
Autonomous Demand-Side Management System

Based on Monte Carlo Tree Search

Edgar Galván-López #1, Colin Harris #1, Leonardo Trujillo ∗2, Katya Rodriguez-Vazquez +3,

Siobhán Clarke #1 and Vinny Cahill #1

Distributed Systems Group, School of Computer Science & Statistics,

Trinity College Dublin, College Green, Dublin 2
1 edgar.galvan, colin.harris, siobhan.clarke, vinny.cahill @ scss.tcd.ie

∗ Doctorado en Ciencias de la Ingenierı́a,

Instituto Tecnológico de Tijuana, México
2 leonardo.trujillo@tectijuana.edu.mx

+ Instituto en Investigaciones en Matemáticas Aplicadas y en Sistemas,

Universidad Nacional Autónoma de México, México
3 katya.rodriguez@iimas.unam.mx

Abstract—Smart Grid (SG) technologies are becoming increas-
ingly dynamic, motivating the use of computational intelligence
to support the SG by predicting and intelligently responding to
certain requests (e.g., reducing electricity costs given fluctuating
prices). The presented work intends to do precisely this, to make
intelligent decisions to switch on electric devices at times when the
electricity price (prices that change over time) is the lowest while
at the same time attempting to balance energy usage by avoiding
turning on multiple devices at the same time, whenever possible.
To this end, we use Monte Carlo Tree Search (MCTS), a real-time
decision algorithm. MCTS takes into consideration what might
happen in the future by approximating what other entities/agents
(electric devices) might do via Monte Carlo simulations. We
propose two variants of this method: (a) maxn MCTS approach
where the competition for resources (e.g., lowest electricity price)
happens in one single decision tree and where all the devices
are considered, and (b) two-agent MCTS approach, where the
competition for resources is distributed among various decision
trees. To validate our results, we used two scenarios, a rather
simple one where there are no constraints associated to the
problem, and another more complex, and realistic scenario with
equality and inequality constraints associated to the problem.
The results achieved by this real-time decision tree algorithm
are very promising, specially those achieved by the maxn MCTS
approach.

Index Terms—Demand-Side Management Systems, Monte
Carlo Tree Search.

I. INTRODUCTION

A Smart Grid (SG) is defined as a type of electrical

power grid whose goal is to respond to the behaviour and

actions of energy suppliers and consumers to efficiently deliver

economic, reliable and sustainable electricity services.

A research area that has been very popular within SGs is

Demand-Side Management (DSM), as shown by the increasing

number of publications over recent years [1], [2], [3], [4], [5],

[6], [7], [8], [9]. Figure 1 depicts a number of scientific papers,

per annum, published on ‘demand-side management’ systems.

DSM is a set of measures to improve the energy system at the

consumer side. DSM ranges from improving energy efficiency

through the use of better insulation or better materials up to

the use of autonomous systems to control energy resources [7].

We focus our attention on the latter. That is, we make

an effort to develop an autonomous DSM system to control

energy consumption at the user side by load-shifting energy

consumption. Most of the existing DSM works have focused

their attention on the analysis of load-shifting energy con-

sumption at a broad scale (e.g., control of multiple electric

vehicles) and the interaction between a utility company and

its users [6]. The latter has the consequence that a decision

made for a specific electric device might not be the optimal

because it does not consider what other devices might do.

In this paper, we take a more fine-grained approach by using

a household scenario where the goal is to automatically control

electric devices to load-shift energy consumption by trying to

reduce electricity costs. To do so, we use a real-time decision

algorithm denominated Monte Carlo Tree Search (MCTS).

This is a sampling method for finding optimal decisions by

performing random samples in the decision space and building

a tree according to partial results. The decision tree is built by

taking into consideration what other agents or entities might

do (in this particular case, the MCTS controls each electric

device by turning it on or off depending on a set of conditions,

such as electricity cost, time needed by the appliance to finish

a task at a particular moment – details of this are given in

Section III). Furthermore, this paper makes a bridge between

the use of MCTS to support a DSM system. To the best of our

knowledge, this work and that presented by Wijaya et al. [10]

are one of the first works that uses the MCTS algorithm in a

DSM system.

The problem, formally defined in Section IV, consists

in intelligently and automatically controlling electric devices

within a household unit so that each of them finishes a task

(e.g., washing machine) or finishes being charged (e.g., electric

vehicle). We encourage an efficient energy consumption based

on an electricity signal (e.g., a high correlation is observed

0

50

100

150

200

250

300

350

400

450

19
81

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

Years

N
um

be
r

of
 P

ub
lic

at
io

ns

Number of Publications, from 1981 until 2013, in
"Demand Side Management" Systems

Fig. 1. Number of papers published from 1981 until 2013 in “Demand Side
Management” Systems. Source: IEEE Xplore database.

between high electricity cost and a high number of devices

being switched on at the same time). So, we let the MCTS

manage each of the devices in such a way that there is a

low number of devices being switched on at the same time,

whenever possible. To make the problem more interesting,

we set some equality and inequality constraints that must be

considered when controlling these devices.

This paper is organised as follows. In the next section, we

set the foundations of our work by presenting how MCTS

works. In Section III we describe how we have used it for our

energy problem. Section IV presents the experimental setup

used to conduct our experiments. In Section V we present

and discuss our findings. Finally, in Section VI we draw some

conclusions.

II. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a sampling method

for finding optimal decisions by performing random samples

in the decision space and building a tree according to partial

results. In a nutshell, Monte Carlo methods work by approx-

imating future rewards that can be achieved through random

samplings. The evaluation function of MCTS relies directly

on the outcomes of simulations. Thus, the accuracy of this

function increases by adding more simulations, so the optimal

search tree is guaranteed to be found with infinite memory

and computation [11]. However, in more realistic scenarios

(e.g., limited computer power), MCTS can produce very good

approximate solutions.

MCTS has gained a lot of popularity thanks to its recent

success in the board game of computer Go [12], where the

space of solutions is 10170 and up to 361 legal moves. A

problem, that until recently, was highly difficult for Arti-

ficial Intelligence (AI), and considered much more harder

than Chess, and where MCTS has obtained excellent results,

including achieving dan – master – level at the 9 x 9 board

game. This is, perhaps, the reason why MCTS has been used

heavily in two-player board games.

However, the diversification of MCTS in other research

areas is already a reality. For instance, MCTS has been

explored in combinatorial optimisation (e.g., traveling sales-

man problem [13]), constraint satisfaction (e.g., mathematical

expression [14], constraint problems [15]), and other types

of games [12], [16] (see [17] for a more detailed list of

applications using MCTS). The use of MCTS in different

research areas can give a good idea on the success of MCTS

on challenging and interesting problems.

A. The Mechanics Behind MCTS

MCTS relies on two key elements: (a) that the true value

of an action (in our problem, an action could be either turning

an electric appliance on or off at a particular time based on

a pricing signal, as briefly discussed in Section I) can be

approximated using simulations; and (b) that these values can

be used to adjust the policy towards a best-first strategy. The

algorithm, explained later in this section, builds a partial tree,

guided by the results of previous explorations of that tree.

The algorithm iteratively builds a tree until a condition is

reached or satisfied (e.g., number of simulations, time given

to perform Monte Carlo simulations), then the search is halted

and the best performing action is executed. In the tree, each

node represents a state, and directed links to child nodes

represents actions leading to subsequent states.

Like many AI techniques, MCTS has several variants.

Perhaps, the most accepted steps involved in MCTS are

those described in [17] and are the following: (a) Selection,

a selection policy is recursively applied to descend through

the built tree until an expandable (a node is classified as

expandable if it represents a non-terminal state, and also,

if it has unvisited child nodes) node has been reached; (b)

Expansion, normally one child is added to expand the tree

subject to available actions; (c) Simulation, from the new

added nodes, a simulation is run to get an outcome (e.g.,

reward value); and (d) Back-propagation, the outcome from

the simulation step is backpropagated through the selected

nodes to update their statistics.

Simulations in MCTS start from the root state (in our case,

from the current time when an action for an electric device

should be made) and are divided in two stages. When the

state is added in the tree, a tree policy is used to select the

actions (the selection step is a key element and it is discussed

in detail later in this section). Otherwise, a default policy is

used to roll out simulations to completion. Both stages are

depicted in Figure 2. More formally, Algorithm 1 presents the

typical steps involved in designing a MCTS method.

One element that contributed to enhance the efficiency in

MCTS was the selection mechanism proposed in [11]. The

main idea of the proposed selection mechanism was to design

a Monte Carlo search algorithm that had a small probability

error if stopped prematurely and that converged to the optimal

solution given enough time. That is, a selection mechanism

Simulation 1

1/1 Tree Policy

Default Policy

Simulation 2

2/2 Tree Policy

Default Policy

1/1

Simulation 3

3/3 Tree Policy

Default Policy

1/1 1/1

Simulation 4

3/4 Tree Policy

Default Policy

1/2 1/1

0

0/1

Notation:

New child/node

Child/node stored

State visited during simulation

Outcome

Fig. 2. Four simulations. In Simulation 1, a new node is added to the tree
search and its statistics are updated (e.g., outcome and number of visits).
Simulation 2, stores the first node and adds a new one. Simulation 3 adds
a new node according to the other action (in this case there are only two
actions, as indicated by the number of children). Simulation 4 selects (in this
case it is a tie, so a random selection is used) and beneath the selected node,
a new one is added.

that nicely balances exploration vs. exploitation, explained in

the following paragraphs.

B. Upper Confidence Bounds for Trees

As indicated previously, MCTS works by approximating

“real” values of the actions (in this work an action can be

turning a device on or off) that may be taken from the current

state. This is achieved through building a search or decision

tree. The success of MCTS depends heavily on how the tree

is built and the selection process plays a fundamental role in

this. One particular selection mechanism that has proven to be

very reliable is the UCB1 tree policy [11]. Formally, UCB1 is

defined as:

UCT = X̄j + 2K

√

2 · ln · n

nj

(1)

where n is the number of times the parent node has been

visited, nj the number of times child j has been visited and

K > 0 is a constant. In case of a tie for selecting a child node,

a random selection is normally used [11].

Algorithm 1: MCTS Algorithm.

//N might be between 100 and 1,000,000

while n < N do
//set up data structure to record

line of play

visited = new List<Node>()

//select node to expand

node = root

visited.add(node)

while node is not a leaf do
node = select(node, node.children) //e.g.,

UCT selection

visited.add(node)

//add a new child to the tree

newChild = expand(node)

visited.add(newChild)

value = rollOut(newChild)

foreach node:visited do
//update the statistics of tree

nodes traversed

node.updateStatus(value)
n++

Thus, this selection mechanism works due to its emphasis on

balancing both exploitation (first part of Eq. 1) and exploration

(second part of Eq. 1). That is, every time a node is visited,

the denominator of the exploration part increases resulting

in decreasing its overall contribution. If, on the other hand,

another child node of the same parent node is visited, the

numerator increases, so the exploration values of unvisited

children increase. The exploration term in Eq. 1 guarantees

that each child node has a selection probability greater than

zero, which is essential given the random nature of the

playouts.

III. MODELLING OUR PROBLEM IN MCTS

MCTS has several variants and there is no general consensus

on how to best apply it. However, there are common elements

in MCTS, as presented in Section II, that can give good initial

insights. As mentioned before, MCTS has been used heavily in

two-player based board games of different complexity, ranging

from easy (e.g., phantom tic-tac-toe [18]) to really difficult

(e.g., Computer Go [12]). For a situation where the number

of players or agents is greater than two, which is the kind of

problem used in this work (use of multiple electric devices),

one needs to extend or modify the MCTS algorithm.

We explored two variants of the MCTS algorithm: (a) a two-

agents approach, as done in two-player based board games,

and (b) a maxn approach, that considers multiple entities (e.g.,

electric devices) competing against each other to maximise

their respective payoffs.

Before describing our approach with these two variants, it

is necessary to formally define our problem.

A. Problem Statement

We are interested in investigating whether it is possible

to minimise electricity costs, by learning the optimal times

to switch electric devices on or off, while at the same time

trying to avoid turning on all electric devices at the same time

whenever possible, by means of MCTS as a real-time decision

algorithm. To this end, we propose two scenarios to test our

approach, these are:

• Scenario I. In this scenario each device (four devices in

total) needs to finish its task, by taking an action in a

period of time with a granularity of 30 minutes. More

specifically we used a clothes dryer, electric vehicle,

clothes washer and dishwasher where each of them need

one and half hours, two hours, one hour and 30 minutes to

finish their tasks, respectively. Notice that in this scenario

the only constraint is that the clothes dryer should start

working after the clothes washer has finished.

• Scenario II. This is a more challenging and realistic

scenario with a larger set of constraints, different range

of times is specified where each of the devices can be

used and different length of time needed for each of the

devices is imposed. See Table I for details.

For both scenarios, we considered a 24-hour period where

each of the devices can start being used or charged, so it is

within this range of time that a decision can be made, subject

to the constraints associated to the problem (see Table I).

B. Methodology

MCTS, as mentioned previously, has been used heavily in

two-player board games. In this work, we started using this

approach and then we used a variation of a maxn approach.

1) Two-Agent Approach: For this first approach, we made

a slight variation of the algorithm by building two trees, each

containing two devices (recall that we used four devices as

explained earlier in this section) and made the devices, within

each tree, to compete against each other, in order to find the

best time to turn on a device at the lowest possible electricity

price, and also, that each device finishes its corresponding task.

Given the constraints of the problem (e.g., clothes dryer should

start after the clothes washer has finished its task), we placed

these two devices in the same tree, and the other two devices,

electric vehicle and dish washer, in a different tree.

2) Maxn Approach: For the second approach, we modified

our MCTS approach based on the maxn method [19]. That is,

each of the four devices used in this work, tries to maximise

their own payoffs (e.g., highest reward when the MCTS turns

on a device at the lowest possible price), while at the same

time considering what the rest of the agents (devices) might

do, which are also trying to maximise their own rewards. This

is achieved by adding all the devices to the decision tree, in

the following way: a device is added to the tree and performs

a roll-out (see Section II for a complete description of the

algorithm) by competing against each of the devices, once this

is finished, the next device is added to the decision tree in the

same manner, and this continues until all the devices have been

considered at that particular time. This process is repeated

until a termination criterion is satisfied (this is explained in

the following paragraphs). This method was inspired by the

technique used by Samothrakis et al. [16], where the authors

achieved extraordinary results in a dynamic environment.

C. Defining Rewards

As explained in Section II, MCTS relies heavily on two

factors: (a) that the true values of an action (on or off) can be

approximated using simulations, and (b) that these values can

be adjusted to a policy towards a best-first strategy. These

values correspond to the rewards assigned to each of the

agents/devices based on a decision made at a particular time.

We defined these rewards by considering two elements: (a)

devices that are turned on at the lowest electricity price while

avoiding that a majority of them are turned on at the same

time, and (b) by considering that the constraints, presented in

the previous paragraphs, were satisfied (e.g., devices finishing

their tasks). Thus, we rewarded agents 0.5 if they executed

an action at the lowest electricity price and no other device

was turned on at the same time, and 0.5 if they finished

their corresponding tasks. Thus, it is clear that we gave equal

importance to both objectives.

D. Termination Criteria

Since there is always the same number of actions at each

time step, the tree does not naturally terminate as is the

case in two-player board games. Therefore, the depth of the

tree can grow astronomically in proportion to the number

of simulations being run. This affects how the tree is able

to effectively model the problem and could yield suboptimal

results.

We therefore introduced some terminating conditions to

limit the depth of the tree and tune the structure of the tree to

model the problem more accurately. The tree is expanded until

the last time slot is reached or until the optimal time required

for the device to finish its task has been selected, whichever

condition occurs first. We discovered that using both the total

number of time slots (range period) and the required number

of time slots to finish a task as terminating conditions to limit

the depth of the tree improves the results significantly, and we

have used these to conduct our experiments.

IV. EXPERIMENTAL SETUP

We modelled the problem under investigation by running

experiments for 100 days. Each day is divided into 30-minute

slots, as indicated in Section III. Agents for each of the devices

make a decision at each time slot, whether to switch a device

on or off. The action taken at each time slot is determined by

the algorithm and considers the price profiles, time required

for the device to complete its task and other factors like the

time range within the day that the device is constrained to work

(that is, earliest start time and latest finish time, as indicated in

Table I). We run 10,000 simulations at each time step (roll-out,

see Figure 2).

TABLE I
EQUIPMENT AND ASSOCIATED VARIABLES. EST , LFT INDICATE EARLIEST START TIME AND LATEST FINISH TIME, RESPECTIVELY.

Clothes Electric Clothes Dishwasher

Dryer Vehicle Washer

Earliest Start Time ESTCD ESTEV ESTCW ESTDW

Latest Finish Time LFTCD LFTEV LFTCW LFTDW

Time Constraints
ESTCD=10:30 ESTEV =5:00 ESTCW =4:00 ESTDW =21:00
LFTCD=17:00 LFTEV =10:30 LFTCW =12:30 LFTDW =23:30

Time Needed 1.30 hours 2 hours 1.30 hours 30 minutes

Slots Needed (3 slots) (4 slots) (3 slots) (1 slot)

Other Constraints ESTCD > ESTCW – ESTCW < ESTCD –

To test our approach, using both variants, two-agent and

maxn approach, as explained in Section III, we used different

pricing history files, where each of them contains three dif-

ferent prices (low, medium and high). By considering this, we

are in complete control of analysing our results and indicating

whether our approach was able or not to find the optimum

solution.

The dynamic environment is simulated by using these

pricing history files that are different for each of the 100 days

simulated in our experiments. To avoid biasing our system,

we guarantee that we have, on average, the same number of

low, medium and high prices for the 24-hour period used. That

is, by having a 24-hour period and the system being able to

make a decision every 30 minutes, we have 16 number of

time slots for each of the three prices defined in this work

(low, medium and high) as indicated previously. This number

of time slots also allows the system, in principle, to complete

the indicated task for each of the four electric devices used in

our experiments.

V. RESULTS AND ANALYSIS

We are interested in seeing if it is possible to reduce elec-

tricity costs by predicting prices, switching on electric devices

at the lowest possible price and avoiding turning on multiple

devices at the same time. This task would be straightforward to

solve if it was not for the presence of the constraints associated

to the problem, as expressed in Section III. The problem also

gets harder in a dynamic environment (i.e., fluctuations of

electricity prices).

A. Completed Tasks and Associated Constraints

Let us first focus our attention on how good is MCTS

at controlling devices so that they can achieve a particular

task (denoted as time needed in Table I). For Scenario I (no

constraints as explained in Section IV), and using the two-

agents approach, shown at the left-most hand side of Figure 3,

it is clear that this MCTS approach is able to control all electric

devices (i.e., clothes dryer, electric vehicle, clothes washer and

dishwasher denoted as CD, EV, CW and DW, respectively)

such that all of them finish their corresponding tasks. However,

only one electric device was able to be used at times with

the lowest electricity price (dish washer). The performance of

the two-agent MCTS approach is also good for the CD and

the EV. That is, for the CD, the MCTS is able to turn on

the clothes dryer more often when the electricity cost is the

cheapest and the same situation is observed to controlling the

electric vehicle. However, it is also fair to mention that this

approach prefers to switch on the clothes washer slightly more

often (just over 50% of the time) when the electricity cost is

the highest.

If we now turn our attention using our maxn MCTS

approach in the same scenario, Scenario I as explained in

Section III, we can see in the right-hand side of Figure 3, that

this approach is able to use all the devices at times where

the electricity price is the lowest, while at the same time

guaranteeing that all tasks are completed.

From these findings, it is clear that the maxn MCTS

approach is superior, in terms of finding optimum solutions,

compared to the two-agent MCTS approach. This is not

surprising, since as we discussed in Section III, the former

approach takes into consideration all the agents involved in the

process of learning at what time a device should be turned on

based on electricity prices, so each agent tries to maximise its

own payoff, while at the same time taking into consideration

what the other agents might do.

Now, let us focus our attention on the MCTS’ performance

in Scenario II, using both the two-agents and the maxn

approach. Scenario II is a more challenging problem compared

to Scenario I, given the equality and inequality constraints

associated to the problem, as explained in Section IV.

Figure 4 shows the results when using the two-agent ap-

proach (left-hand side) and the maxn approach (right-hand

side) in this scenario. It is clear that the two-agent approach

performs badly in this case. That is, it fails in ensuring that an

electric device finishes its task. For example, the CD ran for

less than 80% of the time, which means that it was unable to

finish its task of fully drying clothes. The situation is worse

for the DW where the two-player approach failed to turn on

the device, regardless of the electricity price associated at any

particular time. There is a mixed picture for those devices that

were able to finish their tasks. For example, for the EV, one

third of the time this approach preferred to turn it on at the

lowest price. The rest of the task was completed by turning it

on using the second lowest price and the highest price. Finally,

the CW is able to finish its task, but it fails at running when

the price is the cheapest.

If we now turn our attention to the maxn MCTS approach’s

performance in Scenario II (right-hand side of Figure 4), we

can see that it has a much better performance compared to

the two-agent approach (left-hand side of Figure 4). That is,

the maxn approach is able to turn a device on at the lowest

electricity price all the time, except for the EV, where around

one third of the time this approach picked the second cheapest

electricity price. These results support our initial findings when

using the maxn approach in Scenario I (see right-hand side of

Figure 3), as explained before.

B. Saving Electricity Costs

From the previous scenarios it is clear the success of MCTS

in these kind of problems. Particularly, the maxn MCTS

approach was able to find the optimum solutions (i.e., an

electric device finishing its task by being switched on at the

lowest electricity cost) for Scenario I (no constraints) and it

achieved excellent results for Scenario II (constraints).

However, it remains unclear from the previous analysis

the percentage of electricity cost reduction achieved by both

MCTS variants. Thus, to measure this, we simulated a similar

scenario that a user faces, that is, turning devices on or

off without the user knowing the price at a given time (let

us call this a “random approach”). Thus, we performed a

random action-evaluation process. That is, we selected an

action (i.e., either turn on/off the electric device) at any given

time within the boundaries set by Earliest Start Time (EST)

and Latest Finish Time (LFT), and kept a record of the

prices associated to those particular times when the electric

devices was turned on. Then, we averaged this and used it for

comparison purposes.

Firstly, let us focus our attention on the saving costs

achieved by both the maxn (denoted by green-filled square

symbols in Figure 5) and the two-agent MCTS approach

(denoted by red-filled circles in Figure 5), for Scenario I (left-

hand side of Figure 5). As indicated previously, the maxn

MCTS approach was able to turn on all the devices at the

lowest electricity price and this is reflected in the percentage

of electricity cost saving, where a 50% saving is achieved.

A good percentage of saving for this same scenario is also

achieved when the two-agent MCTS approach is used, except

for the clothes washer, denoted by CW, where there is no gain

in using MCTS against the random approach.

Now, let us turn our attention on the saving electricity costs

achieved by our MCTS, both maxn and two-agent approach,

for Scenario II (results are shown in the right-hand side of

Figure 5). There is a significant percentage of electricity cost

savings when the former MCTS approach is used in this

challenging scenario (see Section IV for details). In almost all

cases, except for the electrical vehicle, the MCTS approach is

able to achieve 50% saving. This situation changes, when the

two-player MCTS approach is used, where there is only one

case that reports an electricity cost saving that is when the

electric vehicle is charged (around 8% electricity cost saving).

For the CW, the two-agent MCTS approach performs very

badly compared to the random approach, as indicated by its

negative result. Notice that the electricity cost savings for both

the CD and DW are not shown for the two-player MCTS

approach (right-hand side of Figure 5) as a result of these

devices not been able to finish their corresponding tasks as

discussed previously (see left-hand side of Figure 4).

C. Final Comments on the Results

As shown before, the MCTS approach, in particular the

maxn variant, is able to significantly reduce electricity costs

in both scenarios presented in Section III. Whereas it is

hard to compare our results with other agent-based methods

due to multiple factors, such as the real computational effort

required to run the system, we can still get a good idea of

the potential of this approach on DSM systems. For example,

in our previous work [20], we used a Distributed W-Learning

(DWL), which is a reinforcement learning based multi-agent

system, in a similar dynamic environment. DWL was able

to perform slightly better than a random search, where the

lowest reduction electricity cost achieved by DWL was less

than 10% compared to 50% obtained by the maxn MCTS

variant proposed in this paper. We believe that MCTS achives

these extraordinary results due to its capacity of “predicting”

what other agents (devices) might do (see Section II for the

details on how the algorithm works).

VI. CONCLUSIONS

In this paper, we propose the use of Monte Carlo Tree

Search with two variants: a maxn and two-agent approach,

in Smart Grid technologies with the ultimate goal of learning

the optimal times to switch electric devices on or off to

minimise electricity costs, by learning and predicting the

electricity price, based on a pricing history, in a dynamic price

environment (e.g., prices rates changing over a period of time).

We also considered two different scenarios, a rather simple

scenario where the goal, as indicated before, was to minimise

electric costs while at the same time ensuring that each

device finished its task (Scenario I). We then extended it, by

considering a more challenging and realistic scenario, with

constraints associated to it (Scenario II). The results achieved

by MCTS are truly remarkable for this dynamic problem,

in both scenarios. Particularly when using the maxn MCTS

approach, where it was able to find, in almost all cases, the

optimum solution.

ACKNOWLEDGMENTS

This research was supported by Science Foundation Ire-

land (SFI) under the Principal Investigator research program

10/IN.1/I2980 “Self-organizing Architectures for Autonomic

Management of Smart Cities” and by SFI grant 10/CE/I1855

to Lero - the Irish Software Engineering Research Centre

(www.lero.ie).

REFERENCES

[1] A. Conejo, J. Morales, and L. Baringo, “Real-time demand response
model,” Smart Grid, IEEE Transactions on, vol. 1, no. 3, pp. 236 –242,
dec. 2010.

[2] C. Harris, I. Dusparic, E. Galván-López, A. Marinescu, V. Cahill, and
S. Clarke, “Set Point Control for Charging of Electric Vehicles on the
Distribution Network,” in IEEE Power & Energy Society Innovative

Smart Grid Technologies Conference (ISGT). Washington, D.C., USA:
IEEE, Feb 2014.

CD EV CW DW
0

10

20

30

40

50

60

70

80

90

100

Devices

P
er

ce
nt

ag
e

of
 w

or
k

ac
hi

ev
ed

Scenario I − Two−Agents

Lowest
Medium
Highest

CD EV CW DW
0

10

20

30

40

50

60

70

80

90

100

Devices

P
er

ce
nt

ag
e

of
 w

or
k

ac
hi

ev
ed

Scenario I − maxn

Lowest
Medium
Highest

Fig. 3. Percentage of work achieved by our Monte Carlo Tree Search in Scenario I – No Constraints, using a two-agent approach (left-hand side) and a
maxn approach (right-hand side), as explained in Section III.

CD EV CW DW
0

10

20

30

40

50

60

70

80

90

100

Devices

P
er

ce
nt

ag
e

of
 w

or
k

ac
hi

ev
ed

Scenario II − Two−Agents

Lowest
Medium
Highest

CD EV CW DW
0

10

20

30

40

50

60

70

80

90

100

Devices

P
er

ce
nt

ag
e

of
 w

or
k

ac
hi

ev
ed

Scenario II − maxn

Lowest
Medium
Highest

Fig. 4. Percentage of work achieved by our Monte Carlo Tree Search in Scenario II – Constraints, using a two-agent approach (left-hand side) and a maxn

approach (right-hand side), as explained in Section III.

[3] E. Galván-López, A. Taylor, S. Clarke, and V. Cahill, “Design of an
Automatic Demand-Side Management System Based on Evolutionary
Algorithms,” in Proceedings of the 29th Annual ACM Symposium on

Applied Computing. Gyeongju, Korea: ACM, March 2014.

[4] G. M. Masters, Renewable and Efficient Electric Power Systems. Wiley-
Interscience, 2004.

[5] D. Miorandi and F. De Pellegrini, “Demand-side management in smart
grids: An evolutionary games perspective,” in Performance Evaluation

Methodologies and Tools (VALUETOOLS), 2012 6th International Con-

ference on, Oct., pp. 178–187.

[6] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and A. Leon-
Garcia, “Autonomous demand-side management based on game-
theoretic energy consumption scheduling for the future smart grid,”
Smart Grid, IEEE Transactions on, vol. 1, no. 3, pp. 320 –331, dec.
2010.

[7] P. Palensky and D. Dietrich, “Demand side management: Demand
response, intelligent energy systems, and smart loads,” Industrial Infor-

matics, IEEE Transactions on, vol. 7, no. 3, pp. 381–388, Aug. 2011.

[8] A. Taylor, E. Galván-López, S. Clarke, and V. Cahill, “Accelerating
Learning in Multi-Objective Systems through Transfer Learning.” in In

a Special Session on Learning and Optimization in Multi-Criteria Dy-

namic and Uncertain Environments at the International Joint Conference

on Neural Network 2014 (IEEE IJCNN). Beijing, China: IEEE, 2014.

[9] A. Taylor, I. Dusparic, E. Galván-López, S. Clarke, and V. Cahill,
“Transfer Learning in Multi-Agent Systems Through Parallel Transfer,”
in Workshop on Theoretically Grounded Transfer Learning at the

30th International Conference on Machine Learning (Poster), vol. 28,
Atlanta, USA, 2013.

[10] T. K. Wijaya, T. G. Papioannou, X. Liu, and K. Aberer, “Effective
Consumption Scheduling for Demand-Side Management in the Smart
Grid using Non-Uniform Participation Rate,” in Sustainable Internet

and ICT for Sustainability (SustainIT), 2013. [Online]. Available:
https://github.com/tritritri/effective-dsm

[11] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
ECML, 2006, pp. 282–293.

[12] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification
of UCT with patterns in Monte-Carlo Go,” INRIA,
France, Tech. Rep. 6062, Nov. 2006. [Online]. Available:
http://hal.inria.fr/docs/00/12/15/16/PDF/RR-6062.pdf

[13] D. Perez, P. Rohlfshagen, and S. M. Lucas, “The physical travelling
salesman problem: Wcci 2012 competition,” in IEEE Congress on

Evolutionary Computation. IEEE, 2012, pp. 1–8.

[14] T. Cazenave, “Nested monte-carlo expression discovery,” in Proc. of the

2010 conference on ECAI 2010: 19th European Conference on Artificial

Intelligence. The Netherlands: IOS Press, 2010, pp. 1057–1058.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1860967.1861203

CD EV CW DW
−10

0

10

20

30

40

50

60

Devices

P
er

ce
nt

ag
e

of
 e

le
ct

ric
ity

 c
os

t s
av

in
g

Scenario I − Electricity Pricing

maxn

Two−Agents

CD EV CW DW
−40

−30

−20

−10

0

10

20

30

40

50

60

Devices

P
er

ce
nt

ag
e

of
 e

le
ct

ric
ity

 c
os

t s
av

in
g

Scenario II − Electricity Pricing

maxn

Two−Agents

Fig. 5. Percentage of electricity cost savings achieved by our Monte Carlo Tree Search in two different scenarios, Scenario I – No Constraints (left-hand
side) and Scenario II – Set of Constraints (right-hand side).

[15] S. Baba, Y. Joe, A. Iwasaki, and M. Yokoo, “Real-time solving of
quantified csps based on monte-carlo game tree search,” in IJCAI, 2011,
pp. 655–661.

[16] S. Samothrakis, D. Robles, and S. Lucas, “Fast approximate max-n
monte-carlo tree search for ms pac-man,” Computational Intelligence

and AI in Games, IEEE Transactions on, vol. PP, no. 99, p. 1, 2011.

[17] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of monte carlo tree search methods,” Computational Intelligence

and AI in Games, IEEE Transactions on, vol. 4, no. 1, pp. 1 –43, March
2012.

[18] D. Auger, “Multiple tree for partially observable monte-carlo tree
search,” in Proc. of the 2011 international conference on Applications

of evolutionary computation. Berlin: Springer, 2011, pp. 53–62.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2008402.2008410

[19] C. Luckhart and K. B. Irani, “An algorithmic solution of n-person
games,” in AAAI, T. Kehler, Ed. Morgan Kaufmann, 1986, pp. 158–162.

[20] E. Galvan, C. Harris, I. Dusparic, S. Clarke, and V. Cahill, “Reducing
electricity costs in a dynamic pricing environment,” in Proc. Third IEEE

International Conference on Smart Grid Communications (SmartGrid-

Comm). Tainan, Taiwan: IEEE Press, november 2012, pp. 169 – 174.

