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Abstract. The property that neighbouring genotypes tend to map to
neighbouring phenotypes, i.e. locality, is an important criterion in the
study of problem difficulty. Locality is problematic in tree-based genetic
programming (GP), since typically there is no explicit phenotype. Here,
we define multiple phenotypes for the artificial ant problem, and use
them to describe a novel fine-grained view of GP locality. This allows
us to identify the mapping from an ant’s behavioural phenotype to its
concrete path as being inherently non-local, and show that therefore
alternative genetic encodings and operators cannot make the problem
easy. We relate this to the results of evolutionary runs.
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1 Introduction

In evolutionary computation (EC), the genotype is the data structure, belonging
to an individual, upon which the genetic operators work. It is mapped by some
process to a phenotype, which in some sense represents the developed individual.
Typically it is the phenotype which is evaluated for fitness, for example.

Some genetic programming (GP) variants have distinct genotypes and pheno-
types, for example Cartesian GP [1], linear GP [2], grammatical evolution (GE)
[3], and others. The case of standard, tree-structured GP is different. Depend-
ing on one’s viewpoint, one might say that the genetic operators work directly
on the phenotype, that the genotype-phenotype mapping is the identity map,
or simply that no phenotype exists. Some methods of studying and comparing
representations, common and useful in other areas of EC, turn out to be inap-
plicable to standard GP for this reason. One example is locality, an important
measure of the behaviour of the genotype-phenotype mapping commonly used
as an indicator of problem difficulty [4]. Some authors resort to measuring the
locality of the genotype-fitness mapping as a substitute [5–7], but this does not
tell the whole story. In particular, identifying a badly-behaved genotype-fitness
mapping does not give us any clue about whether and how the mapping might
be improved. Using phenotypes (e.g. [4]) can help to identify the components
of the algorithm (e.g. a particular aspect of the encoding) responsible for the
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overall bad behaviour, or to conclude that no improvement is possible. In GP, it
is possible to see program semantics or behaviour as a phenotype [8–11], and this
is the approach taken here. GP locality has not been previously studied using
such a definition of phenotypes.

Although the relatively poor performance of various GP techniques on the
artificial ant benchmark cannot be regarded as an open problem [5], the study of
locality can still teach us something new. The aims of this paper are thus to pro-
pose a fine-grained view of locality using two abstract, operator- and encoding-
independent definitions of ant phenotypes; to use this model to study locality;
and to relate the results with GP performance. Our methods may be applicable
in a general way to other problems also.

The next section analyses previous work on locality and problem difficulty.
In Sect. 3 we explain our view of locality, which allows for multiple phenotypes,
and we give two distinct definitions for ant phenotypes. One of these is based on
binary decision diagrams (BDDs), and an introduction to this topic is presented
in Sect. 3.1. We present experiments on locality and evolutionary runs, and
results, in Sect. 4; our conclusions are in Sect. 5.

2 Previous Work

Many authors have used landscape-oriented problem difficulty measures to try
to predict search performance in EC. Examples include landscape correlation
measures [12], epistasis [13], proportion of optima per program size [5], fitness-
distance correlation (FDC) [14], FDC extensions including fitness clouds and
negative slope coefficient [15, 16], and locality and distance distortion [4].

In many of these cases, a proposed measure of difficulty (e.g. [14]) is followed
by a counter-example (e.g. [17]): a problem which is easy to solve but is predicted
to be difficult, or vice versa. In some cases the measure is then repaired or im-
proved in some way (e.g. [16]), to be followed by new counter-examples (e.g. [18]).
In addition to false predictions, there are problems of practicality. Jansen [19]
summarised the situation for several such measures and demonstrated the key
problems, including the requirement for very large sample sizes, unreliability of
measures and counter-examples.

Despite this, research continues into methods of classifying problem diffi-
culty, often with the aim of showing that one encoding or operator should be
expected to improve performance relative to another. Here, we take the attitude
that although no measure can predict performance perfectly, there are known
results which can be explained in terms of problem difficulty, for example the
poor performance of mutation-only GE relative to GP [20]. Such explanations
contribute to an overall understanding of what makes EC work.

We concentrate on just one type of problem difficulty measure, locality, which
in the general sense means the preservation of neighbourhood by a mapping.
Rothlauf defines locality over the GA genotype-phenotype mapping and uses it
to shed new light on several problems [4]. Although Rothlauf gives a numerical
definition for the average locality of an encoding/mutation operator combination



Title Suppressed Due to Excessive Length 3

[4] (p. 77), we will not use it in this paper since our aim is not to compare the
locality of different encodings or operators. Instead, we will examine the distri-

bution of distances between neighbours after mapping from one space to another.
That is, we will study locality by taking pairs of neighbours, mapping each to a
new space (i.e. genotypes to phenotypes, genotypes to fitness, or phenotypes to
fitness), and looking at the distance between them in the new space.

3 A Fine-Grained View of Locality

In the abstract sense, locality refers to the preservation of neighbourhood by any
mapping, not just the genotype-phenotype mapping common in many forms of
EC. Therefore, when researchers (motivated by the absence of explicit pheno-
types) study the preservation of neighbourhood by the genotype-fitness mapping
in GP [5–7], this should be regarded as study of locality also. By defining explicit
phenotypes in this paper, we aim to separate the genotype-fitness mapping into
its component parts and study them separately.

g fp
0

p
n-1

...

Fig. 1. Genotype g, phenotypes pi, and fitness f . Arrows represent causality: for ex-
ample, the calculation of p0 depends on g, but g cannot be calculated from f .

Although it is common to think of each individual as having a single pheno-
type, a more general definition is possible: any data structure which is calculated

from the genome and which contributes to the calculation of fitness may be seen
as part of the “extended phenotype” [21]. The most general case is shown in
Fig. 1. Each component of the mapping can, ideally, be studied separately.

In this study we focus on the artificial ant problem domain. Here, the problem
is to find a program that can navigate a path of food laid out in cells on a grid [22]
(pp. 147–155). The terminal set is {move, right, left}: these actions move
the ant forward one square, and turn 90◦ to the right or left, respectively. Each
consumes one time unit. The function set is {iffoodahead, prog2, prog3}.
The first is a conditional: it executes its first argument if the ant perceives food
directly ahead, and the second otherwise. The two remaining functions execute
their two or three arguments in sequence. The most common grid layout is the
Santa Fe ant trail, consisting of 89 food cells in a 32x32 grid, with the path
characterised by twists and gaps. 600 time-steps are allowed.

The remainder of this section presents two definitions of ant phenotypes.
Section 3.1 describes p0, a phenotype based on binary decision diagrams, which
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represents the ant’s behaviour in an encoding-independent way. Section 3.2 de-
scribes p1, a cell-sequence phenotype, which represents the ant’s path concretely.
This leads to the overall model g → p0 → p1 → f .

3.1 Binary Decision Diagram Phenotypes

One definition for ant phenotypes is suggested by [8, 9]: an ant’s behaviour is
represented in an abstract form, inspired by the idea of stateful binary decision
diagrams (BDDs) [23]. BDDs are a formalism for representing boolean functions.
Any Boolean function composed of variables X0, X1, etc. and functions AND,
OR, and NOT, for example, can be alternatively represented using a BDD.

Initially, a BDD may be thought of as a tree. At the root lives X0, and it has
two children each corresponding to X1. At layer n live 2n nodes corresponding to
variable Xn. At the very bottom layer live nodes labelled 0 and 1. The essential
idea is similar to that of a finite state machine. To evaluate a BDD, one traverses
from the root, at each node choosing which of its two outgoing edges (labelled
“high” and “low”) to follow, depending on the value of the node’s corresponding
variable. The connectivity (i.e. the edges) ensures that the node one reaches
at the end (0 or 1) is the value of the boolean function for the given variable
values. In practice, it is common to use reduced BDDs, in which redundancies
are eliminated: the BDD then no longer has a tree structure, since two divergent
paths may re-join at a lower level.

Our definition of BDD-based ant phenotypes is similar but not identical to
that of Beadle and Johnson [8, 9]. The ant’s behaviour is represented as a type of
BDD: each node contains a sequence of zero or more action commands (left, right,
and move), and each branch represents an if-statement. Branches rejoin after
execution of an if-statement. In the ant problem there is only one “variable”, the
result of the iffoodahead predicate. This variable is stateful : it varies during an
ant’s run, so it is necessary to use multiple layers of nodes to represent behaviour.
Since the ant’s behaviour depends on the order in which it perceives cells, it is not
possible to re-order the BDD (as for BDDs in other contexts) without altering
behaviour. The mapping from genotype to BDD-phenotype is thus unambiguous.
The algorithm for performing the mapping is omitted due to space constraints:
code is available at http://skynet.ie/~jmmcd/representations.html. BDD-
phenotypes are illustrated in Fig. 2.

We can equivalently write our BDD-phenotypes as strings. L, R, and M rep-
resent left, right, and move commands. A branch, conditional on the presence
of food, is represented by an <X,Y> construct, where X and Y represent the two
branches. We invert the standard BDD convention that the negative branch is
written first, since in GP trees the positive branch of an if-statement is written
first. The convention is arbitrary and the only effect of changing it is to make
the BDDs easier to read.

Note that conversion from genotype to phenotype is not a simple matter of
altering symbols. The sequencing implied by the prog2 and prog3 functions is
abstracted away, and this allows some distinct genotypes to map to identical phe-
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notypes. Several types of simplification are also required to obtain an abstract,
canonical representation of ant behaviour:

– When one if-statement is nested directly inside another, one or other branch
of the inner one will never be executed. That is, we can replace <<X,Y>W,Z>

with <XW,Z>, and we can replace <X,<Y,Z>W> with <X,ZW> (here W, X, Y and
Z are arbitrary sequences of actions).

– When the two branches of an if-statement end with the same action, it can
be brought outside the branch. That is, we can replace <XY,ZY> with <X,Z>Y.

– As a result of the above simplifications, it may happen that an if-statement
has two empty branches: <,> can be removed.

M L

(a)

M L

MR

L R

(b)

M LL

MR

M R

(c)

M LL

R

M R

(d)

Fig. 2. BDD phenotypes. The positive and negative branches of an if-statement
are drawn with solid and dashed lines respectively. Edges from non-branching
nodes are drawn with solid lines. In (a) a simple example: the geno-
type is (iffoodahead move left) and the phenotype <M,L>. In (b) the geno-
type is (prog3 (iffoodahead move (prog2 left (iffoodahead left (iffoodahead

move right)))) move right). This translates to the phenotype <M,L<L,<M,R>>>MR.
After removal of a redundant branch, we get <M,L<L,R>>MR, as shown. Phenotypic
neighbours can have divergent fitness values: individual (c) has fitness 89, but its neigh-
bour (d), created by a single phenotypic mutation, has fitness 1.

This representation can be run inside a suitable interpreter, and it will give
the same ant path and fitness as the original GP genotype. Crucially, this rep-
resentation is sufficiently abstract that it could also be used as a phenotype for
several other types of GP in which the ant problem might be run, including
GE, Cartesian GP, evolutionary programming (i.e. a finite state machine encod-
ing), and others. The BDD phenotype representation also admits a (non-unique)
backward mapping to genotype, not used in this paper.

We will measure distance between BDD-phenotypes using two string distance
measures. Normalised compression distance has been previously used in diver-
sity analysis [24]; string edit distance is well-known; both are general-purpose
measures. This choice is made because no single distance measure of which we
are aware is naturally suited for distances between BDD-phenotypes. Each mea-
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sure gives at best an approximation to the “true” distance between a pair of
phenotypes. However, improved measures must be left for future work.

We define BDD-phenotypic neighbourhood via “minimal edits” or mutations
on phenotypes, which consist of insertion, deletion, or editing of any of the action
commands L, R and M. Fig. 4 shows that phenotypic neighbours thus defined
can have divergent fitness values. Our reasoning in considering only insertion,
deletion and editing of the action commands is that non-minimal, structure-
altering phenotypic edits will also lead a fortiori to divergent fitness values.

Examples of phenotypes and canonicalisation are shown in Fig. 2. We can
illustrate the non-locality of the phenotype-fitness mapping: Fig. 2(c) shows the
phenotype of an individual which solves the Santa Fe problem, i.e. has fitness
89, and Fig. 2(d) an individual created by a single phenotypic mutation which
has fitness 1. The large change in fitness occurs because behaviour at each step
depends on position and orientation after previous steps, and is repeated multiple
times. Small changes in behaviour are thus multiplied.

3.2 Cell-Sequence Phenotypes

Another definition for an ant’s phenotype is the time-indexed sequence of cells it

visits, as illustrated in Fig. 3. This leads immediately to a natural definition of
phenotypic distance: d(a, b) =

∑
T

t=0
dc(at, bt), where at and bt are the position

of ants a and b at time t, T is the maximum time, and dc is a distance metric
between cell positions, such as the toroidal taxi-driver’s distance. The position
of the food pellets mediates the behaviour of the ant but is not used in the
calculation of these metrics. Note that a small change in cell phenotype will nec-
essarily induce only a small change in fitness. The mapping from cell phenotype
to fitness is, in other words, highly local by definition.

0

1 2 3 4 5 6

7 0

1 2 3 4 5

6

7

Fig. 3. Two ants’ cell-sequence phenotypes. An integer t in a cell indicates that the ant
was in that cell at time t. The food pellets are not shown. The distance d between these
two ants is calculated as the sum of toroidal taxi-driver distances between corresponding
points in the paths. Where the ants coincide (as for t < 5) the distance is 0. For t = 5
the distance is 1, for t = 6 it is 2, and for t = 7 it is 3 (take a shortcut through the
bottom, emerging at the top), so the total distance is 0+0+0+0+0+1+2+3 = 6.
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4 Experiments and Results

Here we report the results of two experiments. The central hypothesis is that
poor results in evolutionary runs can be explained in terms of locality measures.

We consider locality first, sampling individuals, mutating them using several
methods, and measuring distances between pairs in several spaces. In every case,
1000 individuals were randomly generated, and a single mutation of the type
shown (one-point, subtree, or phenotypic) was performed on each, yielding 1000
pairs of genotypic (respectively phenotypic) neighbours. The distance between
pairs in the genotypic (respectively phenotypic, fitness) space was then recorded.
Note that one-point mutation changes a single node per individual. Subtree
mutation is a standard operator. Phenotypic mutation works as in Sect. 3.1.

Figs. 4(a) and 4(b) use two measures of genotypic distance (tree-edit dis-
tance and structural distance [25]) to show that different operators give different
genotypic step-sizes. Fig. 4(c) shows that genotypic neighbours map to similar
phenotypes when neighbourhood is defined by one-point mutation, but often do
not when it is defined by subtree mutation. Fig. 4(e) (left and centre) shows that
genotypic neighbours can have highly divergent fitness values, when genotypic
neighbourhood is defined by either mutation operator. Finally, 4(e) (right) shows
that BDD-phenotypic neighbours can have highly divergent fitness values also.
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(c) g → p0 (string-edit)
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(d) g → p0 (NCD)
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(e) g → f , g → f , p0 → f

Fig. 4. Different operators have different step-sizes ((a) and (b)). The genotype-to-
BDD-phenotype mapping ((c) and (d)) can therefore be well- or badly-behaved, de-
pending on the operator used to define neighbourhood. The genotype-to-fitness map-
ping ((e), left and centre) is badly-behaved for both. The BDD-phenotype-to-fitness
mapping ((e), right) is badly-behaved.
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The definition of non-trivial phenotypes allows us a fine-grained view of map-
ping behaviour. Recall that our model of the mapping is g → p0 → p1 → f , where
p0 is the BDD-phenotype and p1 is the cell-sequence. We already know that the
overall map g → f is badly-behaved (confirmed by Fig. 4(e), left and centre): we
can now seek to explain which of its components are responsible. The p1 → f

mapping has high locality by definition (see Sect. 3.2) and so is not to blame.
However, p0 → f has been shown to be badly-behaved (see Fig. 4(e), right, and
recall Fig. 2(d)). Taking these results together shows that it is p0 → p1, the
mapping from the ant’s abstract behaviour to its cell-sequence, which is badly
behaved and at least partly responsible for the behaviour of the overall g → f

mapping. Note, however, that subtree mutation can also cause bad behaviour in
the g → p0 mapping (see Fig. 4(c)).

Table 1. Artificial Ant performance measured over 100 runs. Higher is better.

Algorithm/Setup Mean Best Fitness Std. Dev. Hits

GP: no xover; subtree mut 60.54 9.98 6/100
GP: no xover; onepoint mut 51.24 7.22 0/100
GP: 9010 xover; subtree mut 61.27 10.10 5/100
GP: 9010 xover; onepoint mut 50.97 7.92 0/100
Random search: 60.86 13.93 1/100

In Table 1 we show the results of evolutionary runs using standard GP. The
aim is to confirm that GP techniques perform poorly on the ant problem. 100
runs were performed with each setup, with population 500 and 50 generations.
Typical parameters were used: 90/10 crossover probability 0.7, mutation proba-
bility 0.01 (but 1.0 for mutation-only GP), and maximum tree depth 7. A random
search (implemented as a GP run of population 25,000 and 1 generation, with
ramped half-and-half initialisation) is also reported for comparison. The only
“knowledge” input to the random search was to avoid tree depths less than 4.

An ANOVA and pairwise t-tests were performed on the 100 best fitness
values from each setup. Three set-ups (subtree mutation, crossover/subtree, and
random search) each performed significantly better than the other two (one-
point and crossover/one-point) (p < 0.01, Bonferroni correction for 10 pairwise
t-tests). But the overall result is that GP performs poorly. There is little novelty
in this: it reinforces the conclusion (in 1998) of Langdon and Poli [5], that the
ant problem is difficult for many representations. Other representations including
Cartesian GP and GE have since produced largely similar results [1, 3].

It is noteworthy that subtree mutation does well relative to one-point, despite
being more “randomising”. It tends to take larger jumps in the search space.
When a search space is badly-behaved, as here, highly local methods such as
minimum-change operators lose any advantage they would have on smooth, well-
behaved spaces. For difficult problems, then, random search tends to perform
surprisingly well compared to more sophisticated algorithms.



Title Suppressed Due to Excessive Length 9

5 Conclusions

We have proposed a fine-grained model of locality in the ant problem, in which
the overall genotype-to-fitness map is broken up into three components with two
intermediate phenotypes which have not been previously used in the study of
locality. This new model allows us to identify the component—the map from the
ant’s abstract behaviour to its concrete path—responsible for the overall map’s
bad behaviour. We have performed various evolutionary runs and as expected
we have added to Langdon and Poli’s list of poor results [5] on this problem.

Our core conclusion is an attempt to explain these poor results: in the ant
problem, the mapping from BDD-phenotypes to fitness is inherently badly-
behaved. Since these BDD-phenotypes can function as encoding-independent
behavioural phenotypes for many GP approaches to the problem, this result
goes some way to explaining their universally poor performance. Thus, poor
performance is not due to inadequate representations.

Although we have studied only the ant problem, the fine-grained model of
locality proposed here may allow new insights into other problems also. Our
definitions of phenotypes will not be directly usable in other problems, but pos-
sibilities are suggested by Beadle and Johnson’s BDDs [8, 9] and other semantic
approaches. Other methods of characterising mapping behaviour, such as corre-
lation analysis, might also benefit from similar fine-grained models.
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