code in Genetic Programming

Edgar Galván López1, Riccardo Poli1, and Carlos A. Coello Coello2

1 University of Essex, Colchester, CO4 3SQ, UK
egalva,rpoli@essex.ac.uk

2 Depto. Ing. Eléctrica, Sección de Computación
Av. Instituto Politécnico Nacional No. 2508

Col. San Pedro Zacatenco, México, D.F. 07300, MEXICO
ccoello@cs.cinvestav.mx

Abstract. In this paper we propose an approach to Genetic Program-
ming based on code reuse and we test it in the design of combinational
logic circuits at the gate-level. The circuits evolved by our algorithm are
compared with circuits produced by human designers, by Particle Swarm
Optimization, by an n-cardinality GA and by Cartesian Genetic Pro-
gramming.
Keywords: genetic programming, code reuse, logic circuit design, evolv-
able hardware.

1 Introduction

In Genetic Programming (GP) [7,10] programs are expressed as syntax trees.
This form of GP has been applied successfully to a number of difficult problems
like image enhancement, magnetic resonance data classification, etc. [2]. The
reuse of code is a very important characteristic in human programming. So,
several attempts have been made to introduce the ability to reuse code in GP.

For example, one can reuse code using Automatically Defined Functions
(ADFs) [7,8]. The problem with this approach is discovering good ADFs. ADFs
behave differently in different parts of a program when they have different argu-
ments. So, in order to discover if an ADF is good, GP has to spend additional
computation to discover with which parameters the ADF can be used prop-
erly. Code reuse is also possible with Parallel Distributed Genetic Programming
(PDGP) [14,15,16]. Programs are represented in PDGP as graphs with nodes
representing program primitives and links representing the flow of control and
results. So, PDGP can be used to either evolve parallel programs or to produce
sequential programs with shared (reused) subtrees. Another technique to reuse
code is the Multiple Interacting Programs (MIPs) approach proposed in [1]. A
MIPs individual is equivalent to a neural network where the computation per-
formed in each unit is not fixed but is performed by an evolved equation. Each
unit’s equation is represented by a GP syntax tree.

The design of combinational logic circuits is generally considered an activ-
ity that requires certain human creativity and knowledge. Traditionally this has
been performed with techniques based on Boolean algebra, for example: Kar-
naugh Maps [6,18], the Quine-McCluskey Algorithm [21,17] and ESPRESSO [3].



2

More recently the problem of designing combinational logic circuits has been
attacked with various evolutionary techniques, an area called Evolvable Hard-
ware [7,19,20]. Evolvable Hardware research can be sub-divided into two main
categories: intrinsic evolution, which is carried out through building and testing
electronic hardware, and extrinsic evolution, carried out through simulations.
Extrinsic evolution is the approach used in the work presented here.

Louis [12] was one of the first to use genetic algorithms for combinational logic
design. In his thesis [11], Louis uses a genetic operator called masked crossover
which adapts itself to the encoding and is able to exploit specific information
about the problem domain.

Coello et al. [4] developed an approach using a two-dimensional matrix in
which each matrix element is a gate (AND, OR, NOT, XOR, WIRE). The goal
was to produce fully functional designs which were also minimal. They tried
to achieve this by maximizing the use of WIRE gates, once feasible circuits
have been found. In this work the authors reported good result for small prob-
lems. This approach, however, is highly sensitive to the values of the parameters
adopted, namely the size of the matrix which, if not chosen properly, may prevent
the GA from converging.

Coello et al. [5] used the same circuit representation as in the work men-
tioned above but this time used Particle Swarm Optimization (PSO) to design
the circuits. Instead of using the usual PSO’s real-valued representation, they
used a binary encoding in order to facilitate representing circuits. The algorithm
produced competitive results with respect to an n-cardinality Genetic Algorithm
(NGA), but its performance seriously degraded when dealing with circuits with
more than one output.

When appropriate terminals, functions and fitness functions are defined, stan-
dard GP can go beyond the production of programs and can be used to evolve
circuits. The approach in [9] was, for example, to use primitives that can grow a
circuit starting from an initial embryonic circuit including only a power supply,
a load, and a modifiable wire. This approach has been mostly used to evolve
analogue circuits and controllers.

Miller et al. [13] developed a technique called Cartesian Genetic Program-
ming (CGP). In CGP a program is seen as a rectangular array of nodes. Each
node may implement any convenient programming construct. In this represen-
tation, all cells are assumed to have three inputs and one output and all cell
connections are feed-forward. With this technique, Miller et al. obtained good
results for complex problems, including the three-bit multiplier and the even-4
parity circuit. However, the approach normally requires a very high number of
fitness function evaluations.

The main purpose of the present work is to explore a new GP technique,
called Encapsulated GP (EGP), which allows the reuse of code within GP trees.
In this work we will use evolvable hardware problems to test EGP. The paper is
organized as follows. Section 2 contains a description of the algorithm used. We
provide experimental results in Section 3. We discuss these in Section 4 and we
draw some conclusions in Section 5.



3

2 Encapsulation Genetic Programming

2.1 Terminal and Functional Set

The representation used in our work is a tree-like one as suggested by Koza [7].
The function set for circuits with more than one output is {AND, OR, NOT,
XOR}. For practical reasons, the functions are internally represented with num-
bers as indicated in Table 1. Boolean algebra notation (see third column in
Table 1) is instead used to compare the results found by EGP with those pro-
duced with others techniques. In this notation the absence of a symbol between
two terminals indicates the presence of an AND. Also, we use the relations A
NOR B = NOT (A OR B) and A NAND B = NOT (A AND B) to represent
NOR and NAND, respectively.

The terminal set consists of the inputs of the circuit. These are defined with
the letters {a,b,c,...}. The terminal set includes also a special encapsulation
terminal, p, which will be explained later. We use the “Grow” initialisation
method, which allows the selection of nodes from the whole primitive set until
the depth limit is reached.

Once we have defined the terminal and functional sets, we proceed to generate
the individuals in the population. For this we have used the postfix representa-
tion. We chose this representation because it is easy for the computer to execute,
using a stack-based interpreter (see Section 2.2).

2.2 Interpreter of Genomes

To evaluate each individual, it is necessary to use an expressions’ evaluator
(interpreter of genomes). Ours is based on a stack, and works in the following
way. It reads characters from left to right. If the character read is a terminal, then
its corresponding value is stored in a stack. If the character read is a function
(see Table 1), then the values for its arguments will be taken from the stack
for evaluation and the result of this evaluation will be stored on the top of the
stack (see Figure 1). This procedure is repeated until the end of the expression
is reached.

Table 1. Function set (first column). The second column reports the character used in
our implementation, while the third shows the corresponding Boolean algebra notation.

Boolean Operators Representation Symbol

NOT 1 ’

OR 2 +

NOR 3 (see text)

AND 4 (see text)

NAND 5 (see text)

XOR 6 ⊕



4

Fig. 1. Contents of the stack at different stages of the interpretation of the program
ab2cd45.

2.3 Encapsulation Terminal

The method proposed in this paper does not only allow reusing code but it also
allows evolving graph-like structures, which could encode, for example, combi-
national logic circuits. This is the result of using the p terminal symbol, which
works as follows:

– Once the individuals in the population have been generated, every individual
is checked to see if it contains p’s at the genotype level. If an individual
contains this symbol, we assign one point within the individual to which this
p refers.

– If the p symbol points to a function symbol, the p symbol effectively repre-
sents the sub-tree rooted at that function.

– If the p symbol points to a terminal symbol, the p symbol simply represents
that node.

2.4 Genetic Operators

The genetic operators used in EGP are: tournament selection, crossover, muta-
tion and elitism.

The crossover operator works as usual: 1) two individuals are selected from
the population; 2) we randomly select a crossover point in each parent; 3) we
swap the sub-trees rooted at the crossover points. An important difference is
that, if the sub-tree swapped contained a p symbol, the p symbol’s pointer is
not changed (Figure 2 illustrates this behaviour).3 This means that, as a result
of crossing over, the code represented by p’s may be in individuals different from
the one containing the p symbols. Figure 3 shows the typical pattern of reuse
resulting from repeated applications of crossover.

The mutation operator works as follows: 1) an individual is selected in the
population; 2) a random node is selected; 3) the node is replaced with a different
random primitive, taken from the primitive set. In our algorithm, if the node
3 There is an exception to this rule: we prevent a p symbol from referring to a sub-tree

that contains the same p since this would lead to an infinite loop. We do this by
reassigning the positions to which the p in question is pointing to.



5

Fig. 2. Two parent trees before applying the crossover operator (a) and the children
obtained after applying the crossover operator (b).

selected contains a reference point from a p symbol, then we replace first this p
with the sub-tree it points to and then, we apply the mutation operator.

Elitism is in charge of guaranteeing that the best individual in the current
generation passes intact to the following generation.

2.5 Fitness Function

The fitness function that we used for circuit design works in two stages: at
the beginning of the search, the fitness of a genotype is the number of correct
output bits (raw fitness). Once the fitness has reached the maximum number of
correct outputs bits, we try to optimize the circuits by giving a higher fitness to
individuals with shorter encodings.



6

Fig. 3. Example of typical pattern of code reuse in EGP. After a few generations
individuals contain numerous p symbols pointing at each other’s code (a). The cor-
responding, logically-equivalent population shows a high degree of similarity between
individuals (b).

3 Experimental results

We used several evolvable hardware problems of different complexity taken from
the literature to test EGP. Our results were compared with those obtained by
human designers, by NGA [4], by PSO [5] and by CGP [13].

After a series of preliminary experiments we decided to use a crossover rate
of 70% and a mutation rate of 30%. In all runs we kept the best individual of
each generation (elitism). For all the examples, the we performed 20 independent
runs.

3.1 Two-bit adder

Our first example is a two-bit adder with 4 inputs and 3 outputs.
The parameters used in this example are the following: population size =

560, maximum number of generations = 700.



7

Table 2. Comparison of results between an NGA, Karnaugh Maps plus Boolean alge-
bra, the PSO algorithm and EGP on the two-bit adder problem.

NGA PSO

F1 = B ⊕D F1 = B ⊕D
F2 = (A⊕ C)⊕BD F2 = (BD)⊕ (A⊕ C)

F3 = AC + BD(A⊕ C) F3 = (AC) + ((BD)(A⊕ C))
7 gates 7 gates

2 ANDs, 1 OR, 4 XORs 3 XORs, 3 ANDs, 1 OR

Karnaugh Maps plus Boolean algebra EGP

F1 = A⊕D F1 = AC + ((BC)(A⊕ C))
F2 = (A⊕ C)D′ + ((A⊕ C)⊕B)D F2 = (BC)⊕ (A⊕ C)

F3 = AC + BD(A + C) F3 = B ⊕D
12 gates 7 gates

5 ANDs, 3 ORs, 3 XORs, 1 NOT 3 ANDs, 3 XORs, 1 OR

All the runs found the feasible region4. That is in all runs the program could
solve the problem. The best result found in this example contained 7 gates (3
ANDs, 3 XORs, 1 OR), and 10% of the runs found circuits with this number of
gates.

The results produced by EGP in this example were competitive w.r.t. those
produced using Karnaugh Maps, NGA and PSO (see Table 2).

3.2 Two-bit multiplier

Our second example is a two-bit multiplier with 4 inputs and 4 outputs.
The parameters used in this example are the following: population size =

450, maximum number of generations = 500.
Again, we obtained interesting results. All the runs performed were able to

reach the feasible region. The best result found in this example contained 7 gates
(5 ANDs, 2 XORs) and 15% of the runs found circuits with this number of gates.

The results produced by EGP in this example were compared against those
produced using Karnaugh Maps plus Boolean algebra, the NGA and CGP (see
Table 3).

3.3 Katz

Our third example is the Katz circuit with 4 inputs and 3 outputs.
The parameters used in this example are the following: population size =

880, maximum number of generations = 4,000.
In 30% of the runs EGP found the feasible zone. The best result found in

this example contained 19 gates (4 AND, 7 XORs, 4 ORs, 4 NOTs) and 5% of
the runs found circuits with this number of gates.
4 The feasible region is the area of the search space containing circuits that match all

the outputs of the problem’s truth table.



8

Table 3. Comparison of results between the NGA, Karnaugh Maps plus Boolean
algebra, CGP and EGP on the two-bit multiplier problem.

NGA CGP

F1 = (BD)(AC) F1 = (AD)(BC)
F2 = AC ⊕ ((BD)(AC)) F2 = ((AD)(BC))⊕AB

F3 = BC ⊕AD F3 = AD ⊕BC
F4 = BD F4 = CD
7 gates 7 gates

5 ANDs, 2 XORs 5 ANDs , 2 XORs

Karnaugh Maps plus Boolean algebra EGP

F1 = (AB)(CD) F1 = (AD)(BC)
F2 = AC(BD)′ F2 = ((AD)(BC)⊕A)C
F3 = BC ⊕AD F3 = AD ⊕BC

F4 = BD F4 = BD
8 gates 7 gates

6 ANDs, 1 XOR, 1 NOT 5 ANDs, 2 XORs

The results produced by our system in this example were compared against
those produced using Karnaugh Maps plus Boolean algebra and Quine-McCluskey
Procedure (see Table 4).

4 Discussion

On the test problems reported above, our algorithm has shown very competitive
results with respect to other approaches that employ other types of evolutionary
algorithms. Although results are not improved with respect to those previously
reported, our approach consistently reaches the feasible region (which does not
always happens with other methods). We believe the good performance of EGP
is largely due to its ability to reuse code (as indicated by the large number of p’s
used in all the solutions found). In tests with larger (and more difficult) circuits,
the algorithm has shown promise, but more tests are needed in order to allow a
fair assessment of its performance.

5 Conclusions and Future Work

We have presented EGP, a new genetic programming approach to evolve pro-
grams with a high degree of code reuse. The approach has been validated using
test functions taken from the evolvable hardware literature. Comparison be-
tween EGP and other heuristics has shown that our approach can consistently
reach the feasible region of the three test problems used while converging to the
best-known solutions for two of them.

In our future work we plan to extend our algorithm in several ways. The
ideas behind our algorithm are general and, thus, EGP can be adopted in other



9

Table 4. Comparison of results between Karnaugh Maps plus Boolean algebra, Quine-
McCluskey Procedure and EGP on the Katz problem.

Karnaugh Maps plus Boolean algebra

F1 = (A⊕)′(B ⊕D)′

F2 = B′D(A′ + C) + A′C
F3 = BD′(A + C′) + AC′

19 gates
2 XORs, 4 ORs, 7 ANDs, 6 NOTs

Quine-McCluskey Procedure

F1 = (A⊕ C)′(B ⊕D)′

F2 = A′C + (A⊕ C)′(B′D)
F3 = (F1 + F2)

′

13 gates
2 XORs, 2 ORs, 4 ANDs, 5 NOTs

EGP

F1 = (A⊕ C′)(B ⊕D′)
F2 = (C + (D′ + D)′)(((C ⊕D) + B)A)′

F3 = (((DB ⊕A)⊕B) + (C ⊕A))⊕ C
19 gates

4 ANDs, 7 XORs, 4 ORs, 4 NOTs

application domains in which code reuse (and/or graph-like representations)
may be beneficial. Also, we are interested in extending EGP by adding self-
adaptation mechanisms that would make preliminary runs and parameter tuning
unnecessary. We would also like to in incorporate multi-objective optimization
concepts to improve the search capabilities of EGP.

Acknowledgements

The first author thanks the Mexican Consejo Nacional de Ciencia y Tecnoloǵıa
(CONACyT) for support to pursue graduate studies at University of Essex. The
third author also acknowledges support from CONACyT (project No. 34201-A).
Finally, the Essex authors would like to thank the members of the NEC (Natural
and Evolutionary Computation) group for helpful comments and discussion.

References

1. P. J. Angeline. Multiple Interacting Programs: A Representation for Evolving
Complex Behaviors. Cybernetics and Systems, 29(8):779–806, November. 1998.

2. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming
An Introduction. Morgan Kaufmann Publishiers, Inc, San Francisco, CA, 1998.

3. R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,
1984.



10

4. C. A. C. Coello, A. D. Christiansen, and A. H. Aguirre. Use of Evolutionary Tech-
niques to Automate the Design of Combinational Circuits. International Journal
of Smart Engineering System Design, 2(4):229–314, June. 2000.

5. C. A. C. Coello, E. H. Luna, and A. H. Aguirre. Use of particle swarm optimization
to design combinational logic circuits. In Evolvable Systems: From Biology to
Hardware. 5th International Conference, ICES 2003, volume 2606, pages 398–409,
Trondheim, Norway, March. 2003. Springer, Lecture Notes in Computer Science.

6. M. Karnaugh. A map method for synthesis of combinational logic circuits. Trans-
actions of the AIEE, Communications and Electronics, 72(I):593–599, November.
1953.

7. J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge, Massachusetts, 1992.

8. J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
The MIT Press, Cambridge, Massachusetts, 1994.

9. J. R. Koza, F. H. Bennet, D. Andre, and M. A. Keane. Genetic Programming III:
Darwinian Invention and Problem Solving. Morgan Kauffman Publishiers, Inc,
1999.

10. W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer, 2002.
11. S. J. Louis. Genetic Algorithms as a Computational Tool for Design. PhD thesis,

Department of Computer Science, Indiana University, 1993.
12. S. J. Louis and G. J. Rawlins. Designer Genetic Algorithms: Genetic Algorithms

in Structure Design. In Proceedings of the 4th International Conference on Ge-
netic Algorithms, pages 53–60, San Diego California, . 1991. Morgan Kaufmann
Publishiers, Inc.

13. J. F. Miller, D. Job, and V. K. Vassilev. Principles in the Evolutionary Design of
Digital Circuits - Part I. Journal of Genetic Programming and Evolvable Machines,
1(1):8–35, . 2000.

14. R. Poli. Some Steps Towards a Form of Parallel Distributed Genetic Programming.
In Proceedings of the 1st Online Workshop on Soft Computing, pages 290–295,
Nagoya, August. 1996.

15. R. Poli. Discovery of Symbolic, Neuro-Symbolic and Neural Networks with Parallel
Distributed Genetic Programming. In Procedures of 3rd. International Conference
on Artificial Neural Networks and Genetic Algorithms, ICANNGA 1997, pages
419–423, Norwich, April. 1997. Springer.

16. R. Poli. Parallel Distributed Genetic Programming. In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization, pages 403–431, London, 1999.
McGraw-Hill.

17. W. V. Quine. A way to simplify truth functions. American Mathematical Monthly,
62(9):627–631, November. 1955.

18. C. E. Shannon. Minimization of boolean functions. Bell Systems Technical Journal,
35(5):1417–1444., 1956.

19. J. Torresen. A Divide-and-Conquer Approach to Evolvable Hardware. In 2nd In-
ternational Conference, ICES 1998, volume 1478, pages 57–65, Lausanne, Switzer-
land, September. 1998. Springer, Lecture Notes in Computer Science.

20. J. Torresen. Evolvable Hardware - The Coming Hardware Design Method? In
Neuro-fuzzy techniques for Intelligent Information Systems, pages 435–449. N. Kaz-
abov and R. Kozma (editors), Physica-Verlag (Springer-Verlag), . 1999.

21. E. W. Veitch. A Chart Method for Simplifying Boolean Functions. Proceedings of
the ACM, pages 127–133, May. 1952.


