The Effects of Constant and Bit-Wise
Neutrality on Problem Hardness, Fitness
Distance Correlation and Phenotypic Mutation

Rates

Riccardo Poli and Edgar Galvan-Lopez

Abstract

Kimura’s neutral theory of evolution has inspired researshfrom the evolutionary computation community to
incorporate neutrality into Evolutionary Algorithms (E)As the hope that it can aid evolution. The effects of neityral
on evolutionary search have been considered in a numbeundiest the results of which, however, have been highly
contradictory. In this paper, we analyse the reasons farahd we make an effort to shed some light on neutrality
by addressing them. We consider two very simple forms of métyt constant neutrality — a neutral network of
constant fitness, identically distributed in the whole sbapace — and bit-wise neutrality, where each phenotypic
bit is obtained by transforming a group of genotypic bits amencoding function. We study these forms of neutrality
both theoretically and empirically (both for standard denark functions and a class of random MAX-SAT problems)
to see how and why they influence the behaviour and perforenaha mutation-based EA. In particular, we analyse
how the fithess distance correlation of landscapes chanydsr uhe effect of different neutral encodings and how
phenotypic mutation rates vary as a function of genotypitation rates. Both help explain why the behaviour of a
mutation-based EA may change so radically as problem, fdrmeotrality and mutation rate are varied.

Index Terms

Neutrality, Phenotypic Mutation Rates, Problem Hardn&#mess Distance Correlation, MAX-SAT, Genotype-
Phenotype Mappings.

I. INTRODUCTION

Despite the proven effectiveness of Evolutionary Algarith(EAS), they have also limitations. Researchers have

attempted to make EAs more powerful by using a variety of apghnes. Following the ideas of Kimura’s neutral
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theory of molecular evolution [1], [2], one strategy to astd this has been the use rdutrality in EAs.

Kimura’s theory states that the majority of evolutionaryanfes at molecular level are the result of random
fixation of selectively neutral mutations. A mutation fromeogene to another is neutral if it does not affect the
phenotype. Thus, most mutations that take place in natucdliton are neither advantageous nor disadvantageous
for the survival of individuals. It is then reasonable toragblate that, if this is how evolution has managed to
produce the amazing complexity and adaptations seen ingjdiien surely neutrality should aid also EAs. However,
despite the numerous publications in this field, quite ofteare is confusion with regard to what neutrality is and,
certainly, there are no general conclusions on the effefcteeotrality.

Many contradictory results on neutrality in EAs have begorted. For instance, in [3], Yu and Miller performed
runs using the well-known Cartesian Genetic ProgramminGRYL system [4], [5] and evenparity Boolean
problems with different degrees of difficulty: (= {5, 8,10, 12}). They compared performance with and without
neutrality and reported that their system performed betten neutrality was present. However, a few years later,
Collins claimed the opposite [6], explaining that Yu and IBtis chosen problem class (the parity problems) was
unusual and unsuitable for analysing neutrality using CG#s is because both the landscape and the form of
representation used have a high degree of neutrality arge thmake the drawing of general conclusions on the
effects of neutrality difficult. These are just two authatite example’sof publications available in the specialised
literature which show controversial results on neutrality

We believe that the confusion regarding neutrality is dusaeeral reasons. These include the following:

« there is a lack of mathematical frameworks that explain hoal @hy neutrality affects evolution;

« many studies have based their conclusions on performaatistiss (i.e., on whether or not a system with
neutrality could solve a particular problem faster or brethan a system without neutrality), rather than a more
in-depth analysis based on problem hardness measures anth sharacteristics;

« studies have often considered problems, representatihsearch algorithms that are relatively complex; as a
consequence, results represent the compositions of reudtffects (e.g., bloat or spurious attractors in genetic
programming [7], [8]);

« there is not a single definition of neutrality, and differetidies have added neutrality to systems in radically
different ways;

« very often studies focused their attention on particulaoperties’ of neutrality without properly defining them;
and

« the features of a problem’s landscape and the behavioureobdlarch operators change when neutrality is
artificially added, but rarely has an effort been made to tstdad in exactly what ways.

The main goal of this paper is to start shedding some lighteutrality by addressing the sources of confusion

mentioned previously. The core elements in this work are:

1Both [3] and [6] were nominated as best papers in their cenfa tracks.



« Two very simple types of neutrality for EAs will be definedading from the simplest possible formonstant

neutrality, and then moving to the more commbitwise neutrality

« Fitness distance correlationvill be used to analytically quantify the hardness of profdewith certain

characteristics (i.e., landscape features) in the presand in the absence of neutrality.

« We will define and studyphenotypic mutation rateis relation to corresponding genotypic mutation rates for

different encodings.

« We will combine and corroborate the theory with empiricauiés using both classical benchmark problems

and a class of MAX-3-SAT problems.

This paper is organised as follows. In the following sectiprevious work on neutrality will be presented. In
Section 1l we will provide basic notions on fitness distara®relation. In Section IV, we describe the forms
of neutrality —constantand bitwise neutrality— studied in this paper and we also introduce our test prodlém
Section V, we study theoretically the effects of constat bitwise neutrality on the difficulty of our test problems.
In Section VI, we make the mathematical relationship betwgenotypic mutation rates and phenotypic mutation
rates explicit. Section VII reports empirical results thahfirm our theoretical analyses. In Section VIII, we discus
these results from both the point of view of understandingtradity and the practical consequences of the work

in relation to the solution of real-world problems. Final§ection 1X draws some conclusiofs.

II. PREVIOUSWORK ON NEUTRALITY

As mentioned previously, there is not a single definition efitnality. Neutrality is implicitly defined as the
presence ofheutral networksn the search space. A neutral network is sometimes definedsas of points in the
search space with identical fithess. More often neutral okdsvare, instead, defined as sets of points in the search
space having identical fithessd such that starting from any point in a set one can reach argr gbint in the
set through one or more mutations (without ever leaving g s

To clarify this, let us focus on a binary EA for simplicity. Alsition s’ is considered to be a nearest neighbour
of a solutions, if s’ is one unit of Hamming distance away framThe set of neighbours ofis denoted by (s).

If fis the fitness function, as’ € V (s) such thatf(s) = f(s’) is aneutral neighboumf s. A neutral network is
a set of solutions of identical fitness which is closed untierdpplication ofl/.

Nimwegenet al. [13] suggested that neutrality appears automaticallyutihout the evolutionary process. They
focused their attention on how the population moves througitral networks and suggested that the population
does not drift purely randomly through them. Instead, thonitg of individuals tend to migrate and stay in highly
connected parts of the network (i.e., areas where points havgh number of neutral neighbours). This results in
phenotypes that are relatively robust against mutations.

In the same vein, Wagner [14] argued that the presence ofaléytin a system makes it more robust against

mutations. Moreover, Wagner suggested that neutralitylshibe viewed as an element that promotes evolvability

2Preliminary versions of the work presented in this paperhswpeared in workshops and conferences papers [9]-[11F wiher results
can be found in Edgar Galvan-Lopez's PhD thesis [12].



and can help to discover new phenotypes. Obviously, as Wagpieted out, neutrality in itself cannot offer any
benefit: by definition, a neutral mutation at genotype lexadsinot change the phenotype. However, neutrality can
still be of help in that it allows evolutionary search to vipreviously unexplored areas.

Reidys and co-workers [15] studied the relationship betwB®&A sequence and secondary structure, which
is seen as mapping from sequence space into shape spacé lig6inapping has a high degree of redundancy
(i.e., there are many more sequences than structures)atmtrk, the authors suggested that identical phenotypic
structures form a neutral network if thimction of neutral nearest neighbours exceeds a certain threshboisl.is
in sharp contrast with the definition used in most other wevkere solutions are considered to form a neutral
network if they are one unit of Hamming distance away fromheaiher.

Toussaint and Igel [17] pointed out that standard appraatheself-adaptation in EAs (e.g., see [18]) are an
explicit example of the benefit of neutrality. In these agutees the genome is augmented with strategy parameters,
which typically describe the mutation distribution (e.the mutation rate). These are neutral parts of the genome
which are co-adapted during evolution so as to induce bséarch distributions. The point of view developed in
[17] is that the core aspect of neutrality is that differeehgmes in a neutral set provide a variety of different
mutation distributions. Evolution may choose from thesea igelf-adaptive way. Interestingly, theoretical work on
the evolution of strategy parameters (e.g., see [19]) carebeterpreted as dealing with the evolution of neutral
traits.

This line of thought was further formalised in [20]. Given xefil genotype-phenotype mapping one can investigate
the variety of mutation distributions induced by differgenomes in a neutral set. If their phenotypic projections (t
phenotypic mutation distributions) are constant over esmbiral set, this is defined asvial neutrality. Toussaint
showed that trivial neutrality is a necessary and sufficd@mnidition for compatibility [21] with phenotypic projecin
of a mutation-selection EA. In other words, whether one artlaar representative of a neutral set is present in a
population does not influence the evolution of phenotypesiitively, this means that, in the presence of trivial
neutrality, neutral traits have no effect on phenotypiclation. In the case of non-trivial neutrality, different
genotypes in a neutral set induce different phenotypiaidigions. This implies a selection between equivalent
genotypes similar to the selection of strategy parameterself-adaptive EAs. Toussaint interpreted this as the
underlying mechanism of the evolution of genetic represt@nts.

In [22], [23], Shackletoret al. artificially added neutrality to evolutionary search witletuse of five different
genotype-phenotype mappings. Tstic random mappingonsisted in defining a genotype of lendth which
was mapped to a phenotype tf bits. The mapping used was randomly initialised and renshstatic during
evolution. Thetrivial voting mappingconsisted in taking bits at genotype level to represent one bit a phenotypic
level. The latter was set tb if the majority of the3 genotypic bits voted in favouf) otherwise. Thestandard
voting mappingwas a variation of the previous mapping where the set of tgetypic bits encoding for one
phenotypic bit can overlap. This means that when a singlatpuoutation takes place, multiple phenotypic bits
could simultaneously change. In tieellular automaton mappingach of the phenotypic bits was associated with

a truth table. Three adjacent bits were used as inputs inrtitle table and the corresponding output, which in a



cellular automaton would represent the new state of a aglesented the associated phenotypic bit. Finally, the
random Boolean network (RBN) mappings a variation of the previous mapping. The main differeéadbat the

3 bits can be at any positions, so it is necessary to encode fhastions at the genotype level. Shackletdral.
noted that the amount of redundancy in the genotype-phpaatap plays a key role in evolution. Moreover, they
observed that the standard voting, cellular automaton & Rappings were more beneficial than the other two.

Ebneret al. [24], [25] extended this investigation. They further arsalgl the effects of the RBN and the cellular
automaton mappings in the context of what they cafdpénotype-specianapping. This type of mapping works
in two stages. Firstly, a genotype-phenotype mapping isl isedetermine the phenotype that corresponds to a
genotype. Then, the phenotype-species mapping deterrtlisespecies to which each phenotype belongs. This
phenotype-species mapping is created by randomly disinipthe species over the phenotype space. Ebhet.
argued that these types of mappings are particularly istiege since they seem to allow neutral networks that are
intertwined with a high degree of connectivity. This prayeallows the finding of more species compared with
other types of mappings.

In [26], Knowles and Watson criticised the usefulness oftradity when added via a mapping function. In
particular, they focused their attention on the RBN mappingposed and studied in [22]-[24] and measured its
influence on evolution using the rate of fitness increase. &sHill-Climbers were used on three different problems
to compare the performance obtained with and without the REfping. They showed that the performance of
these search algorithms was better in the absence of riguthbreover, they suggested that the RBN mapping
leads to a random exploration in the search space, so itfisulifto imagine how evolutionary search can gain
anything from using this type of mapping.

Rothlauf and Goldberg [27] argued that redundancy is a comalement found in any EA and that the effects of
redundancy in evolutionary search depend basically ondhera of the redundancy. They identified some properties
that are useful to characterise redundant representaf@na redundant representatioruisiformif all phenotypes
can be obtained by the same number of genotypes, (b) a repagsa issynonymously redundaiftthe genotypes
that map to the same phenotype are part of a neutral netwerk tfiey are close to each oth2r)g) a redundant
representation has higlocality if neighbouring genotypes map to neighbouring phenotypes &nally, (d) a
redundant representation has higgnnectivityif the number of phenotypes which are accessible from a ghpao
by one bit-flip mutation is high. Rothlauf and Goldberg amgukat in synonymously redundant representations,
genetic operators work well and the landscape is smootlar ith non-synonymously redundant representations
where the search operators show poor performance. In naomgynously redundant representatibtveo genotypes
representing the same phenotype may be very different fiash ether and, as a consequence, evolutionary search
behaves like random search.

Fonseca and Correia [28] developed two redundant repedssm using approaches based on mathematical

3An example of this type of redundancy is the trivial votingpping proposed in [22], [23].
4Examples of this type of redundancy are the cellular automand the RBN mappings described in [22], [23].



tools. They found that some of the properties and analysRathlauf and Goldberg provided in [27] disagreed
with their results. In particular, while Rothlauf and Godath suggested that when using a synonymously redundant
representation the connectivity between phenotypes isneotased, Fonseca and Correia indicated that this is not
necessarily true. They reported that, with their propospdasentations, the connectivity between phenotypegtend
to increase with the amount of redundancy in the encodings&ea and Correia also found that high connectivity
can be present even with very little redundancy. Thereftive,belief that large amounts of neutrality must be
present to aid evolution [29] should be carefully scrutiis

As can be seen from the brief survey provided abbtiegre are many contradictory results on neutrality. In the
following section, we will present a measure of hardness e-filmess distance correlation — that will later help

us explain under what circumstances neutrality can be lealefn an evolutionary process.

IIl. FITNESSDISTANCE CORRELATION

Jones [31], [32] suggested that we could consider fithesstifurs as heuristic functions (in the sense of the
term used in classical artificial intelligence). Their autip could then be interpreted as indicators of the distance
between tentative solutions and their nearest global autinn the search space. If one could express the degree
to which the fithess function conveys correct informatiomwutbsuch a distance, one would get an idea of how
difficult the search is going to be. In order to gather infotiora on the difficulty of a problem one would need
to perform two tasks: (a) determining the distance betweastargial solutions and their nearest global optima, and
(b) calculating the fitness of potential solutions. Obvlgustep (a) requires that the global optima for a problem
be known in advance.

Jones proposed to condense the information gathered iprthiess using a heuristic measure of problem difficulty
called thefitness distance correlation (fdcThe definition offdc is quite simple: given a sef = {f1, f2, ..., fn}
of fitness values ofi individuals and the corresponding sBt= {d;,ds, ..., d, } of distances of such individuals

from the nearest global optimurfdc is given by the correlation coefficient

fde= "D (1)
O 0D

where:
n

1 - -
Crp =~ ;(fi = f)di —d)
is the covariance of and D, andor, op, f andd are the standard deviations and meang'@ind D, respectively.
Typically, then individuals used to computilc are obtained via some form of random sampling.
Jones [31], [32] suggested that a problem can be classifieuhénof three classes, depending on the value of

fdc:

1) misleading(fdc > 0.15), in which fitness tends to increase with the distance froenglobal optimum;

2) difficult (—0.15 < fdc < 0.15), for which there is no correlation between fithess and distaand

5A more detailed survey can be found in [30].
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Fig. 1. Representation used to induce constant neutrality.

3) easy(fdc < —0.15), in which fitness increases as the global optimum appra&ache

The interval[—0.15,0.15] associated with difficult problems was empirically detered.

The fitness distance correlation approach has been sugtgssfed in a wide variety of problems to assess
hardness for EAs [33]-[36] and genetic programming systfi2§ [37]-[43]. However, there are some known
weaknesses of thielc as a measure of problem hardness [44], [45]. Jones himsgibped to use scatter plots of
distancesrs. fithesses to characterise problems, widndid not give enough information about the hardness of a

problem. Nonetheless, the situations whigfehas been shownot to be informative are rather artificial.

IV. CONSTANT AND BITWISE NEUTRALITY

In the following sub-sections, we will introduce the di#eit forms of neutrality and test problems considered in
this paper. To keep things as simple as possible, we will hsesimplest possible algorithms — mutation based,

binary EAs without crossover — to conduct our studies.

A. The Simplest Form of Neutrality: Constant Neutrality

In the context of binary EAs, the simplest possible definitaf neutrality one can imagine is what we will
call constant neutrality As illustrated in Figure 1, neutrality is plugged into thegmal, non-redundant, code by
adding an extra bit to the representation. When the bit istetfitness of an individual is a pre-fixed constant
value. When the bit is not set (i.e., 0), the fitness of theviiddial is determined by the coding bits as usual. This

representation induces a neutral network of constant §itridentically distributed in the whole search space.

B. Bitwise Neutrality

In this work, we also consider a more natural form of neutyalihich we callbitwise neutrality Bitwise neutrality

is induced by a genotype-phenotype map, where each pheadtyps obtained by transforming genotypic bits
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Fig. 2. Three different genotype-phenotype mappings thdtide bitwise neutrality: (a) Majority encoding, (b) Parincoding and (c) Truth

table encoding.



via some encoding function. Obviously, whenever> 1, the same phenotype can be obtained from different
genotypes, so neutrality is artificially added to the seaudce.

In particular, we will look at the following three encodings

1) The majority encoding, which works as follows: given genotypic bits and a user-defined threshald
(0 < T < n), if the number of ones in the bits is greater than or equal tB, then the corresponding
phenotypic bit is set to 1, otherwise it is set to 0 (see Fidi{ed). To avoid biasing the system, we will use
T = n/2 andn odd, which guarantee that Os and 1s are treated identically.

2) The parity encoding, which works as follows: if the number of onesnirgenotypic bits is even, then the
corresponding bit of the phenotype is set to 1, otherwise #et to 0 (see Figure 2(b)).

3) Thetruth table encoding, which works as follows. A truth table is generatdtere the output associated
with each combination of. inputs is randomly set to either 0 or 1, while ensuring the benof Os and 1s
in the table are identical. Each phenotypic bit is determhibg using the corresponding genotypic bits as
inputs to the truth table and reading out the associatedub$ee Figure 2(c)).

C. Test Problems

In order to analyse the effects of the forms of neutralityadticed above, we will use the following problems
and classes of problems.

1) OneMax Problem:The problem is to maximise the function:

wherex € {0,1}* is a binary string of lengtif and z; is its i-th element. Naturally, this problem has only one
global optimum in111---111, and the landscape is unimodal. Seen as a function of wnmtéthe number ofl s
in a string), the problem is represented pgu) = u or f(x) = u(x) whereu(z) is a function that returns the
unitation value ofz.

2) Multimodal Problem GeneratorWe also use problems generated by the multimodal problenergeor
presented in [46]-[48]. The idea is to create problem ircstarwith a certain degree of multi-modality.

The generator works as follows. To create a problem iitpeaks,P bit strings of length¢, which we denote
as Peaky, Peaks, ..., Peakp, are randomly generated. To each, a peak heilflaight(Peak;), is assigned. The
heights of the peaks are chosen in such a way as to cover amahfk, 1] (whereh is a constank 1) with P
equal-size steps. To evaluate an arbitrary individualt is necessary to first locate the nearest peak in Hamming

space, which we denote as

Peak,(x) = argmin H(Peak;,x),

where H is the Hamming distance. In case there is a tie, the highes#t isechosen.
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The fitness ofr is the number of bits the string has in common withak,, (), divided by¢ and scaled by the
height of the nearest peak. That is

flx) = - H(x,lzeakn(x)) x Height(Peak,(x)).

In this problem class, fitness values are in the rggé]. The goal is to find the highest peak (i.e., to find a string

with fitness1.0).

The difficulty of problems generated with this technique elegs on the number of peaks, the distribution of
peaks and, finally, the distributions of peak heights. Toycaut our experiments, these parameters have been tuned
in such a way to make generated problems much harder than &nbM easier than the trap problem (described
below).

3) Trap Function: The Trap function is a deceptive function of unitation [49]-[51] dfet following form:

- a_ (Umln - U(SC)) if u(x) < Unins
f(x) — min
ffubmm (u(x) — umin) oOtherwise,

wherea is the deceptive optimund, is the global optimum, and,,,;,, is the slope-change location. By varying the
parameten.,;,, the relative size of the basins of attraction of the two mptimay be varied, thereby making the
problem easier or harder.

4) MAX-SAT Problem ClassThe Boolean satisfiability problem, also known as SAT, is ohthe most studied
NP-complete problems (e.g., see [52]-[58]). The target AT & to determine whether it is possible to set the
variables of a given Boolean expression in such a way to miakeexpression true. The expression is said to be
satisfiable if such an assignment exists.

In SAT, expressions are often represented in conjunctivenabform, i.e., as a conjunction of clauses, where
each clause is a disjunction of literals (variables or negdjafriables). In a version of the problem, calle®AT,
all clauses have exactly literals. A related problem, known as the Maximum Satisfigbproblem, or MAX-SAT,
consists in determining the maximum number of clauses offangBoolean formula that can be satisfied by some
assignment. MAXk-SAT is the maximum satisfiability problem férSAT instances. In this paper we use a class of
MAX-3-SAT problems as our fourth benchmark. In particulae focus on problems where the maximum number
of satisfiable clauses is equal to the number of clauses imnaufa. In other words, the MAX-3-SAT instances we
consider are all satisfiabfe.

We treat MAX-3-SAT as an optimisation problem with the feliog objective function:

fz) = _Zsim,

6The reason for this choice is simple. It is well-known thatdem 3-SAT instances become harder and harder to satisfyeaslause-to-
variable ratio increases (e.g., see [59]). By using satifidAX-3-SAT instances, we can finely control the difficulty our benchmarks by

varying such a ratio.
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whereS;(x) is 1 if clausei is satisfied by assignmentand O otherwise. A clause is satisfied if at least one of the
literals it contains is true. Since our random MAX-3-SATtarsces are all satisfiable, we declared a MAX-3-SAT

problem as solved as soon as a stringuch thatf (z) = ¢ was generated by the EA.

V. FITNESSDISTANCE CORRELATION IN THE PRESENCE OFNEUTRALITY

In this section, we will study the forms of neutrality intnazkd in the previous section using tlie. We do this
analytically. To avoid sampling errors, we consider everinpin the search space, instead of a random subset.
Naturally, before analysing how tHdc for different problems changes in the presence of neutralié need to

evaluate thddc in its absence.

A. fdc in the Absence of Neutrality

For all our test problems, given a search space of binanygstrof lengthv, if the whole search space is sampled

in order to compute&’'Fp, we have:

Crp=gr 3 (@)~ F)(d(a) — ),
z€{0,1}¢

wheref(x) is the fitness of string, d(x) is the Hamming distance between stringnd its nearesilobal optimum,
andd and f are the averages @fz) and f(x), respectively, over all strings in the search space. Siraitaressions
hold for o andop.

Naturally, in problems with a single global optimum (such@seMax, Trap and the functions created by the
multimodal problem generator), we have thiat g in the expressions fo€'rp andop.

Further simplifications are possible for the OneMax and ttap problems, since these are functions of unitation.
For example, considering that the unitation of the optintahg for these problems ig,,: = ¢, we can coarse-grain

and simplify the calculation o Fp as follows:

4
cro =3 (1)) - Te - u-2),

where, as indicated abové = % and

Similar expressions can be obtained &g andop.

For example, for OneMax, wherg(u) = u, we havef = % and

croe 3 5 ()02 a5

as one can easily see by noting t@a(ﬁ) is an instance of a binomial distribution function (with sass probability
1/2). Thus,, by the definition of varianc€,rp = —V ar[u]. By similar arguments, one find$, = 0% = ﬁ, whereby
fdc = —1, suggesting an easy problem. For Trap functions, instebdneven.,,;, ~ ¢/4, one findsfdc ~ 1 [31]

indicating hard problems.
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B. fdc in the Presence of Constant Neutrality

As mentioned in Section 1V, constant neutrality is a form efitrality where an extra bit is added to the genotype.
When the bit is set, the individual is on a neutral network @sditness is a predefined valug,, irrespective of
the other bits.

In this situation,C'rp,, (the subscript. stands for “neutrality”) is given by:

1 _
Cro, =57 . (f@) = Hd) - d), @
z€{0,1}¢+1
wherex = xzqx1 - - - T, IS @ genotype, andy is the “neutrality” bit. Similar expressions hold fet, andog. Note
that f(z) can be written as
In if zo =1,
f(z) =

fplx1,---,x¢) otherwise,

where f,,(-) is the “phenotypic fitness”, i.e., the fitness associateti #ie coding bits in a genotype. It follows that

NN |
f_?—i_?pa

f» being the average fitness in the absence of neutrality.

Note that, assuming all global optima have fitness highem tha the distance of a stringgz; - - - , from the
closest optimum is the same as in the absence of neutrality# 0, while the distance is increased by lrif = 1
(since the optima are outside the neutral network). Thus,

-1 _
d = 5 + dp,
d, being the distance from the closest global optimum in theads of neutrality.

Substituting these results in Equation (2) we obtain

Crp, =
1 w -1
o1 > (fn_f? —7”)(1+dp(y)—dp— 3)
y€{0,1}*
1 P -1
g Y ) - a4, - )
ye{0,1}¢

By simplifying and collecting terms appropriately, one gaxrite this as

Crp, = g(fn — fp)
+ % Z (fo(y) = Fo)(dp(y) — dy)
ye{0,1}¢
= g(fn_f_p)‘F%OFD-

Proceeding similarly for% andc? we obtain

(fa—1fp)? | 1
oF, = %4_50%‘
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Fig. 3. Fitness distance correlation in OneMax in the presesf constant neutrality as a function #f for ¢ = 14.

and

Combining the previous results we obtain

3 _f 1
den _ g(fn fp) + QOFD . (3)

N

Equation (3) makes it clear that, in the presence of constaatrality, fdc depends on the difference between

the fitness of the neutral network,, and the mean fitness in the absence of neutrgiityin addition,fdc depends
on the fitness-distance covarianCe p as well as the variancess. andc? in the absence of neutrality.

As an example, let us use Equation (3) to calculate, for the OneMax problem fof = 14 (the value of¢ we
will use in the experiments in Section VII). We know that fbist problemCrp = —f ando% = 0%, = ﬁ. Also,
fo= % Sincel = 14, with a little algebra we obtain
3f, — 35

8/ (fn—12+7

fden
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Figure 3 shows a plot of this function. We can immediately Been this plot that the addition of neutrality
reducesfdc (i.e., is expected to make the problem harder) irrespedtivilaie choice off,. For particularly high
values of f,,, however,fdc, gets very close to zero, indicating that the problem becomalty difficult.

. e 7 _ 1 Crp i
More generally, from Equation (3), we see thaffif = f,,, we have thaffdc, = 75 X P swd This means

. . .. 1 C o fd . . . . 1 C o fd
that if Crp is positive thenfdc,, < 75 X S 72‘3 while if Crp is negative therfde,, > -5 X S 7;

In other words, the addition of constant neutrality with aitnal network of fitnessf,, = f, would make easy

problems harder and deceptive problems easier.

One might wonder why this would be the case. The reason isatthding a neutral network to the landscape
modifies the search process. The search operators will peaddividuals on the neutral network (as well as outside
it). If the fitness of the neutral network is not too low, séie@a will use some of these individuals as parents. Since
these are all equally good, the search will effectively amysome of the features of random search. Of course, the
part of the population outside the neutral network will béeeted and guided by the fitness function. In an easy
problem, the guidance will generally be reliable. Therefdraving effectively hybridised the search with random
search will simply slow down the process of converging tasanigh fithess regions of the landscape. However,
in deceptive problems, where the information provided by fitness function does not lead towards the global
optimum, the hybridisation is beneficial: by ignoring thadance of the fitness function at least some of the time,
the probability of the searcher stumbling on a good area effithess landscapes is increased.

If fn # fp, as for OneMax, in general we will find that these effects amdutated by the value of,,. For
example, if f,, is high compared witly,, the neutral network will act as an attractor for the popatatThis will
make the search more random than in the chse- f, considered above. So, in easy problems, we should see a
more marked worsening of performance. If, instead, the d&rfenction was originally deceptive, a high will
keep a bigger fraction of the population on the neutral networ longer. This will make it even more probable
for the population to escape from traps and locate good @ptim

If £, is low compared withf,, selection will avoid using individuals on the neutral netkw as parents.
Consequently, the search does not really become more ratidonit would be without neutrality. In other words, a
neutral network with a lovy,, does not really change hard problems into easier ones neriddeange easy problems
into harder ones. However, in both cases the search opefgtmticularly mutation) may produce individuals on the
neutral network. These individuals represent wasted ssnfo, constant neutrality with a Igfy, cannot provide
any benefit at all.

One other aspect should be considered. In the presence sfacbmeutrality, the landscape is divided into
two areas of identical sizes: the neutral network and thé oéshe search space. For bit strings of lendth
there are2‘ points in each region. However, there is still the same nunolfeglobal optima. This means that
the addition of constant neutrality comes at a cost sincesthe of the search space has been expanded without
correspondingly expanding the solution space. Thus, weldhexpect to see benefits of constant neutrality (e.g.,
improved performance) only when neutrality modifies therdedias of an algorithm-problem pair in such a way

as to make the sampling of the global optimum significantlyrenikely than without this form of neutrality. If
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this does not happen, or worse, if the original search biasddified in such a way as to make it harder to reach
the global optimum, then we should expect constant netytriai be deleterious. These considerations apply also

to other forms of neutrality wherever neutrality altersawtfurably the proportion of solutions in the search space.

C. fdc in the Presence of Bitwise Neutrality

As mentioned in Section IV, another form of neutrality thetonsidered here is the one where each phenotypic
bit is encoded using genotypic bits. In this situatior('Fp, is given by:
1 - -
Cro, =57 2. (f@)=Did) - d),
z€{0,1}n¢
wherez = z; - - - 2,4 iS @ genotype and(x) is the genotypic fitness. Similar expressions can be olddorerp,,

andor, . Note thatf(z) can be written as

f(@) = folg@™), g(a@), -, g(z(D)) 4)

wherez(®) = T(k—1)n+1 " Tkn IS @ sUb-string ofr, g is one of our encoding functions (e.g., Majority or Parity),
and f,(y) is the phenotypic fitnessg; (€ {0, 1}%).
Let us define two setsX,, = {z € {0,1}" : g(z) = 1} and X,, = {z € {0,1}" : g(z) = 0}. In what follows

we require that the encoding functiopgespect one property: that on average they return as many 0s,a.e.,

ze{0,1}m
This property is respected by the encodings described itid®ely/. So, | X,,| = |X,| = 2"
If one knows the functiory, and the location of its global optima, one can simplify th@mssions olCrp,,,
op, andog, . This results in a formula fofdc,, where there is an explicit dependency on the number of bijts,
used in the encoding functions which induce bitwise neityraDne can then see under what circumstances bitwise
neutrality makes problems easier or harder (note that whenl there is no added neutrality in the encoding).
The calculations involved here are doable but they are raddgierious. For this reason, in the following section

we will illustrate the process using the simplest of our fesictions: OneMax.

D. fdc for OneMax with Bitwise Neutrality: General Results

For the OneMax function, the phenotypic fithess of a bit gtrin...y, is fy(y1,...y¢) = >, v:. Thus, from

Equation (4) we obtain
f@) =2 gz, (5)

To computefdc we use a result originally derived by Jones [31, Appendix thg concatenation of multiple
copies of a problem does not change flde of the original problem, provided the fitness of the concated
problem is obtained by summing the fitnesses of the sub-enadl This result is applicable to Equation (5) because
g can be interpreted as the fitness function ofrahit problem which is concatenatedtimes to form and x n

bit problem with fitness functiorf (z). Thereforefdc for OneMax can be computed for different forms of bitwise
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neutrality by simply computing th&dc of the corresponding functions. Since these functions take only binary
values, this calculation is much simpler than the original.
Let us start by considering the mean value of the functipwhich we denote ag. By definition g(x) = 1 for
z € X,, andg(z) = 0 otherwise. Thus, irrespective of the encoding used, we Haate
I=g Y el =5 Y 1= oiXal= g,
xz€{0,1}n reX,

Using this result in the computation ef., we obtain

1 1
b= Y. (o) -9’ =7
z€{0,1}n
which, again, is valid for all encodings.
By definition
- 1
ze{0,1}"

where N (z) is the global optimum of nearest tac and H is the Hamming distance. Becaugean only take two
values, 0 and 1, all elements &f,, are global optima of). So, if z € X,,, thenx = N(z) and H(z, N(z)) = 0.

As a result, Equation (6) simplifies to

1

d= o IEZ); H(z,N(z)). 7)

If the definition of Hamming distance is extended to sets headefinitionH (x, S) = min,es H(x,y), Equation (7)

becomes

| 1 _
d= o ;; H(z, Xp) = 5 B[H (2, Xp)|w € Xo], (8)

where E[H (z, X,,)|x € X,,] is the mean Hamming distance between the elemenfs,oénd the setX,,.

Let us now compute?. We have

B w B e i
_ %m;n(t)—c?f
+ zin > (H,Xa) - d)*
reX,
= M@ [t X0 - @) e %))
_ %E[H(a:,Xn)Q‘IEXn}
_ i(E[H(:C,Xn)fveXnD2
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Finally, we compute

Crp = on Z (9(x) —g)(H(x,N(x)) —d)
z€{0,1}"
1 1 -
= 2—%;” (1—5) (0—d)
mEXn
1
= o1 2o H(z, X,)
rEXy
. —i E[H(z, N())|x € Xn]
d

In the following subsections, these generic results aréexpto the three encoding functions presented previously:

Parity, Truth Table and Majority.

E. fdc for OneMax under Parity Bitwise Neutrality

Let us start with the Parity encoding. The bit strings\ip have all odd parity. Therefore, they can be turned into
even-parity global optima by a single bit flip. That is, thEamming distance from a global optimum is always 1,
wherebyE[H (z, X,,)|z € X,,] = 1. Thus, from Equation (8) one obtais= 1. It follows thatCrp = —1. We
also haveE [H (z, X,)?|z € X,] = 1. S0,0% = 1.
Therefore, the fithess distance correlation for OneMax ot Parity encoding is

1
4

i

That is, thefdc of OneMax is unaffected by the presence of bitwise neujralitder Parity encoding, irrespective

fdc=

of the number of bitsi) one uses. This was expected, since the parity encodingamadf trivial neutrality [20]

(see Section I1). So, the difficulty of OneMax should be ueetféd by this form of neutrality.

F. fdc for OneMax under Truth Table Bitwise Neutrality

Let us now consider the Truth Table encoding. In order to yapptuation (8), we need to compute
E[H(z,X,)|r € X,]. To do this, we treaf{ (z, X,,) as a stochastic variable. We want to compute the probability
p(d), that H(x, X,,) = d for a randomly chosem € X,,. Then, making use of the definition of the expected value,

we want to compute
E[H(z, X,z € Xo] = > _d-p(d). 9)
d=1

We start by considering the cage= 1. Let us choose uniformly at random anc X, and then choose
randomly one of the Hamming-1 neighbours, of z. Because the entries of the truth table are randomly assigne

the probability thatt’ € X, is % Note thatp(1) is the probability thatt leastone neighbour of: is a member of
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X,,. Sincex hasn neighbours and each neighbour’s membershix pfis a Bernoulli trial with success probability

p(1) =1— (%)n

Thus, asn grows,p(1) rapidly approaches 1.

1, we have that

Let us now focus orp(2). This can be seen as the probability of a joint event, i.enenof the Hamming-1
neighbours of a randomly chosenc X, is a member ofX,,, but at least one of its Hamming-2 neighbours is.
These two events are treated as indepenti@tiviously, the probability that none of the Hamming-1 néigtrs
of z is a member ofX,, is simply1 —p(1) = (%)" The probability of at least one of its Hamming-2 neighbours
being in X,, is the complement of the probability that none of the Hamnfingeighbours is inX,,. Since there
are (g) such neighbours and the probability of each beinginis %, the probability that none of the Hamming-2
neighbours ofr is in X,, is 1 — (%)(g)_ Putting everything together we then get

Generalising the calculation we get

) — (%)ZZ} (v) <1_ (%)(2))

Note thatp(d) is a very rapidly decreasing function. For example, fioe= 4 we havep(1) = 0.93750, p(2) =
0.061523, p(3) = 0.00091553 and p(4) = 0.000030518. Furthermore, a3 increases, more and more of the
probability mass accumulates ontl). Effectively this means that typically onjy(1) andp(2) have any relevance
in the calculation in Equation (9).

As a result, for sufficiently large we can approximate

_ 1\"
E[H(z,X,)|lx € Xp] = p(1) +2p(2) = 1+ (5) )
So, for the Truth Table encoding, we have
7 1 —n—1 1 —n—2
dz§—|—2 , whereby CFD:_Z_Z .
Using similar approximations, we find that
BlH@ X, e e %] = Y d*-p(d)
d=1
~ p(1)+4p(2)
~ 1+3x27"

“This is an approximation, but its accuracy rapidly improwéth n. So, our calculations are already very accuraterfor 3.
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From this, it follows that

ob & %(1+3x2_”)—£(1+2_")2
1 a1 .
~ 5(1+3><2 )_Z(1+2 )
1 —-n
= Z+2 .

Therefore, the fithess distance correlation for OneMax othie Truth Table encoding can be approximated as
1 —n—2 —n—1 1
1+2 _ 24 g

1 . 1 1
Jier/io et

This equation has been derived using approximations tleavalid for sufficiently largen. For such values of,

fdc~ —

the constant terms in the equation will tend to dominate dfettvely fdc ~ —1. This means that the Truth Table
encoding induces a form of neutrality which, for sufficignitirgen, leaves thddc/ problem difficulty unchanged.

For relatively small values af, however, this encoding makes the OneMax problem harde=itdb a small degree.

G. fdc for OneMax under Majority Bitwise Neutrality

Let us now consider the Majority encoding. Again, we startcbynputing E[H (z, X,,)|z € X,,].

With a Majority encoding wherd" = n/2 andn odd, X,, is the class of all strings of length which have 0,
1, ...|T] bits set to 2B That is, one can naturally describg, by saying that it contains all strings with unitation
valueu < T. Given a string inX,, having unitationu, we can compute how close this is 10, just by looking
at how many additional 1's would be needed to transform thiegstnto a member ofX,,. This number is simply
[T — u]. Since for each unitation class, we have(”) strings, we can then write

— 1
ElH(z, Xp)lv € Xa] = o= > H(x, X,)
IEXn

- %Z <Z> < [T = ul.

u<lT

This can be computed numerically. Fér= n/2, n odd, and small values of, E[H(z, X,,)|z € X,] grows

approximately a$.63 + 0.37/n. Thus, we have

d ~ 0.315 4 0.185/n

and
Crp ~ —0.1575 — 0.0925+/n.

8The operation| T | returns the largest integer not bigger thEinwhile [T returns the smallest integer not smaller ti¥#&n
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Using a similar approach, we compute

E{H(w,Xn)g‘xeXn} - 2n171 3 H(z, X,)’

zeX,

- 2n171 3 (Z) x [T —ul?

u<lT
0.725+ 0.334 x n,

%

whereby

l

1
oh o~ 3 (0.725 +0.334 x n—2(0.315 + 0.185\/5)2)

%

0.133n — 0.117 y/n + 0.263.

Therefore, the fithess distance correlation for OneMax wttige Majority encoding is
0.315+ 0.185y/n
V01331 — 0.117 /n + 0.263
This equation makes it clear that, in this case, there is shmumre marked effect of the encoding on the difficulty

fdc =~

of a problem: thefdc progressively increases (from the original value-of) asn increases. For example, for

n =3,5,7,9,11 we obtainfdc values of approximately -0.9376, -0.8926, -0.8554, -01826d -0.8028, respectively.

H. Lessons for other problems

Naturally, fdc could be computed also for the Multimodal problem generdtar Trap function and any given
MAX-SAT problem in the presence of bitwise neutrality. Urifmately, for these functions one cannot not use
Jones’ “trick” [31, Appendix D] to simplify the calculati@n This makes the derivation of theoretical results much
more complex. However, based on what we have learnt fromethidts on constant neutrality, from our results with
bitwise neutrality and OneMax, and from the theory in [20]sieasy to understand that the Parity and Truth Table
encodings will have a limited influence on tfde of the Trap, Multimodal and MAX-SAT functions. However, we

should expect the Majority encoding to changefiie(and potentially the difficulty) of these problems signifids.

V1. PHENOTYPIC MUTATION RATES

The analysis based didc indicates that the choice of encoding function used to thioe neutrality may be
critical in determining whether the difficulty of a problem decreased, increased or left unaltered by neutrality.
However, fithess landscapes afult effectively neglect to model the fact that the precise iiation of mutants
may have an important effect on search behaviour and peafocen For examplddc remains the same irrespective
of the mutation probability,,, .

Thus, to evaluate the benefits and drawbacks of neutraiyalso important to understand what effects different
types of neutral encodings have on the way the search preckeparticular, we want to understand how genotypic
mutations are related to phenotypic mutations, since ohnptypic changes can lead to fitness changes. To do

so, the notion ofphenotypic mutation rataill be used.
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A. Constant Neutrality

In the case of constant neutrality, the genotype-phenatyapping is not fully specified. This is because we
directly associate a fitneg, to all bit strings of the formegz;...x, with 29 = 1, without really going through a
process of transformation of the genotype into a phenoi@péy whenz, = 0 the genotype-phenotype mapping is
specified: this is a simple transformation, where the phgmeis directly determined by the genotypic hits..z,.
However, if we imagine, for simplicity, that all strings dmetneutral network represent the same phenotype, we have
a fully specified genotype-phenotype map for constant aétytr This allows us to define the notion of phenotypic
mutation rate for this representation. To further simplifyr treatment we will further assume that the “neutral”
phenotype is different from all other phenotypes.

Let p,, be the mutation rate and let, be the probability of a phenotype change when the genotypsét isy
a mutation in the absence of neutrality. In genepglis a monotonically increasing function pf,, (more on this
below). Letp(zo = 1) andp(zo = 0) represent the probability of selection for individuals & theutral network
and outside the neutral network, respectively.

Let us consider the possible ways in which the djtcan be modified by a mutation and what consequences
this has on the phenotype represented by a stting ...x;:

(1) If a parent string hasy, = 1 and the bitzy is not mutated, irrespective of how many mutations will hié t
remaining bits in the string, there cannot be a phenotypangk (the offspring will still be on the neutral
network as its parent). If instead, is mutated into a 0, which happens with probability, then there is
always a phenotypic change.

(2) If a parent string has, = 0 and the bitz, is not mutated, which happens with probability- p,,, then the
mutations on bitse; ...z, determine whether there is a phenotypic change. This widlioevith probability
pp. If instead zy is mutated into a 1, which happens with probability,, then, again, there is always a
phenotypic change.

Naturally, case (1) applies only to a proportipfityo = 1) of mutations, while case (2) applies to a proportion
p(zo = 0).
By properly combining these probabilities, one finds tha grobability of a phenotypic mutatiop,, in the

presence of constant neutrality is

Ppn = P(@o=1)pm +p(xo = 0)[(1 — pm)pPp + Pm]
= pm + (o =0)(1 = pm)pp (10)
~ plxo = 0)pp,

where we used the properpfzg = 1) + p(xzg = 0) = 1 and we assumed that,, is small. In other words, we
have that with constant neutrality the probability of a phigpic mutation is proportional to the probability of a
phenotypic mutation observed in the absence of neutralitg.proportionality factor — the selection probability for

strings outside the neutral network — is not fixed. It depeml$iow attractive individuals in the neutral network
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Fig. 4. Effective phenotypic mutation rate for invertiblénéiss functions as a function of the genotypic mutation fatestrings of length
¢ = 14 and different values of the selection probability for gggnoutside the neutral network induced by constant netytrali

appear to selection. If,, is high, we should expect to see a bigger proportion of theuladion on the neutral
network than iff,, is low. If f,, is high, we should expect the selection probabiify, = 0) and, correspondingly,
the probability of a phenotypic mutation to be smaller thiarf,j is low, andvice versa

Note that the exact expression of the probability of a phgriotmutationp, depends on the problem. If the
fitness functionf,, is invertible, each string - - -z, has a unique fitness associated to it. Therefore, effegtamy
mutation hitting bitsz, to z, causes a phenotypic mutation. In these cgsgss the complement of the probability
that none of the bits i, - - - 2, are mutated, i.ep, =1 — (1 — )t

Let us define theeffective phenotypic mutation ratg,,,, for constant neutrality as a quantity such that the
probability of a phenotypic mutation in the left-hand-safeequation (10) can be rewritten ps, = 1—(1 —pmp)z.

For invertible fitness functions, this is exactly the samenfasp,,. For such functions, substituting the expressions
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for p, andp,,, in Equation (10) and solving for the effective phenotypictaiion rate yields

Pm, =

1= [p(zo = 0)(1 = pp) + plwo = 0)pm + 1 (11)

—p(iﬂo = 0)((1 - pm)gpm) _p(xO = O) - pm]l/l'

This equation allows us to get a feel for how constant neityralters the effects of the mutation operator. Figure 4
illustrates the relationship, indicating how, as expectathstant neutrality reduces the effective mutation raedu

in the search.

B. Bitwise Neutrality

When the parity encoding is used, the phenotypic mutatit pa,,, corresponding to a genotypic mutation rate
Pm IS given by:
ny g n—i
Pmy = > (i)pm(l —pm)" "
i=1,3,5,...
This is because only an odd number of genotypic bit-flips cayce a phenotypic change.

When the Truth Table encoding is used, the mutation rate engfype level is given by:
_ 1—(1—pw)"

mp 5
This is because there is the potential for a change in a pyeiedbit whenever the row is changed from which
the output in the truth table is read. This happens if at least genotypic mutation takes place (hence the factor
1 —(1 - pm)™). However, not all row changes lead to a flipped phenotypicBecause the table is random, this
happens only in 50% of the cases (hence the denominator, 2).

The calculation of the phenotypic mutation rates for Majois more difficult. However, obtaining numerical
estimates for these is very easy. This can be done by gamgminotypic mutants of groups ef bits using a
particular genotypic mutation rate, and recording how dimgly the mutants are in a different majority class than
the original configuration.

Table | shows the phenotypic mutation rates correspondirth¢ mutation rateg,, = 0.01, 0.06 and 0.1 for
Parity, Truth Table and Majority. In the case of Majorityetfigures are estimated by generating 10,000 mutants
starting from a uniform random population.

There are conditions in which different encodings produnglar phenotypic mutation rates. This is the case,
for instance, for the pairs of numbers lioldface, underlined doubly underlined andinderlined with a wavy line
in the table. Note that the Parity and Truth Table encodifgstfie values of: used in the table) leave the fitness
distance correlation of a problem unchanged, as discusséiki previous section. So, whenever the phenotypic

mutation rates also match, we should expect to see similfiorpgance under these two encodings.
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TABLE |
PHENOTYPIC MUTATION RATES CORRESPONDING TO DIFFERENT GENOPIC MUTATION RATES FOR DIFFERENT FORMS OF BITWISE

NEUTRALITY.
Type of pm =0.01 | pm =0.06 | pm =0.1
redundancy

Parity (» bits = 5) 0.0480 0.2361 0.3362
Parity (» bits = 6) 0.0571 0.2678 0.3689
Parity (n bits = 7) 0.0659 0.2957 0.3951
Parity (» bits = 8) 0.0746 0.3202 0.4161
Truth Table ¢ bits = 5) 0.0245 0.1331 0.2048
Truth Table ¢ bits = 6) 0.0293 0.1551 0.2343
Truth Table ¢ bits = 7) 0.0340 0.1758 0.2609
Truth Table ¢ bits = 8) 0.0386 0.1952 0.2848
Majority (n = 5,T = 2.5) 0.0168 0.0916 0.1530
Majority (n = 7,T = 3.5) 0.0204 0.1072 0.1725

VIl. EXPERIMENTAL RESULTS

In Section IV-C, we presented the problems used to conducéxperiments. In the experiments with OneMax,
Trap and the multimodal landscapes we used chromosomeagthlé= 14. In the MAX-3-SAT problem domain
the size of the chromosomes, was determined by the number of variables;Thus, we used = 7, ¢ = 10 and
¢ =14.

For the multimodal landscape, we get= 400 (i.e., there ard00 peaks). These were distributed in such a way to
give the problem deceptive features. Specifically, the désgjpeak was at positiohl - - - 1, the second highest peak
was at positior00 - - -0, and the remaining peaks were randomly distributed. Tl flsature makes the problem
easier than the trap function.

For the trap function, the following parameters were used;, = 13, a = 39, b = 40. Figure 5 depicts this
trap function.

We created MAX-3-SAT instances by randomly constructingusks (disallowing repeated literals). To build
problems of varying difficulty we varied the ratio betweem tiumber of clauses and variables in the range 2 (easy)
to 6 (very hard). We ensured that all SAT instances werefigdtie by brute force testing of all possible assignments
or, for the larger instances, by using the latest version alk@at [60]. We considered problems including between
¢ =14 andc = 84 clauses.

The experiments were conducted using an EA with selectidr]ifp mutation and no crossover. Runs were
stopped when the maximum number of generations was reaEbedhe OneMax, Trap and multimodal problems
fitness proportionate selection was used; the other paeasnat our runs are given in Table Il. For MAX-3-SAT we
used a form of EA which is more common in practical appliaatioa steady-state EA with tournament selection
(which provides good control on selection pressure); otharparameters will be provided in Section VII-B4.

For the OneMax, Trap and multimodal problems, a sample siz¢090 has been used to calculdti. For
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Fig. 5. The trap function used in our experiments,, = 13, a = 39, b = 40).

MAX-SAT the sample size was the size of the search space.

A. Constant Neutrality

To empirically test the effects of constant neutrality aratraborate the theory presented in Sections V-B
and VI-A, we used three problems: OneMax, where neutradtyalivays expected to be detrimental, the trap
function, where we expect neutrality to aid evolution, andXSAT which we suspected to be half-way between
the first two.

1) OneMax Problem:Let us start by looking at the results of the experimentatidth the OneMax problem.
Table Il reports thefdc, the number of generations required to reach the optimumitisal and the percentage
of successes for the OneMax problem with and without consiantrality. As one can see, thdc correlates
with the difficulty of the problem in terms of percentage oteesses and/or number of generations required to
find a solution. For example, we see a significant decreaseriionmance associated with the large changédto

resulting from the introduction of constant neutralitysé) we see that ag, increasesfdc increases and so does
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TABLE Il
PARAMETERS USED FOR THE EXPERIMENTS USING CONSTANT AND BITVBE NEUTRALITY FOR THEONEMAX, TRAP AND MULTIMODAL
PROBLEMS

Parameter Value

Length of the genome| 14

Population Size 80
Generations 100

Mutation Rate (per bit)] 0.01, 0.06, 0.1
Generation gap 1

Independent Runs 1,000

TABLE Il
PERFORMANCE OF A MUTATION-BASEDEA ON THE ONEMAX PROBLEM USING CONSTANTNEUTRALITY.

fdc pm = 0.01 pm = 0.06 pm = 0.1
Avr. Gen % SudAvr. Gen % SugAvr. Gen % Sud.

No neutrality -1.0 | 21.11 100.0| 14.39 100.0, 16.47 100.0
fn=11 -0.1645 38.12 63.0| 29.60 99.0| 31.81 99.1
fn =12 -0.0914 38.79 19.8| 46.15 68.9| 44.77 82.1
fn=13 -0.0396 27.47 2.0 | 48.63 12.3| 43.14 13.1

the difficulty of the problem.

These results are not surprising, as we argued previouslihd case considered here= 14) the maximum
achievable fitness is 14, so a neutral network with fitngss= 13 turns the search of a mutation-only EA into a
set of parallel random walks. This is why performance desgea0 much. On the contrary, when the fitness of the
neutral network is lower, e.gf;, = 11, the original character of the search is maintained. Howekie number of
generations required to find a solution is increased (in tagta factor of about 2) w.r.t. the no-neutrality case.

The experimental results in Table Ill are in agreement whth theory presented in Section V-B: the problem
is getting harder in the presence of constant neutrality taedhigherf,, the lower the performance of the EA.
Note also that the values &dc reported in Table Il are very similar to the correspondimgdictions obtained via
Equation (3) (e.g., see Figure 3).

If we compare the performance of different representatwdmsnyp,,, is varied in Table Ill, we can see a reduction
in performance in the presence of the unusually low mutat&ie of p,, = 0.01. In the absence of neutrality,
the success rate is still 100%, thus the problem remains @asy although we can see a 50% increase in the
average number of generations required to find the optimulren\tonstant neutrality is used, however, the drop
in performance seems to be modulatedphy By definition,fdc cannot predict this type of effect (see Section IlI).

Note also that, whilddc changes by a very small amount as we go frfym= 12 to f,, = 13, the EA's success

rate drops significantly. The magnitude of changdédindoes not seem to correlate well with the magnitude of the
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TABLE IV
PERFORMANCE OF A MUTATION-BASED EA ON THE TRAP FUNCTION WITH AND WITHOUT CONSTANT NEUTRALITY.

fdc pm = 0.01 pm = 0.06 pm = 0.1
Avr. Gen % SugAvr. Gen % SudAvr. Gen % Sug.

Noneutaity 1.0 | 1 06| 1 06| 1 06
fn=30 |05904 - 00 | 3837 16| 3991 36
fo=3% |0.4904 28.66 03| 4434 29| 5133 53

performance drop.

Focusing on the phenotypic mutation rates can give us somlareations. Iff,, is relatively low, after a while
selection will start neglecting the neutral network, iz€z, = 0) will start to increase towards 1. So, the probability
of phenotypic mutationg,,,, in Equation 10, will tend to approagh. However, for higher values of, this happens
later in the search. In particular, fgt, = 13 all points in the search space (except the global optimumaaror
below the fitness of the neutral network. Thu&z, = 0) may be small for most of the time, effectively reducing
the number of genotypic mutations that can generate newgtyees. The more we reduge,, the more the effect
becomes important: if the probability of a phenotypic migtatbecomes very small, then most offspring will be
identical to their parent, thereby slowing down the seakfth p,, = 0.01 the search is already slowed down
significantly even in the absence of neutrality (only one o 7 mutants actually being different from their
parents). The composition of this effect with the modulatad the probability of phenotypic mutations due fgp
explains why results are so poor fpy, = 0.01 and highf,.

2) The Trap Function:Table IV reports results for the Trap function with and wih@onstant neutrality.

As expected based on the predictions we made in Section WeBsituation is reversed with respect to the case
of the OneMax problem. The addition of constant neutraligyehis beneficial for relatively high values of the
fitness of the neutral network, (the maximum fitness value for the problem is 4®urthermore, we see that the
higher the value off,,, the less difficult the problem.

Again, if we look at what happens as, is varied, we see that the success rate reduces,as reduced and
drops to almost zero fop,, = 0.01. Again, these findings could not be explained by simply abersing thefdc.

As for the case of OneMax, however, the reduction is cleanleffect of the probability of phenotypic mutations
being reduced in the presence of constant neutrality.

3) MAX-3-SAT:As shown in Figure 6, in the case of MAX-SAT instances, ftheincreases with the clause-to-
variables ratio (i.e., with the difficulty of the problemYespective of whether constant neutrality is used or not.
However, we see that the addition of constant neutralityeiases thédc suggesting that this form of neutrality is
harmful in this problem. Also, the figure clearly shows thettiag the fitness of the neutral network,, to a high

value changes thiglc dramatically. Insteadidc is much less affected whef), = ¢/2.

9As we discussed in Section V-B, constant neutrality with Ifywcannot be beneficial.
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Fig. 6. Fitness distance correlation in MAX-3-SAT problewfsincreasing complexity in the absence of neutrality andhiea presence of
constant neutrality, with two different values ¢, fn = c¢/2 wherec is the number of clauses anf, = ¢ — 1 (c is also the fitness of the
global optimum in our SAT problems). The data are averages 00 random satisfiable 3-SAT instances.

Figure 7 reports the success rates of our mutation-basedrERMAX-3-SAT problems with 14 variables as a
function of the problem difficulty, the genotypic mutatioate andf,,. Success rates for the no-neutrality case are
also provided for reference.

The figure confirms that, as suggested by fith@analysis (and prior knowledge on SAT), problems get harder,
i.e., success rates decrease, as the clause-to-varigiblén@eases. Note that success rates are generally mduce
in the presence of constant neutrality, confirming the mtemh of the analysis ofdc. Also, we find that constant
neutrality with f,, = ¢/2 is associated with a slightly higher performance than incdeef,, = ¢— 1, but results are
very close. Even though we report averages over 1,000 riffe;eshces are unlikely to be statistically significant.
Given the significant differences shown by the two encodingterms offdc (see Figure 6) , one might have
expected to see correspondingly big differences in perfocea. However, there is no evidence of this being the

case.



29

10 ‘ o ————
.‘.r ----_-----
oh=3 100 .- c/v=3 fn=c/2
i c/v=3 fn=c-1 ]
0.8 ymmmmmmmmmmmmmmmmmEmETT
0]
'
©
— 0.6-
")
)
Q
U
v
3 0.4
0
0.2
0.0

0.01 . 0.06 0.10
genotypic mutation rate

Fig. 7. Plots of the success rate of a mutation-based EA on NASAT problems with 14 variables as a function of the probkifficulty,
the genotypic mutation rate and the fitness of the neutraliorktinduced by constant neutrality (solid lines). The espondence between
these and success rates in the absence of neutrality (disegdis indicated by the curved arrows on the right.

The reason why performance figures are so close is, agay,mvech related to the probability of phenotypic
mutations and its dependency on selection. We performece sitweoretical calculations and some associated
numerical simulations (not reported) to identify the fiaoints for the probability of selecting individuals outsid
the neutral networkp(zy = 0). Results show that with tournaments of size ofp2yy = 0) varies significantly
with f,, (in addition to varying withp,,,) and that such variation implies th@t = ¢ — 1 has a higher probability
of producing phenotypic mutations. This increased seaighw is responsible for the performance of constant
neutrality with f,, = ¢ — 1 not being too far from the performance gf = ¢/2 despite the fitness landscape in the

former providing much less guidance than the fitness laqdsa@athe latter (as indicated by tlidc).

B. Bitwise Neutrality

To empirically study the effects of bitwise neutrality anerify the theory presented in Sections V-C and VI-B,
we used all four test problems described in Section IV-C.
1) OneMax ProblemTable V (second column) reports tfde for OneMax for a representation without neutrality

and for various forms of neutral encodings (i.e., Parity,jovity, Truth Table). As predicted in Sections V-D
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TABLE V
FITNESSDISTANCE CORRELATION ESTIMATED FOR THEONEMAX PROBLEM, THE MULTIMODAL PROBLEM GENERATOR AND THETRAP
FUNCTION.
Type of OneMax | Multimodal Trap
redundancy Problem Problem Function
No neutrality -1 0.5114 1
Parity (m = 5) -1 0.5190 0.9925
Parity (n = 6) -1 0.5190 0.9999
Parity n = 7) -1 0.5144 0.9999
Parity (n = 8) -1 0.5086 0.9999
Truth Table ¢ = 5) -0.9999 0.5102 0.9999
Truth Table ¢ = 6) -1 0.5374 0.9925
Truth Table ¢ = 7) -1 0.5264 0.9999
Truth Table ¢ = 8) -0.9999 0.5233 0.9925
Majority (n = 5,T = 2.5) | -0.8488 0.4444 0.8434
Majority (n = 7,7 = 3.5) | -0.8308 0.4471 0.8308

TABLE VI
PERFORMANCE OF A MUTATION-BASED EA ON THE ONEMAX PROBLEM. PAIRS OF NUMBERS INboldface, UNDERLINED, DOUBLY
UNDERLINED AND UNDERLINED WITH A WAVY LINE REPRESENT SITUATIONS WITH ALMOST IDENTICAL PHENOTYPIC MUTATION RATES.

Type of pm = 0.01 pm = 0.06 pm = 0.1
redundancy Avr. Gen % SugAvr. Gen % SugAvr. Gen % Sud.
No neutrality 21.35 100| 14.39 100 | 16.58 100
Parity (n = 5) 1455 100 | 36.06 90.1 | 44.02 627
Parity (n = 6) 14.46 100 | 38.38 82.6| 4514 544
Parity (» = 7) 14.49 100 | 40.09 733 | 42.12 497
Parity (n = 8) 15.06 100 | 43.26 68.2 | 44.56 47.6

Truth Table ¢ = 5) 16.63 99.9| 2002 995| 2921 95.0
Truth Table ¢ = 6) 16.89 100 | 22.87 99.4| 3314 905
Truth Table ¢ = 7) 1589 100 | 2441 97.5| 3549 845
Truth Table ¢ = 8) 15.01 100 | 28.16 97.4| 38.89 788
Majority (n=5, T=2.5)| 23.39 99.8| 17.26 99.7| 22.08 99.3
Majority (n=7,7=3.5)| 23.51 99.8| 17.93 100| 22.50 98.6

and V-E, the Parity and Truth Table encodings leaveftltaunchanged w.r.t. whatever value it had in the absence
of neutrality'®. On the contrary, as predicted, Majority moves fitieof the problem slightly towards zero, suggesting
that OneMax might get harder with this encoding. The quastiow is: will actual search performance correlate
with the fdc?

10This is not unexpected, since, as discussed in Section \Rdrity encoding is a case of trivial neutrality (where theletion of phenotypic
bit strings can be modelled without referring to the coroegfing genotypes). Also, the Truth Table encoding effetfibecomes a case of
trivial neutrality for sufficiently largen.
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Table VI shows the average number of generations requireghicth the optimum of OneMax and the percentage
of successes in finding the optimum in 1,000 independentaofias EA. Analysing the results, it can be seen that,
whenp,, = 0.01, there is a good match between the predictiongdofand problem difficulty. In particular, the
Parity and Truth Table encodings show almost exactly theespenformance both in terms of percentage of runs
where the OneMax problem was solved and average number efa@ms required to solve it. Also, as predicted
by ourfdc analysis in Section V, the problem is easy and remains eadgrwall encodings, being solved in almost
100% of cases in all configurations. In addition, it can bengbat, under Majority, more generations are required
to solve the problem than under Parity and Truth Table. Tdgsin, confirms the predictions of tliéc analysis.

There is, however, one element that is unexpected. In thenabsof neutrality, runs take longer to find the
optimum than with Parity and Truth Table. In fact, they tak@mximately as long as for Majority. This is another
case wherddc alone is insufficient.

Whenp,, = 0.06, the situation becomes less clear. Here, the Parity andh Traible encodings do not perform
identically any more, Truth Table still being able to sole tproblem in almost all runs, while Parity doing so
only in between 70% and 90% of the cases. This, too, was ndigieel by thefdc analysis.

What is particularly surprising here is that, in all casesitf and Truth Table take longer to solve the problem
than Majority and the no-neutrality case. Therefore, Raaiid Truth Table effectively make the problem harder,
while the other two encodings are still performing approxiely the same and their performance seems to be
unaffected by the increase in mutation rdtke analysis also did not predict that performance would varhhe
number of bits,n, when using the Parity encoding.

These rather confusing trends continue also at the highasitgpic mutation ratep,, = 0.1. Now, also the
performance with Truth Table varies with Furthermore, in the no-neutrality case the problem is nolvesl in
fewer generations than with the Majority encoding.

In summary, it is clear that whilfdc captures some of the characteristics of a problem in relatiats difficulty
for an EA, it does not capture all.

To explain these results one really needs to look at pheimtyptation rates discussed in Section VI. If these
are very low, we should expect that mutation will not geremmtnew phenotype every time it is applied. If new
individuals are generated only rarely then evolution wél dominated by selection and the algorithm is likely to
converge to a suboptimal solution. If phenotypic mutatiates are very high, the search tends to become almost
random. In a unimodal landscape, such as the one associgdte@®neMax, where the fitness function provides
good guidance towards the global optimum, this randomneseiy likely to be deleterious. Clearly, the ideal
phenotypic mutation rate is somewhere in between these ®remges. In the case of our specific instance of
OneMax, the optimal phenotypic mutation rates are perhapsden 0.04 and 0.12.

As one can see in Table I, when, = 0.01, our bitwise neutrality induces phenotypic mutation rdtesveen
0.0168 and 0.0746. At these mutation rates the EA solvesritdgm in almost all runs, although the phenotypic
mutation rates associated with the Majority encoding (dde in the absence of neutrality) are marginally outside

the optimal range and, so, runs last on average slightlydong
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TABLE VI
PERFORMANCE OF ANEA ON THE MULTIMODAL FUNCTION. PAIRS OF NUMBERS INboldface, UNDERLINED, DOUBLY UNDERLINED AND
UNDERLINED WITH A WAVY LINE REPRESENT SITUATIONS WITH ALMOST IDENTICAL PHENOTYPIC MUTATION RATES.

Type of pm = 0.01 pm = 0.06 pm = 0.1
redundancy Avr. Gen % SugAvr. Gen % SugdAvr. Gen% Sud.
No neutrality 8.56 3.2 5.22 27| 1154 1.9
Parity (n = 5) 561 34| 412 58 | 4407 142
Parity (n = 6) 476 34| 4527 7.2| 5041 19.4
Parity (o = 7) 2.80 21| 4441 99 | 4631 246
Parity (n = 8) 485 21| 4214 127 | 4694 232
Truth Table ¢ = 5) 641 36| 1586 25| 3411 3.5
Truth Table ¢ = 6) 8.18 25| 2027 22| 3432 48
Truth Table ¢ = 7) 659 2.6 | 2407 3.1 | 4444 56
Truth Table ¢ = 8) 4.95 36| 1910 3.2 | 3303 79
Majority (n=5,T=2.5)| 11.41 2.0| 236 14| 1562 1.9
Majority (n=7,7=3.5)| 9.76 23| 944 22| 2542 24

When the genotypic mutation rate is increased to 0.06, teagqtlypic mutation rates for the no-neutrality case and
for the Majority encoding (see Table 1) are still within thptional range and, thus, performance remains very good.
The Truth Table encoding provides phenotypic mutationsrateich are marginally outside the optimal range. Here,
while success rate remains high, we can see that the numlgenefations required to find the optimum increases
with n. For the Parity encoding, phenotypic mutation rates are watgide the optimal range. So, performance
worsens even more, with the higher valueshno$howing a particularly significant drop in performance.slthen
not surprising to see that the EA performs better with M&jofor without neutrality) than with all other encodings.

Whenp,, = 0.1, the phenotypic mutation rates for all encodings are furthereased, leading to an even more
undirected search. Note, however, that for the no-netytredise the mutation rate is still within the optimum range
and that the phenotypic mutation rates for Truth Table atetam far from it. Thus, performance is still good for
these representations. The phenotypic mutation ratesiatswh with Parity are much higher, ranging from 0.3362
for n = 5 to 0.4161 in the casen = 8. In these conditions the search is almost random and, strpence is
significantly affected by this neutral encoding.

2) The Multimodal Problem GeneratorTable VII shows the results of bitwise neutrality on the nmétidal
problem. Again, at the lowest mutation rate, the predictiofn thefdc (see Table V (third column)) are roughly
correct: the problem is hardf{c > 0) and remains hard irrespective of the encoding used. AladtyPand Truth
Table lead to the same level of difficulty. Again, howevertla higher genotypic mutations rates the situation
becomes rather more confusing, with Parity showing impigwerformance over the other encodings. Furthermore,
there is a dependency of performance ranEffectively, we can observe the opposite effects as in theMax
problem.

The confusion, again, disappears by considering the phpitomutation rates (see Table 1) corresponding to
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TABLE VI
PERFORMANCE OF ANEA ON THE TRAP FUNCTION. PAIRS OF NUMBERS INboldface, UNDERLINED, DOUBLY UNDERLINED AND
UNDERLINED WITH A WAVY LINE REPRESENT SITUATIONS WITH ALMOST IDENTICAL PHENOTYPIC MUTATION RATES.

Type of pm = 0.01 pm = 0.06 pm = 0.1
redundancy Avr. Gen % SugAvr. Gen % SugdAvr. Gen% Sud.
No neutrality 0.6 0.3 7.2 0.7 4,55 0.7
Parity (n = 5) 1 0.5 | 47.77 104 | 4485 220
Parity (n = 6) 1 0.8 | 4596 15.6| 4473 238
Parity (o = 7) 1 0.6 | 4862 154 | 46.82 32.0
Parity (n = 8) 1357 0.7 | 46.27 202 | 46.69 315
Truth Table ¢ = 5) 1 07 | 13.05 14| 4149 6.3
Truth Table ¢ = 6) 125 06| 3516 21| 4719 7.8
Truth Table ¢ = 7) 1 0.1 | 3236 35| 47.32 10.9
Truth Table ¢ = 8) 1 09 | 3444 4.8 | 5854 130
Majority (n=5,T=2.5)| 1 11| 44 12| 1991 23
Majority (n=7,T7=3.5)| 1 05| 116 06| 2815 1.9

each encoding. If these are too low, as for OneMax, evolutidhbe dominated by selection, resulting in poor
performance. Here, however, if phenotypic mutation rateh@h, i.e., there is significant randomness in the search,
we can expect to escape more easily from local and decepitirm@thereby increasing the success probability. This
explains why all encodings are hardly able to solve the gmbatp,, = 0.01, while some can solve the problem
at least some of the times at higher mutation rates. Furiiermve can now understand why the Parity encoding,
having the highest phenotypic mutation rates, does bdtter &ll other representations. Finally, we can understand
why for all encodings performance increases withthe phenotypic mutation rate increasesamcreases.

3) The Trap Function:As shown in Table VIlII, the behaviour of the EA in the Trap plievh is a mirror image of
that observed on the OneMax problem and it is similar to theabieur obtained for the multimodal problem. Again,
it can be seen hovdc (see Table V (fourth column)) makes reasonably good priedistof relative difficulty under
different encodings whep,,, = 0.01, but that the picture becomes less and less clear,amcreases. However,
again, performance differences can be explained easilydmgidering phenotypic mutation rates. In this case,
because the problem is fully deceptive, the more randomehech is, the more likely the global optimum will be
found. As a result, performance improves as the phenotypiation rate increases.

4) MAX-SAT: For space limitations, we will report here the results ai#di on MAX-3-SAT problems with
14 variables, to which the results for 7 and 10 were qualiti very similar. As mentioned before we used
clause-to-variable ratios in the rang®, 3,4,5,6}.

To gain general insights on our chosen MAX-3-SAT class, facheclause-to-variable ratio, we studied 100
random satisfiable problems. The same bitwise-neutratitpéings as for the other problems were used.

Figure 8 reports thédc on different classes of the MAX-SAT problem in the absencenatitrality and when

using bitwise neutrality with 3, 5 and 7 bits. For each leveHifficulty and encoding, thédc was computed by
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averaging thefdc values estimated over our 100 random problems. For eacHepnolwe estimated thé&dc via
Monte Carlo sampling o2¢ bit strings. As the figure shows, in all conditions, the higtie clauses-to-variables
ratio, the higher thddc. This confirms our expectations (based on copious SAT titeea that, in this problem,
difficulty increases with the number of clauses (see Sedtie®4). The figure also indicates that, irrespective of the
number of bits used, the Parity and Truth Table encodingsl¢i@efdc of a problem unchanged, which confirms
our expectations from the theory we developed earlier irptiqer. Finally, it is interesting to see that, as predicted,
the Majority encoding has an effect on tfue of SAT suggesting that the difficulty of the problem is insed by
that encoding.

To see to what extent the predictions obtained viafdmanalysis of MAX-SAT were correct, we performed
a large number of runs of our EA. Fdr = 14, we used populations of 128 individuals with runs lasting 64
generations. This ensured that the number of fitness ei@hsavas exactly half the cardinality of the search space
(for 7 and 10 variables, runs were parametrised with the saljective in mind). Again, we used tournaments of
size 2 to avoid premature convergence. The same bitwisgatiquencodings and genotypic mutation rates as for
the other problems were used. For each clause-to-variatiteand on each of the 100 problems with such a ratio,
we did 10 independent runs of our mutation-based EA. Thusath condition, success rate figures represent the
average over 1,000 independent experiments.

A subset of the experimental results thus obtained is reddrt Figure 9! Reassuringly, results show that, in
all conditions, the higher the clauses-to-variable rdtie,lower the success rate, thereby confirming the preditio
based on thédc. We also see that, within experimental errors, the Majoeitgoding is always the worst (or on
par with the worst) of the three bitwise-neutrality encagtinagain confirming the prediction of ttiéc. In other
words, fdc does a good job at broadly classifying the difficulty of our MASAT problems.

There are situations, however, where fdlewas unable to predict relative performance accuratelyeample,
thefdcvalues for the Parity and Truth Table encodings in FiguresGatways the same. However, Figure 9 shows that
the Parity encoding was the best (or on par with the best) dinfinsolution for MAX-3-SAT problems in all cases.
Also, while thefdc in the absence of neutrality was identical to fide for bitwise neutrality with Parity or Truth
Table, as a matter of fact, the addition of neutrality alnadatays improves performance. Furthermore, performance
improves with the number of genotypic bits per phenotypiabed, whilefdc remained either constant (Parity and
Truth Table) or increased (for Majority). Finally, as forhet problems, we see ample variations of performance
associated with changes in genotypic mutation rates, wiviete not (and could not) be predicted by fide.

Most of these anomalies can only be explained by considehageffects of the encoding on the phenotypic
mutation rates. Looking at the no-neutrality case, we set performance increases with the mutation rate,
suggesting that encodings which present a higher phermotgptation rate may provide even better performance.

With the exception of the no-neutrality case, phenotypitation rates are the lowest for the Majority encoding, and

Uin the figure, we have excluded the results for the clausessiable ratio of 2, since success rate was 100% is all cagss indicates
that the problem is very easy to solve with our parametemgsttfor the EA.
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Fig. 8. Fitness distance correlation estimated for MAX-S#®blems of various degrees of difficulty (clause-to-Vialga ratios) with different

encodings.

this is likely to be the reason why such an encoding provileddwest performance among the bitwise-neutrality
representations. Also, the relatively high performancehef Parity encoding is likely to be associated with such
an encoding presenting the highest phenotypic mutaticn fidte Truth Table encoding positions itself half-way
between the other two encodings. Since phenotypic mutadias grow with the number of bits used, this produces

the trends in the bitwise-neutrality plots in Figure 9.

C. Phenotypic Mutation on Rates and Problem Hardness adfosBlems

In the previous subsections we emphasised the importanamrdidering the phenotypic mutation rates to
complement the information provided by tfac. Figure 10 illustrates how critical this information is.

In particular, Figures 10(a) and (b) plot the success pritiiab for the OneMax, Trap and multimodal problems
(reported in Tables VI, VIl and VIII) against the corresporgigenotypic and phenotypic mutation rates, respectively
Distinctions between encodings are totally ignored. FégutO(c) and (d) report similar results but for MAX-3-SAT
problems of different levels of difficulty. It is clear howdtsuccess rates for each of the problems studied strongly
correlate with the phenotypic mutation rates. Insteadietation with the genotypic mutation rates is much weaker.

We did not experiment with genotypic mutation rates highantp,, = 0.1. However, it is easy to predict what
would happen. The Parity and Truth Table encodings wouldnassively move towards phenotypic mutation rates
of 50%, making the search effectively random. We can easilgpute the expected success rate of the EA in these
conditions. In the OneMax, Trap and multimodal problemseath EA run we do 8,000 trials (80 individuals
for 100 generations), which represent 48.82% of the segpabessize2’, since/ = 14. This is anupper limit
for the success rate. Of course, because of re-samplinghaddsonly expect to find the optimum with a lower
probability. The exact value is 38.3%, as one can computggusie theory for the coupon collector problem (see
[61]). So, 38.3% is the limit performance for high mutatia@tes for these problems. Note that this limit is problem
independent as long as a problem has a single global optinsuin the case of the three problems mentioned

above. Indeed, the three plots in Figure 10(b) show a corwerytowards this limit.
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Fig. 9. Success rates for MAX-SAT problems of varying diffigi(clause-to-variables ratios) with different encodirgnd genotypic mutation
rates.

For MAX-3-SAT the situation is very similar, but there is n@tunique limit to the success rate as the search
becomes more and more random. This is because the limit saicate depends on the average number of global
optima (assignments that satisfy a formula) in the searetes@nd the higher the clause-to-variables ratio, the
fewer the global optima. So, we find that the limit decreasetha ratio increases amnice versalt is interesting
to see in Figure 10(d) that, in most cases, the limit is rgpégiproached as the phenotypic mutation rate increases.

The plots thus present a knee. Interestingly, this is nofaodrom 1/¢ = 0.0714, which, on average, corresponds
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Fig. 10. Plots of the success probability as a function ofgleotypic mutation rate (a) and the phenotypic mutatioe ¢a} for the OneMax,
Multimodal and Trap fitness functions, and correspondirgspfor MAX-3-SAT with 14 variables (c—d).

to a single variable flip per mutation. At this mutation levitle EA's search strategy becomes quite similar to the

one-flip strategy adopted by many modern local search hisri®r SAT.

VIIl. DISCUSSIONS

In this section we discuss the results reported above fratm the point of view of understanding neutrality and
the practical consequences of the work in relation to thatsnl of real-world problems. In particular, we want to
highlight what has and has not been achieved with this stumiy these viewpoints.

To make the problem as simple as possible, we adopted thegstraf using one of the simplest possible EAs and
extremely simple encodings to increase the neutrality efaach space. Nonetheless, both our theoretical derivation
and our empirical results indicate that changing the probte performing small changes in the details of the
representation and search parameters used can turn a eeeweding from being beneficial to being disadvantageous

and vice versa That the neutrality could not always be helpful is an obsi@onsequence of the no-free-lunch
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theory [62], but that the performance of an EA in the presariceeutrality could be so sensitive to details was much
less expected. This is probably the key source of the camfuashd controversy reigning in the sizable literature
on the use of neutrality in EAs.

Our results indicate that, in many conditiofid¢ provides a rough indication of problem difficulty and of how
problem difficulty is affected by neutrality. However, wevikaalso found that, in order to obtain more accurate
information, one also needs to consider how the chosenseptation translates genotypic mutations into phenotypic
ones.

For some representatiorfdc and phenotypic mutation rates can be computed theorgtiediile for others they
need to be estimated via sampling. Theoretical formulatiare particularly important because they reveal how
specific details of the representation (including the valfithe fitness of the neutral network in constant neutrality,
the details of the encoding function used in bitwise neityraihd the number of genotypic bits used in the encoding)
influence the features of the landscape and search operAtwther advantage of theoretical formulations is that
their complexity is often scale-invariant, unlike empafievaluations where computational cost may prevent the
analysis of large, realistic problems.

Both theoretical analyses and empirical estimationddaf however, are basically impossible for real-world
problems where, typically, the position of the global ogiis unknown. Other predictive performance measures
exist which do not require knowledge of the optima (e.g., [683-[67]), but, to the best of our knowledge, they
have not been used to study the effects of neutrality so flapn,Aithess landscapes can be studied via the analysis
of their Walsh coefficients. For some problems, for examp@& 8], this can be done efficiently for large scale
instances, although we are not aware of any Walsh analylsiing to neutrality. These are certainly areas that
future research on neutrality could beneficially targetathgr insights on its benefits and drawbacks in relation to
real-world problems.

While fdc cannot really be applied to real-world problems, the notbphenotypic mutation rate can, at least
in the case of bitwise neutrality. This is because, in thisnf@f neutrality, phenotypic mutation rates are only
a function of the representation adopted, not the fitnesstifum (while in constant neutrality there is a partial
dependency on fitness). So, our calculations in Section \@rd applicable to problems of any size and in any
application relying on a binary encoding.

For a mutation-based EA, trivial neutrality (see Sectignidlineffective at changing the difficulty of a problem,
provided one ensures the phenotypic mutation rate usedngititrality matches the mutation rate with the original
representation. If this is not the case, then behaviour anfbpnance can change very significantly.

Non-trivial neutrality (e.g., Majority), is neithea priori beneficial nor disadvantageous. It can be beneficial in
problems where the original landscape is misleading/deegbut only if it is set up in such a way to ensure that a
large enough proportion of the population spends long en@xgloring neutral networks. In a mutation-only EA,
the exploration of neutral networks is essentially a randueak type of search. While normally this form of search
is inefficient, in the presence of a misleading fitness fumgtit is the only hope for a population to eventually

locate superior areas in the search space (e.g., the glptiadwon). However, having neutral networks in the search



39

space does not mean that the population will stay on thens Whi not happen, for example, if neutral networks
have a particularly low fitness. In such cases, it is unlikbigt neutrality will benefit a deceptive problem.

In easy problems, where the fitness function provides rglighidance towards good areas of the search space,
it is unlikely that non-trivial neutrality will provide anyenefits irrespective of whether neutral networks have
high fitness or not. This is for the following reasons. Randsaarch is inefficient for problems where the fitness
function provides good guidance. In such problems, if redutetworks have high fitness, a part of the population
will randomly drift on them, thus reducing the overall efiocy of the search. If, instead, neutral networks are
unfit, selection will avoid giving individuals on them a cltanto mutate. Such individuals are, therefore, wasted
samples, which reduce the efficiency of the search.

While we have introduced and used the notion of phenotypitatimn rate as an atomic quantity, in fact, the
phenotypic mutation rates we computed are averages acliopsesaible strings. This, however, does not mean
that all strings have the same probability of being mutat®d & string that represents a different phenotype.
For example, in Figure 11 we show the distribution of phepimtynutation rates with 7-bit bitwise neutrality for
different encodings and genotypic mutation rates. From figure it is immediate to see that, except for the Parity
encoding, some strings may be exceedingly robust to geiotyptations (in the sense that they are more likely to
represent the same phenotype after mutation) while othrerexremely fragile. For example, under the Majority
encoding the string 00000 can have any bit flipped and stiflaia in the same majority class while 3 out of 5
times flipping one bit in the string 00011 will change its pbsmpic class.

To some extent, we would expect evolution to exploit thedteminces. For example, it could protect certain
particular genes or highly epistatic groups of genes byguainery robust genotypic representation for them, while
keeping the phenotypic mutation rate high for suboptimangtypic bits by using fragile encodings. However, at
this stage, we do not know how important this effect is in aatiah-based EA. Also, while it is likely that the
addition of recombination will further emphasise the impace of representational inhomogeneities, we have not
turned this particular stone.

This leads to another unturned stone in our work. Follownognfour earlier work, recently [69] have highlighted
the possibility and benefits of using different numbers a$ lbor different parts of a representation with bitwise
neutrality!? It would be interesting to see what effects this has orfdleef a problem. Also, while [69] considered
the adoption of different numbers of bits as roughly eqemato providing different parts of the representation with
different mutation rates, as shown in Figure 11, the eqgeiva is only correct an average. It would be interesting
to see if the results of [69] could be extended to considenptypic mutation rate distributions.

In some sense all this is related to the point of view devalope[17] who suggests that the core aspect of
neutrality is that different genomes in a neutral set prevddvariety of different mutation distributions from which
evolution may choose in a self-adaptive way. In the futureyould be interesting to reinterpret our results by

looking at neutrality as adaptation of the representation.

12They have also reported a closed form representation forober results on phenotypic mutation rates and invertedfoumulae.
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Fig. 11. Distribution of phenotypic mutation rates with if-bitwise neutrality for different encodings and genotypautation rates.

IX. CONCLUSIONS

Does neutrality help or hinder the search of an EA? This dquestas been debated at considerable length in
the literature without really reaching any form of consenen its answer.

As we discussed in Sections | and Il, the reasons for thisatsitn include the lack of a single definition of
neutrality, the multiple ways in which one can add neutyalit a representation, the focus on pure performance
when evaluating the effects of neutrality without attentto the changes in the behaviour of the search operators
and in the features of the fitness landscape, and, finallyydhiability in the choice of problems, algorithms and
representations for benchmarking purposes. Also, vesnddtudies consider problems and representations that are
quite complex and results represent the composition ofipteleffects.

In this paper, we have attempted to address these probledntoashed some light on neutrality. Our strategy
has been as follows. Firstly, we have used one of the simpladtutionary algorithms — a mutation-only binary
EA. Secondly, we have considered only extremely simpleesgntations that can be used to artificially increase
the neutrality in a system: constant neutrality, where radityt is plugged into the original encoding by adding
an extra bit to the representation, and bitwise neutralityere each phenotypic bit is obtained by transforming
a group of genotypic bits via an encoding function. Thirdliie have studied neutrality both theoretically — via
fitness-distance correlations and phenotypic mutaticesrat and empirically (using both standard benchmarks for
binary EAs and the class of MAX-SAT problems, which is moreiasting for practitioners), and made an effort
to integrate the results of the two viewpoints.

The key lessons we have learnt during our explorations @& éoffowing. Firstly, we have found thdtlc is often
able to predict the relative difficulty of problems corrgattith and without the addition of neutrality. For example,
in the case of MAX-SAT instances, it correctly ranked themdif§iculty in total agreement with the well-known
clause-to-variables ratio criterion. Secondly, we foumattdc was not able to predict the fine details of the behaviour
of our mutation-based EA, unavoidably neglecting the infigethat mutation rates have on performance. Thirdly,
we understood that by complementing fide analysis with an analysis of the changes in phenotypic nantaates

associated with representation changes provides a muateclgicture of the effects of the two forms of neutrality
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we studied. Fourthly, we have found that the performancenoEA in the presence of neutrality is extremely
sensitive to details such as the problem being solved, the ¢of encoding adopted and the rate of application of
operators. Therefore, the question of whether neutraditgior hinders the search in EAs is ill-posed and cannot be
answered in general: one can only answer this questionmiitte context of a specific class of problems, (neutral)
representation and set of operators.

While we feel that these lessons are quite useful and gemaealy avenues have been left unexplored by this
study. The effects of recombination, for example, have resnbanalysed. Also, the effects of the distribution of
phenotypic mutation rates have not been considered inldéfai have made an effort to include in the analysis
also a real-world application domain (MAX-SAT), but theesiaf the instances we considered had to be very small
to make thefdc analysis viable. Furthermore, we have only studied two fowh neutrality, while many other
interesting forms exist, including, for example, the eringdof search parameters (such as mutation rates) in the
chromosomes which was studied in [17]. Finally, we have ookéd at the effects of neutrality in noisy or dynamic

fitness functions. All of these areas would be worthy of fattesearch.

REFERENCES

[1] M. Kimura, “Evolutionary rate at the molecular levelfi Nature vol. 217, 1968, pp. 624—626.

[2] ——, The Neutral Theory of Molecular Evolution Cambridge, UK: Cambridge University Press, 1983.

[8] T. Yu and J. F. Miller, “Finding Needles in Haystacks istridard with Neutrality,” in Genetic Programming Proceedings of the 5th
European Conference, EuroGP 2Q0&er. LNCS, J. A. Foster, E. Lutton, J. F. Miller, C. Ryan, akdTettamanzi, Eds., vol. 2278.
Kinsale, Ireland: Springer-Verlag, 3-5 Apr. 2002, pp. 18-2

[4] J. F. Miller, “An Empirical Study of the Efficiency of Leaing Boolean Functions Using a Cartesian Genetic ApprbachProceedings
of the Genetic and Evolutionary Computation Conference GB®9, W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar
M. J. Jakiela, and R. E. Smith, Eds., vol. 2. Orlando, Floridargan Kaufmann, 13-17 Jul. 1999, pp. 1135-1142.

[5] J. F. Miller and P. Thomson, “Cartesian genetic prograngyi in Third European Conference on Genetic Programming EuroGB020
ser. LNCS, R. Poli, W. Banzhaf, W. Langdon, J. Miller, P. Norcand T. Fogarty, Eds., vol. 1802. Edinburgh: Springerag 15-16
Apr. 2000, pp. 121-132.

[6] M. Collins, “Finding Needles in Haystacks is Harder witteutrality,” in GECCO 2005: Proceedings of the 2005 Conference on Gendtic an
Evolutionary ComputatignH.-G. Beyer, U.-M. O'Reilly, D. V. Arnold, W. Banzhaf, C. Bin, E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta,
K. Deb, J. A. Foster, E. D. de Jong, H. Lipson, X. Llora, S. Mandis, M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-Watson,
and E. Zitzler, Eds., vol. 2. Washington DC, USA: ACM Press;2® Jun. 2005, pp. 1613-1618.

[7] W. B. Langdon and R. PoliFoundations of Genetic ProgrammingBerlin: Springer, 2002.

[8] R. Poli, W. B. Langdon, and N. F. McPhe#, Field Guide to Genetic Programming Published viahtt p: / /1 ul u. comand freely
available atht t p: // www. gp-fi el d- gui de. or g. uk, 2008, (With contributions by J. R. Koza).

[9] E. Galvan-Lopez and R. Poli, “An Empirical Investigat of How and Why Neutrality Affects Evolutionary Searclif' GECCO 2006:
Proceedings of the 2006 Conference on Genetic and Evoarjo@omputation M. Keijzer, M. Cattolico, D. Arnold, V. Babovic, C. Blum,
P. Bosman, M. V. Butz, C. C. Coello, D. Dasgupta, S. G. FiciciFoster, A. Hernandez-Aguirre, G. Hornby, H. Lipson, P.\Mitm,

J. Moore, G. Raidl, F. Rothlauf, C. Ryan, and D. Thierens,. E®rattle, WA, USA: ACM Press, 8-12 Jul. 2006, pp. 1149-1156.

[10] —, “Some Steps Towards Understanding How Neutraliffeéts Evolutionary Search,” iRarallel Problem Solving from Nature (PPSN
IX). 9th International Conferengeser. LNCS, T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. idéBgervos, L. D. Whitley, and X. Yao,
Eds., vol. 4193. Reykjavik, Iceland: Springer-Verlag, 3ep. 2006, pp. 778-787.

[11] R. Poli and E. Galvan-Lopez, “On The Effects of Bit-8#i Neutrality on Fitness Distance Correlation, Phenotyitation Rates and
Problem Hardness,” ifroundations of Genetic Algorithms [Xer. Lecture Notes in Computer Science, C. R. Stephens,oMsshint,
D. Whitley, and P. Stadler, Eds. Mexico city, Mexico: Spengyerlag, 8-11 Jan. 2007, pp. 138-164.



[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

42

E. Galvan-Lopez, “An analysis of the effects of nality on problem hardness for evolutionary algorithms,Phdissertation, School of
Computer Science and Electronic Engineering, Universitissex, United Kindgom, 2009.

E. V. Nimwegen, J. P. Crutchfield, and M. Huynen, “NeltEolution of Mutational RobustnessProc. Natl. Acad. Sci. USAvol. 96,
no. 17, pp. 9716-9720, 1999.

A. Wagner, “Robustness, Evolvability and NeutralitsEBS Lettersvol. 579, no. 8, pp. 1772-1778, 2005.

C. Reidys, P. F. Stadler, and P. Schuster, “Generic dttigs of Combinatory Maps — Neutral Networks of RNA Secopndstructures,”
Bull. Math. Biol, vol. 59, pp. 339-397, 1997.

P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofackerom Sequences to Shapes and Back: A Case Study in RNAn8ago
Structures,”’Royal Society of London Proceedings Serievd. 255, pp. 279-284, Mar. 1994.

M. Toussaint and C. Igel, “Neutrality: A necessity f@lfsadaptation,” inProceedings of the IEEE Congress on Evolutionary Compariati
(CEC 2002) 2002, pp. 1354-1359.

A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parawrecontrol in evolutionary algorithmsIEEE Trans. Evolutionary Computatipn
vol. 3, no. 2, pp. 124-141, 1999.

H.-G. Beyer,The Theory of Evolution StrategiesSpringer Verlag, 2001.

M. Toussaint, “On the Evolution of Phenotypic Explooat Distributions,” in Foundations of Genetic Algorithms 7 (FOGA 200R) A.
De Jong, R. Poli, and J. Rowe, Eds. Morgan Kaufmann, 20031§®-182.

M. D. Vose, The simple genetic algorithm: Foundations and theor€ambridge, MA: MIT Press, 1999.

M. A. Shackleton, R. Shipman, and M. Ebner, “An Inveatign of Redundant Genotype-Phenotype Mappings and Thele i
Evolutionary Search,” irProceedings of the International Congress on Evolution@gmputation (CEC 2000)A. Zalzala, C. Fonseca,
J. H. Kim, and A. Smith, Eds. IEEE Press, 2000, pp. 493-500.

R. Shipman, M. Shackleton, M. Ebner, and R. Watson, ‘thguSearch Spaces for Atrtificial Evolution: A Lesson Fronfieliin Avrtificial
Life: Proceedings of the Seventh International Conferemcértificial Life, M. Bedau, S. Rasmussen, J. McCaskill, and N. Packard, Eds.
MIT Press, 2000, pp. 162—-169.

M. Ebner, P. Langguth, J. Albert, M. Shackleton, and RipBian, “On Neutral Networks and Evolvability,” iRroceedings of the 2001
IEEE Congress on Evolutionary ComputationEEE Press, 27-30May 2001, pp. 1-8.

M. Ebner, M. Shackleton, and R. Shipman, “How NeutratWks Influence Evolvability,"Complexity vol. 7, no. 2, pp. 19-33, 2001.
J. D. Knowles and R. A. Watson, “On the Utility of Redumti&ncodings in Mutation-Based Evolutionary Search,Parallel Problem
Solving from Nature - PPSN VII: 7th International Conferend. J. M. Guervos, P. Adamidis, H.-G. Beyer, J. L. F.-V. Ntarand H.-P.
Schwefel, Eds. Granada, Spain: Springer Verlag, 2002, §0®

F. Rothlauf and D. Goldberg, “Redundant Representatim Evolutionary Algorithms,’Evolutionary Computationvol. 11, no. 4, pp.
381-415, 2003.

C. Fonseca and M. Correia, “Developing Redudant BirRepresentations for Genetic Search,Piroceedings of the 2005 IEEE Congress
on Evolutionary Computation (CEC 2005)Edinburgh: IEEE, 2-4 Sep. 2005, pp. 372-379.

R. Shipman, “Genetic Redundancy: Desirable or Probtenfor Evolutionary Adaptation,” irdth International Conference on Artificial
Neural Networks and Genetic Algorithms (ICANNGA'98) Dobnikar, N. C. Steele, D. W. Pearson, and R. F. AlbreEls. Springer-
Verlag, 1999, pp. 337-344.

E. Galvan-Lopez, R. Poli, A. Kattan, M. O’Neill, and. Brabazon, “Neutrality in evolutionary algorithms ... with we know?”Evolving
Systems2011. (accepted).

T. Jones, “Evolutionary algorithms, fitness landssapad search,” Ph.D. dissertation, University of New Mexigtbuquerque, 1995.

T. Jones and S. Forrest, “Fitness Distance Correla®a Measure of Problem Difficulty for Genetic Algorithmsy’Rroceedings of the
6th International Conference on Genetic AlgorithrhsJ. Eshelman, Ed. San Francisco, CA, USA: Morgan Kaufn@ablishers, 1995,
pp. 184-192.

P. Collard, A. Gaspar, M. Clergue, and C. Escazut, ‘#8tDistance Correlation as Statistical Measure of GeAdgiorithms Difficulty,
Revisited,” inProceedings of the European Conference on Atrtificial ligelice John Witley & Sons, Ltd, 1998, pp. 650-654.
Clergue and Collard, “Genetic Heuristic for Search @&p&xploration,” inProceedings of International Joint Conference on Artificia
Intelligence Morgan Kaufmann, 1999, pp. 1218-1224.



[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

43

M. Finger, T. Stutzle, and H. Lourenco, “Exploiting Rétss Distance Correlation of Set Covering Problems,Pioceedings of the
Applications of Evolutionary Computing on EvoWorkshop8220 London, UK: Springer-Verlag, 2002, pp. 61-71.

W. Beaudoin, S. Verel, P. Collard, and C. Escazut, “[pdgeness and Neutrality The ND Family of Fitness Landssépe GECCO 2006:
Proceedings of the 2006 Conference on Genetic and Evoaro@omputation M. Keijzer, M. Cattolico, D. Arnold, V. Babovic, C. Blum,
P. Bosman, M. V. Butz, C. C. Coello, D. Dasgupta, S. G. FiciciFoster, A. Hernandez-Aguirre, G. Hornby, H. Lipson, P.Mitm,

J. Moore, G. Raidl, F. Rothlauf, C. Ryan, and D. Thierens,.Bdd. 1. Seattle, WA, USA: ACM Press, 8-12 Jul. 2006, pp.-5814.

M. Clergue, P. Collard, M. Tomassini, and L. Vannes¢hitness Distance Correlation and Problem Difficulty forr@éc Programming,”
in Proceedings of the Genetic and Evolutionary Computatiomf€ence, GECCO 2002N. B. Langdon, E. Cantl-Paz, K. E. Mathias,
R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Bipdh, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F.lIsH E. K.
Burke, and N. Jonoska, Eds. New York: Morgan Kaufmann Phéfs 9-13 Jul. 2002, pp. 724-732.

L. Vanneschi and M. Tomassini, “Pros and Cons of Fitrigistance Correlation in Genetic Programming,2i@603 Genetic and Evolutionary
Computation Conferencem Workshop Program Proceeding&G@XEO3 A. M. Barry, Ed. Chigaco: AAAI, 11 Jul. 2003, pp. 284-287.
L. Vanneschi, M. Tomassini, M. Clergue, and P. Coll&fifficulty of Unimodal and Multimodal Landscapes in GereRrogramming,” in
Genetic and Evolutionary Computation — GECCO-206&. LNCS, E. Cantl-Paz, J. A. Foster, K. Deb, D. Davis, &, ®.-M. O'Reilly,
H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. HarmanWe&gener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowdla
N. Jonoska, and J. Miller, Eds., vol. 2724. Chicago: Springelag, 12-16 Jul. 2003, pp. 1788-1799.

L. Vanneschi, M. Tomassini, P. Collard, and M. Clergtfeitness Distance Correlation in Structural Mutation Ge&n&rogramming,” in
Proceedings of the sixth European Conference on Genetigr@mming, EuroGP 20Q3er. LNCS, C. Ryan, T. Soule, M. Keijzer, E. P. K.
Tsang, R. Poli, and E. Costa, Eds., vol. 2610. Essex: Sprivigitag, 14-16 Apr. 2003, pp. 455-464.

L. Vanneschi, “Theory and practice for efficient gengtrogramming,” Ph.D. dissertation, Faculty of Sciencejvensity of Lausanne,
Switzerland, 2004.

M. Tomassini, L. Vanneschi, P. Collard, and M. Clergt#®,Study of Fitness Distance Correlation as a Difficulty Meges in Genetic
Programming,”Evolutionary Computationvol. 13, no. 2, pp. 213-239, Summer 2005.

E. Galvan-Lopez, S. Dignum, and R. Poli, “The EffeofsConstant Neutrality on Performance and Problem Hardime&P,” in EuroGP
2008 - 11th European Conference on Genetic Programmdeg LNCS, M. ONeill, L. Vanneschi, S. Gustafson, A. |. Ecétar, I. D.
Falco, A. D. Cioppa, and E. Tarantino, Eds., vol. 4971. Naptlly: Springer, 26-28 Mar. 2008, pp. 312-324.

L. Altenberg, “Fitness Distance Correlation Analysién Instructive Counterexample,” ifProceedings of the Seventh International
Conference on Genetic Algorithin®. Back, Ed. San Francisco, CA, USA: Morgan Kaufmann, 19§%,57-64.

R. J. Quick, V. J. Rayward-Smith, and G. D. Smith, “Fi&eeDistance Correlation and Ridge Functions,”Hroceedings of the 5th
International Conference on Parallel Problem Solving frddature London, UK: Springer-Verlag, 1998, pp. 77-86.

G. Lobo and C. F. Lima, “On the Utility of the Multimodalrblem Generator for Assessing the Performance of Evalatipalgorithms,”
in GECCO 2006: Proceedings of the 2006 Conference on GeneticEaolutionary ComputatignM. Keijzer, M. Cattolico, D. Arnold,
V. Babovic, C. Blum, P. Bosman, M. V. Butz, C. C. Coello, D. Dapta, S. G. Ficici, J. Foster, A. Hernandez-Aguirre, G. ritigr
H. Lipson, P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryamd D. Thierens, Eds. Seattle, WA, USA: ACM Press, 8-12 2006,
pp. 1233-1240.

K. A. De Jong, M. A. Potter, and W. M. Spears, “Using Perhl Generators to Explore the Effects of Epistasis,Pimoceedings of the
Seventh International Conference on Genetic Algorithn@G@A97) T. Back, Ed. San Francisco, USA: Morgan Kaufmann, 1997, pp
338-345.

J. Kennedy and W. M. Spears, “Matching Algorithms to emns: An Experimental Test of the Particle Swarm and Someete
Algorithms to the Multimodal Problem Generator,” iRroceedings IEEE International Conference on EvolutigndComputation
Piscataway, NJ: IEEE Press, 1998, pp. 78-83.

D. E. Goldberg, “Construction of High-Order Deceptianctions Using Low-Order Walsh Coefficient&\hn. Math. Artif. Intell, vol. 5,
no. 1, pp. 35-47, 1992.

D. E. Goldberg, K. Deb, and J. Horn, “Massive Multimatlal Deception, and Genetic Algorithms,” iRPSN II: Proceedings of the 2nd
International Conference on Parallel Problem Solving frivaturg R. Manner and B. Manderick, Eds. Amsterdam: Elsevier ridgie
Publishers, B. V., 1992, pp. 37-48.

H. Kargupta, K. Deb, and D. Goldberg, “Ordering Gendiigorithms and Deception,” ilPPSN IlI: Proceedings of the 2nd International



[52]
(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

(69]

44

Conference on Parallel Problem Solving from NatuRe Manner and B. Manderick, Eds. Amsterdam: Elsevier i®@&ePublishers, B.
V., 1992, pp. 49-58.

M. Davis, G. Logemann, and D. Loveland, “A machine pangrfor theorem-proving,Commun. ACMvol. 5, no. 7, pp. 394-397, 1962.
S. A. Cook, “The complexity of theorem-proving procees,” in STOC '71: Proceedings of the third annual ACM symposium ogofh
of computing New York, NY, USA: ACM, 1971, pp. 151-158.

B. Selman, H. Levesque, and D. Mitchell, “A new method $olving hard satisfiability problems,” iRroceedings of the Tenth National
Conference on Artificial Intelligence (AAAI'92)1992, pp. 459-465.

B. Selman, H. A. Kautz, and B. Cohen, “Noise strategiasifproving local search,” ilMAAI '94: Proceedings of the twelfth national
conference on Artificial intelligence (vol..1)Menlo Park, CA, USA: American Association for Atrtificial telligence, 1994, pp. 337-343.
H. H. Hoos and T. Stutzle, “Local search algorithms &AT: An empirical evaluation,'Journal of Automated Reasoningol. 24, no. 4,
pp. 421-481, 2000.

J. Gottlieb, E. Marchiori, and C. Rossi, “Evolutionaajgorithms for the satisfiability problemEvol. Comput.vol. 10, no. 1, pp. 35-50,
2002.

M. B. Bader-El-Den and R. Poli, “Generating sat loce&sch heuristics using a gp hyper-heuristic framework,Antificial Evolution,
ser. Lecture Notes in Computer Science, N. Monmarché, .Hafbi, P. Collet, M. Schoenauer, and E. Lutton, Eds., véR&! Springer,
2007, pp. 37-49.

D. G. Mitchell, B. Selman, and H. J. Levesque, “Hard amdyedistributions for SAT problems,” iRroceedings of the Tenth National
Conference on Artificial Intelligengd®. Rosenbloom and P. Szolovits, Eds., American Assonidtip Artificial Intelligence. Menlo Park,
California: AAAI Press, 1992, pp. 459-465.

B. Selman, H. Kautz, and B. Cohen, “Local search stiatefpr satisfiability testing,” irAAAI-92: Proceedings 10th National Conference
on Al, ser. DIMACS Series in Discrete Mathematics and Theore@mmputer Science. American Mathematical Society, JaB519
W. Feller, An Introduction to Probability Theory and Its ApplicationsWiley, 1968.

D. Wolpert and W. Macready, “No free lunch theorems fptimization,” IEEE Transactions on Evolutionary Computatiorol. 1, no. 1,
pp. 67-82, April 1997.

E. Galvan-Lopéz, J. McDermott, M. O'Neill, and A. Brazon, “Defining locality in genetic programming to predgrformance,” in
CEC 2010: Proceedings of the 12th Annual Congress on Ewolaty Computation Barcelona, Spain: IEEC Press, July 2010.

——, “Towards an understanding of locality in genetiogramming,” inGECCO 2010: Proceedings of the 12th Annual Conference on
Genetic and Evolutionary ComputationPortland, Oregon, USA: ACM Press, July 2010.

E. Galvan-Lopez, J. McDermott, M. O'Neill, and A. Brazon, “Defining locality in problem hardness in geneticgoaonming,” Genetic
Programming and Evolvable Machine2011. (accepted).

R. Poli and L. Vanneschi, “Fitness-proportional négatlope coefficient as a hardness measure for geneticithlgst” in Proceedings
of the Genetic and Evolutionary Computation Conference@GB-2007) H. Lipson, Ed. ACM, 2007, pp. 1335-1342.

L. Vanneschi, M. Tomassini, P. Collard, S. Verel, Y.dPr, and G. Mauri, “A comprehensive view of fitness landsesapith neutrality
and fitness clouds,” ifProceedings of EuroGP 2008er. LNCS, vol. 4445. Springer, 2007, pp. 241-250.

S. Rana, R. B. Heckendorn, and D. Whitley, “A tractablelsh analysis of SAT and its implications for genetic altjoris,” in Proceedings
of the Fifteenth National Conference on Artificial Intediiice (AAAI'98) 1998, pp. 392-397.

T. Friedrich and F. Neumann, “When to use bit-wise raity;” Natural Computingvol. 9, no. 1, pp. 283-294, 2010.



10

11

45

LIST OF FIGURES

Representation used to induce constant neutrality. . . . . . .. .. .. ... ... ... ...... 7
Three different genotype-phenotype mappings that indhitvéise neutrality: (a) Majority encoding,
(b) Parity encoding and (c) Truth table encoding. . . . . . . ... .. oL 8

Fitness distance correlation in OneMax in the presenceoétant neutrality as a function g¢f, for

Effective phenotypic mutation rate for invertible fitnefsctions as a function of the genotypic
mutation rate for strings of length= 14 and different values of the selection probability for gsn
outside the neutral network induced by constant neutrality. . . . . .. ... ... ......... 22
The trap function used in our experiments,(, = 13, a =39,b6=40). . . . ... ... ... .... 25
Fitness distance correlation in MAX-3-SAT problems of remsing complexity in the absence of
neutrality and in the presence of constant neutrality, with different values off,,: f,, = ¢/2 where

c is the number of clauses anfl = ¢ — 1 (c is also the fitness of the global optimum in our SAT
problems). The data are averages over 100 random satis8e® instances. . . . . ... ... .. 28
Plots of the success rate of a mutation-based EA on MAX-B-Boblems with 14 variables as a
function of the problem difficulty, the genotypic mutatioate and the fitness of the neutral network
induced by constant neutrality (solid lines). The corresfance between these and success rates in
the absence of neutrality (dashed lines) is indicated bycthreed arrows on the right. . . . . .. .. 29
Fitness distance correlation estimated for MAX-SAT peol$ of various degrees of difficulty (clause-
to-variables ratios) with different encodings. . . . . . . . . ... .. L o 35
Success rates for MAX-SAT problems of varying difficultyaigse-to-variables ratios) with different
encodings and genotypic mutation rates. . . . . . . .. L e e e 36
Plots of the success probability as a function of the ggmiotmutation rate (a) and the phenotypic
mutation rate (b) for the OneMax, Multimodal and Trap fitn&gsctions, and corresponding plots for
MAX-3-SAT with 14 variables (c—d). . . . . . . .. . .. . 37
Distribution of phenotypic mutation rates with 7-bitwveise neutrality for different encodings and

genotypic mutation rates. . . . . . . . . . e e e e e 40



