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Abstract

Kimura’s neutral theory of evolution has inspired researchers from the evolutionary computation community to

incorporate neutrality into Evolutionary Algorithms (EAs) in the hope that it can aid evolution. The effects of neutrality

on evolutionary search have been considered in a number of studies, the results of which, however, have been highly

contradictory. In this paper, we analyse the reasons for this and we make an effort to shed some light on neutrality

by addressing them. We consider two very simple forms of neutrality: constant neutrality — a neutral network of

constant fitness, identically distributed in the whole search space — and bit-wise neutrality, where each phenotypic

bit is obtained by transforming a group of genotypic bits viaan encoding function. We study these forms of neutrality

both theoretically and empirically (both for standard benchmark functions and a class of random MAX-SAT problems)

to see how and why they influence the behaviour and performance of a mutation-based EA. In particular, we analyse

how the fitness distance correlation of landscapes changes under the effect of different neutral encodings and how

phenotypic mutation rates vary as a function of genotypic mutation rates. Both help explain why the behaviour of a

mutation-based EA may change so radically as problem, form of neutrality and mutation rate are varied.

Index Terms

Neutrality, Phenotypic Mutation Rates, Problem Hardness,Fitness Distance Correlation, MAX-SAT, Genotype-

Phenotype Mappings.

I. I NTRODUCTION

Despite the proven effectiveness of Evolutionary Algorithms (EAs), they have also limitations. Researchers have

attempted to make EAs more powerful by using a variety of approaches. Following the ideas of Kimura’s neutral
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theory of molecular evolution [1], [2], one strategy to achieve this has been the use ofneutrality in EAs.

Kimura’s theory states that the majority of evolutionary changes at molecular level are the result of random

fixation of selectively neutral mutations. A mutation from one gene to another is neutral if it does not affect the

phenotype. Thus, most mutations that take place in natural evolution are neither advantageous nor disadvantageous

for the survival of individuals. It is then reasonable to extrapolate that, if this is how evolution has managed to

produce the amazing complexity and adaptations seen in nature, then surely neutrality should aid also EAs. However,

despite the numerous publications in this field, quite oftenthere is confusion with regard to what neutrality is and,

certainly, there are no general conclusions on the effects of neutrality.

Many contradictory results on neutrality in EAs have been reported. For instance, in [3], Yu and Miller performed

runs using the well-known Cartesian Genetic Programming (CGP) system [4], [5] and even-n-parity Boolean

problems with different degrees of difficulty (n = {5, 8, 10, 12}). They compared performance with and without

neutrality and reported that their system performed betterwhen neutrality was present. However, a few years later,

Collins claimed the opposite [6], explaining that Yu and Miller’s chosen problem class (the parity problems) was

unusual and unsuitable for analysing neutrality using CGP.This is because both the landscape and the form of

representation used have a high degree of neutrality and these make the drawing of general conclusions on the

effects of neutrality difficult. These are just two authoritative examples1 of publications available in the specialised

literature which show controversial results on neutrality.

We believe that the confusion regarding neutrality is due toseveral reasons. These include the following:

• there is a lack of mathematical frameworks that explain how and why neutrality affects evolution;

• many studies have based their conclusions on performance statistics (i.e., on whether or not a system with

neutrality could solve a particular problem faster or better than a system without neutrality), rather than a more

in-depth analysis based on problem hardness measures and search characteristics;

• studies have often considered problems, representations and search algorithms that are relatively complex; as a

consequence, results represent the compositions of multiple effects (e.g., bloat or spurious attractors in genetic

programming [7], [8]);

• there is not a single definition of neutrality, and differentstudies have added neutrality to systems in radically

different ways;

• very often studies focused their attention on particular ‘properties’ of neutrality without properly defining them;

and

• the features of a problem’s landscape and the behaviour of the search operators change when neutrality is

artificially added, but rarely has an effort been made to understand in exactly what ways.

The main goal of this paper is to start shedding some light on neutrality by addressing the sources of confusion

mentioned previously. The core elements in this work are:

1Both [3] and [6] were nominated as best papers in their conference tracks.
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• Two very simple types of neutrality for EAs will be defined, starting from the simplest possible form,constant

neutrality, and then moving to the more commonbitwise neutrality.

• Fitness distance correlationwill be used to analytically quantify the hardness of problems with certain

characteristics (i.e., landscape features) in the presence and in the absence of neutrality.

• We will define and studyphenotypic mutation ratesin relation to corresponding genotypic mutation rates for

different encodings.

• We will combine and corroborate the theory with empirical results using both classical benchmark problems

and a class of MAX-3-SAT problems.

This paper is organised as follows. In the following section, previous work on neutrality will be presented. In

Section III we will provide basic notions on fitness distancecorrelation. In Section IV, we describe the forms

of neutrality –constantandbitwise neutrality– studied in this paper and we also introduce our test problems. In

Section V, we study theoretically the effects of constant and bitwise neutrality on the difficulty of our test problems.

In Section VI, we make the mathematical relationship between genotypic mutation rates and phenotypic mutation

rates explicit. Section VII reports empirical results thatconfirm our theoretical analyses. In Section VIII, we discuss

these results from both the point of view of understanding neutrality and the practical consequences of the work

in relation to the solution of real-world problems. Finally, Section IX draws some conclusions.2

II. PREVIOUS WORK ON NEUTRALITY

As mentioned previously, there is not a single definition of neutrality. Neutrality is implicitly defined as the

presence ofneutral networksin the search space. A neutral network is sometimes defined asa set of points in the

search space with identical fitness. More often neutral networks are, instead, defined as sets of points in the search

space having identical fitnessand such that starting from any point in a set one can reach any other point in the

set through one or more mutations (without ever leaving the set).

To clarify this, let us focus on a binary EA for simplicity. A solution s′ is considered to be a nearest neighbour

of a solutions, if s′ is one unit of Hamming distance away froms. The set of neighbours ofs is denoted byV (s).

If f is the fitness function, ans′ ∈ V (s) such thatf(s) = f(s′) is a neutral neighbourof s. A neutral network is

a set of solutions of identical fitness which is closed under the application ofV .

Nimwegenet al. [13] suggested that neutrality appears automatically throughout the evolutionary process. They

focused their attention on how the population moves throughneutral networks and suggested that the population

does not drift purely randomly through them. Instead, the majority of individuals tend to migrate and stay in highly

connected parts of the network (i.e., areas where points have a high number of neutral neighbours). This results in

phenotypes that are relatively robust against mutations.

In the same vein, Wagner [14] argued that the presence of neutrality in a system makes it more robust against

mutations. Moreover, Wagner suggested that neutrality should be viewed as an element that promotes evolvability

2Preliminary versions of the work presented in this paper have appeared in workshops and conferences papers [9]–[11], while other results

can be found in Edgar Galván-López’s PhD thesis [12].
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and can help to discover new phenotypes. Obviously, as Wagner pointed out, neutrality in itself cannot offer any

benefit: by definition, a neutral mutation at genotype level does not change the phenotype. However, neutrality can

still be of help in that it allows evolutionary search to visit previously unexplored areas.

Reidys and co-workers [15] studied the relationship between RNA sequence and secondary structure, which

is seen as mapping from sequence space into shape space [16].The mapping has a high degree of redundancy

(i.e., there are many more sequences than structures). In that work, the authors suggested that identical phenotypic

structures form a neutral network if thefraction of neutral nearest neighbours exceeds a certain threshold.This is

in sharp contrast with the definition used in most other work,where solutions are considered to form a neutral

network if they are one unit of Hamming distance away from each other.

Toussaint and Igel [17] pointed out that standard approaches to self-adaptation in EAs (e.g., see [18]) are an

explicit example of the benefit of neutrality. In these approaches the genome is augmented with strategy parameters,

which typically describe the mutation distribution (e.g.,the mutation rate). These are neutral parts of the genome

which are co-adapted during evolution so as to induce bettersearch distributions. The point of view developed in

[17] is that the core aspect of neutrality is that different genomes in a neutral set provide a variety of different

mutation distributions. Evolution may choose from these ina self-adaptive way. Interestingly, theoretical work on

the evolution of strategy parameters (e.g., see [19]) can bere-interpreted as dealing with the evolution of neutral

traits.

This line of thought was further formalised in [20]. Given a fixed genotype-phenotype mapping one can investigate

the variety of mutation distributions induced by differentgenomes in a neutral set. If their phenotypic projections (the

phenotypic mutation distributions) are constant over eachneutral set, this is defined astrivial neutrality. Toussaint

showed that trivial neutrality is a necessary and sufficientcondition for compatibility [21] with phenotypic projection

of a mutation-selection EA. In other words, whether one or another representative of a neutral set is present in a

population does not influence the evolution of phenotypes. Intuitively, this means that, in the presence of trivial

neutrality, neutral traits have no effect on phenotypic evolution. In the case of non-trivial neutrality, different

genotypes in a neutral set induce different phenotypic distributions. This implies a selection between equivalent

genotypes similar to the selection of strategy parameters in self-adaptive EAs. Toussaint interpreted this as the

underlying mechanism of the evolution of genetic representations.

In [22], [23], Shackletonet al. artificially added neutrality to evolutionary search with the use of five different

genotype-phenotype mappings. Thestatic random mappingconsisted in defining a genotype of length30 which

was mapped to a phenotype of16 bits. The mapping used was randomly initialised and remained static during

evolution. Thetrivial voting mappingconsisted in taking3 bits at genotype level to represent one bit a phenotypic

level. The latter was set to1 if the majority of the3 genotypic bits voted in favour,0 otherwise. Thestandard

voting mappingwas a variation of the previous mapping where the set of threegenotypic bits encoding for one

phenotypic bit can overlap. This means that when a single point mutation takes place, multiple phenotypic bits

could simultaneously change. In thecellular automaton mappingeach of the phenotypic bits was associated with

a truth table. Three adjacent bits were used as inputs in the truth table and the corresponding output, which in a
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cellular automaton would represent the new state of a cell, represented the associated phenotypic bit. Finally, the

random Boolean network (RBN) mappingwas a variation of the previous mapping. The main differenceis that the

3 bits can be at any positions, so it is necessary to encode those positions at the genotype level. Shackletonet al.

noted that the amount of redundancy in the genotype-phenotype map plays a key role in evolution. Moreover, they

observed that the standard voting, cellular automaton and RBN mappings were more beneficial than the other two.

Ebneret al. [24], [25] extended this investigation. They further analysed the effects of the RBN and the cellular

automaton mappings in the context of what they calledphenotype-speciesmapping. This type of mapping works

in two stages. Firstly, a genotype-phenotype mapping is used to determine the phenotype that corresponds to a

genotype. Then, the phenotype-species mapping determinesthe species to which each phenotype belongs. This

phenotype-species mapping is created by randomly distributing the species over the phenotype space. Ebneret al.

argued that these types of mappings are particularly interesting since they seem to allow neutral networks that are

intertwined with a high degree of connectivity. This property allows the finding of more species compared with

other types of mappings.

In [26], Knowles and Watson criticised the usefulness of neutrality when added via a mapping function. In

particular, they focused their attention on the RBN mappingproposed and studied in [22]–[24] and measured its

influence on evolution using the rate of fitness increase. EAsand Hill-Climbers were used on three different problems

to compare the performance obtained with and without the RBNmapping. They showed that the performance of

these search algorithms was better in the absence of neutrality. Moreover, they suggested that the RBN mapping

leads to a random exploration in the search space, so it is difficult to imagine how evolutionary search can gain

anything from using this type of mapping.

Rothlauf and Goldberg [27] argued that redundancy is a common element found in any EA and that the effects of

redundancy in evolutionary search depend basically on the nature of the redundancy. They identified some properties

that are useful to characterise redundant representations: (a) a redundant representation isuniform if all phenotypes

can be obtained by the same number of genotypes, (b) a representation issynonymously redundantif the genotypes

that map to the same phenotype are part of a neutral network (i.e., they are close to each other),3 (c) a redundant

representation has highlocality if neighbouring genotypes map to neighbouring phenotypes and, finally, (d) a

redundant representation has highconnectivityif the number of phenotypes which are accessible from a phenotype

by one bit-flip mutation is high. Rothlauf and Goldberg argued that in synonymously redundant representations,

genetic operators work well and the landscape is smoother than in non-synonymously redundant representations

where the search operators show poor performance. In non-synonymously redundant representations4 two genotypes

representing the same phenotype may be very different from each other and, as a consequence, evolutionary search

behaves like random search.

Fonseca and Correia [28] developed two redundant representations using approaches based on mathematical

3An example of this type of redundancy is the trivial voting mapping proposed in [22], [23].

4Examples of this type of redundancy are the cellular automaton and the RBN mappings described in [22], [23].
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tools. They found that some of the properties and analysis ofRothlauf and Goldberg provided in [27] disagreed

with their results. In particular, while Rothlauf and Goldberg suggested that when using a synonymously redundant

representation the connectivity between phenotypes is notincreased, Fonseca and Correia indicated that this is not

necessarily true. They reported that, with their proposed representations, the connectivity between phenotypes tended

to increase with the amount of redundancy in the encoding. Fonseca and Correia also found that high connectivity

can be present even with very little redundancy. Therefore,the belief that large amounts of neutrality must be

present to aid evolution [29] should be carefully scrutinised.

As can be seen from the brief survey provided above,5 there are many contradictory results on neutrality. In the

following section, we will present a measure of hardness — the fitness distance correlation — that will later help

us explain under what circumstances neutrality can be beneficial in an evolutionary process.

III. F ITNESSDISTANCE CORRELATION

Jones [31], [32] suggested that we could consider fitness functions as heuristic functions (in the sense of the

term used in classical artificial intelligence). Their outputs could then be interpreted as indicators of the distance

between tentative solutions and their nearest global optimum in the search space. If one could express the degree

to which the fitness function conveys correct information about such a distance, one would get an idea of how

difficult the search is going to be. In order to gather information on the difficulty of a problem one would need

to perform two tasks: (a) determining the distance between potential solutions and their nearest global optima, and

(b) calculating the fitness of potential solutions. Obviously, step (a) requires that the global optima for a problem

be known in advance.

Jones proposed to condense the information gathered in thisprocess using a heuristic measure of problem difficulty

called thefitness distance correlation (fdc). The definition offdc is quite simple: given a setF = {f1, f2, ..., fn}
of fitness values ofn individuals and the corresponding setD = {d1, d2, ..., dn} of distances of such individuals

from the nearest global optimum,fdc is given by the correlation coefficient

fdc =
CFD

σF · σD
, (1)

where:

CFD =
1

n

n
∑

i=1

(fi − f)(di − d)

is the covariance ofF andD, andσF , σD, f andd are the standard deviations and means ofF andD, respectively.

Typically, then individuals used to computefdc are obtained via some form of random sampling.

Jones [31], [32] suggested that a problem can be classified inone of three classes, depending on the value of

fdc:

1) misleading(fdc ≥ 0.15), in which fitness tends to increase with the distance from the global optimum;

2) difficult (−0.15 < fdc < 0.15), for which there is no correlation between fitness and distance; and

5A more detailed survey can be found in [30].
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Fig. 1. Representation used to induce constant neutrality.

3) easy(fdc ≤ −0.15), in which fitness increases as the global optimum approaches.

The interval[−0.15, 0.15] associated with difficult problems was empirically determined.

The fitness distance correlation approach has been successfully used in a wide variety of problems to assess

hardness for EAs [33]–[36] and genetic programming systems[12], [37]–[43]. However, there are some known

weaknesses of thefdc as a measure of problem hardness [44], [45]. Jones himself proposed to use scatter plots of

distancesvs. fitnesses to characterise problems, whenfdc did not give enough information about the hardness of a

problem. Nonetheless, the situations wherefdc has been shownnot to be informative are rather artificial.

IV. CONSTANT AND BITWISE NEUTRALITY

In the following sub-sections, we will introduce the different forms of neutrality and test problems considered in

this paper. To keep things as simple as possible, we will use the simplest possible algorithms — mutation based,

binary EAs without crossover — to conduct our studies.

A. The Simplest Form of Neutrality: Constant Neutrality

In the context of binary EAs, the simplest possible definition of neutrality one can imagine is what we will

call constant neutrality. As illustrated in Figure 1, neutrality is plugged into the original, non-redundant, code by

adding an extra bit to the representation. When the bit is set, the fitness of an individual is a pre-fixed constant

value. When the bit is not set (i.e., 0), the fitness of the individual is determined by the coding bits as usual. This

representation induces a neutral network of constant fitness, identically distributed in the whole search space.

B. Bitwise Neutrality

In this work, we also consider a more natural form of neutrality which we callbitwise neutrality. Bitwise neutrality

is induced by a genotype-phenotype map, where each phenotypic bit is obtained by transformingn genotypic bits
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Fig. 2. Three different genotype-phenotype mappings that induce bitwise neutrality: (a) Majority encoding, (b) Parity encoding and (c) Truth

table encoding.
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via some encoding function. Obviously, whenevern > 1, the same phenotype can be obtained from different

genotypes, so neutrality is artificially added to the searchspace.

In particular, we will look at the following three encodings:

1) The majority encoding, which works as follows: givenn genotypic bits and a user-defined thresholdT

(0 ≤ T ≤ n), if the number of ones in then bits is greater than or equal toT , then the corresponding

phenotypic bit is set to 1, otherwise it is set to 0 (see Figure2(a)). To avoid biasing the system, we will use

T = n/2 andn odd, which guarantee that 0s and 1s are treated identically.

2) The parity encoding, which works as follows: if the number of ones inn genotypic bits is even, then the

corresponding bit of the phenotype is set to 1, otherwise it is set to 0 (see Figure 2(b)).

3) The truth table encoding, which works as follows. A truth table is generatedwhere the output associated

with each combination ofn inputs is randomly set to either 0 or 1, while ensuring the number of 0s and 1s

in the table are identical. Each phenotypic bit is determined by using the correspondingn genotypic bits as

inputs to the truth table and reading out the associated output (see Figure 2(c)).

C. Test Problems

In order to analyse the effects of the forms of neutrality introduced above, we will use the following problems

and classes of problems.

1) OneMax Problem:The problem is to maximise the function:

f(x) =
∑

i

xi,

wherex ∈ {0, 1}ℓ is a binary string of lengthℓ andxi is its i-th element. Naturally, this problem has only one

global optimum in111 · · ·111, and the landscape is unimodal. Seen as a function of unitation (the number of1s

in a string), the problem is represented byf(u) = u or f(x) = u(x) whereu(x) is a function that returns the

unitation value ofx.

2) Multimodal Problem Generator:We also use problems generated by the multimodal problem generator

presented in [46]–[48]. The idea is to create problem instances with a certain degree of multi-modality.

The generator works as follows. To create a problem withP peaks,P bit strings of lengthℓ, which we denote

asPeak1, Peak2, ..., PeakP , are randomly generated. To each, a peak height,Height(Peaki), is assigned. The

heights of the peaks are chosen in such a way as to cover an interval [h, 1] (whereh is a constant< 1) with P

equal-size steps. To evaluate an arbitrary individual,x, it is necessary to first locate the nearest peak in Hamming

space, which we denote as

Peakn(x) = argmin
i

H(Peaki, x),

whereH is the Hamming distance. In case there is a tie, the highest peak is chosen.
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The fitness ofx is the number of bits the string has in common withPeakn(x), divided byℓ and scaled by the

height of the nearest peak. That is

f(x) =
ℓ−H(x, Peakn(x))

ℓ
×Height(Peakn(x)).

In this problem class, fitness values are in the range[0, 1]. The goal is to find the highest peak (i.e., to find a string

with fitness1.0).

The difficulty of problems generated with this technique depends on the number of peaks, the distribution of

peaks and, finally, the distributions of peak heights. To carry out our experiments, these parameters have been tuned

in such a way to make generated problems much harder than OneMax but easier than the trap problem (described

below).

3) Trap Function: The Trap function is a deceptive function of unitation [49]–[51] of the following form:

f(x) =











a
umin

(umin − u(x)) if u(x) ≤ umin,

b
ℓ−umin

(u(x) − umin) otherwise,

wherea is the deceptive optimum,b is the global optimum, andumin is the slope-change location. By varying the

parameterumin, the relative size of the basins of attraction of the two optima may be varied, thereby making the

problem easier or harder.

4) MAX-SAT Problem Class:The Boolean satisfiability problem, also known as SAT, is oneof the most studied

NP-complete problems (e.g., see [52]–[58]). The target in SAT is to determine whether it is possible to set the

variables of a given Boolean expression in such a way to make the expression true. The expression is said to be

satisfiable if such an assignment exists.

In SAT, expressions are often represented in conjunctive normal form, i.e., as a conjunction of clauses, where

each clause is a disjunction of literals (variables or negated variables). In a version of the problem, calledk-SAT,

all clauses have exactlyk literals. A related problem, known as the Maximum Satisfiability problem, or MAX-SAT,

consists in determining the maximum number of clauses of a given Boolean formula that can be satisfied by some

assignment. MAX-k-SAT is the maximum satisfiability problem fork-SAT instances. In this paper we use a class of

MAX-3-SAT problems as our fourth benchmark. In particular,we focus on problems where the maximum number

of satisfiable clauses is equal to the number of clauses in a formula. In other words, the MAX-3-SAT instances we

consider are all satisfiable.6

We treat MAX-3-SAT as an optimisation problem with the following objective function:

f(x) =

c
∑

i=1

Si(x),

6The reason for this choice is simple. It is well-known that random 3-SAT instances become harder and harder to satisfy as the clause-to-

variable ratio increases (e.g., see [59]). By using satisfiable MAX-3-SAT instances, we can finely control the difficultyof our benchmarks by

varying such a ratio.
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whereSi(x) is 1 if clausei is satisfied by assignmentx and 0 otherwise. A clause is satisfied if at least one of the

literals it contains is true. Since our random MAX-3-SAT instances are all satisfiable, we declared a MAX-3-SAT

problem as solved as soon as a stringx such thatf(x) = c was generated by the EA.

V. FITNESSDISTANCE CORRELATION IN THE PRESENCE OFNEUTRALITY

In this section, we will study the forms of neutrality introduced in the previous section using thefdc. We do this

analytically. To avoid sampling errors, we consider every point in the search space, instead of a random subset.

Naturally, before analysing how thefdc for different problems changes in the presence of neutrality, we need to

evaluate thefdc in its absence.

A. fdc in the Absence of Neutrality

For all our test problems, given a search space of binary strings of lengthℓ, if the whole search space is sampled

in order to computeCFD, we have:

CFD =
1

2ℓ

∑

x∈{0,1}ℓ

(f(x) − f̄)(d(x) − d̄),

wheref(x) is the fitness of stringx, d(x) is the Hamming distance between stringx and its nearestglobaloptimum,

andd̄ andf̄ are the averages ofd(x) andf(x), respectively, over all strings in the search space. Similar expressions

hold for σF andσD.

Naturally, in problems with a single global optimum (such asOneMax, Trap and the functions created by the

multimodal problem generator), we have thatd̄ = ℓ
2

in the expressions forCFD andσD.

Further simplifications are possible for the OneMax and the Trap problems, since these are functions of unitation.

For example, considering that the unitation of the optimal string for these problems isuopt = ℓ, we can coarse-grain

and simplify the calculation ofCFD as follows:

CFD =
1

2ℓ

ℓ
∑

u=0

(

ℓ

u

)

(f(u)− f)(ℓ − u− d),

where, as indicated above,̄d = ℓ
2

and

f =
1

2ℓ

ℓ
∑

u=0

(

ℓ

u

)

f(u).

Similar expressions can be obtained forσD andσF .

For example, for OneMax, wheref(u) = u, we havef̄ = ℓ
2

and

CFD =
1

2ℓ

ℓ
∑

u=0

(

ℓ

u

)(

u− ℓ

2

)(

ℓ

2
− u

)

= − ℓ

4
,

as one can easily see by noting that1

2ℓ

(

ℓ
u

)

is an instance of a binomial distribution function (with success probability

1/2). Thus,, by the definition of variance,CFD = −V ar[u]. By similar arguments, one findsσ2
D = σ2

F = ℓ
4
, whereby

fdc = −1, suggesting an easy problem. For Trap functions, instead, wheneverumin ≈ ℓ/4, one findsfdc ≈ 1 [31]

indicating hard problems.
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B. fdc in the Presence of Constant Neutrality

As mentioned in Section IV, constant neutrality is a form of neutrality where an extra bit is added to the genotype.

When the bit is set, the individual is on a neutral network andits fitness is a predefined value,fn, irrespective of

the other bits.

In this situation,CFDn (the subscriptn stands for “neutrality”) is given by:

CFDn
=

1

2ℓ+1

∑

x∈{0,1}ℓ+1

(f(x) − f̄)(d(x) − d̄), (2)

wherex = x0x1 · · ·xnℓ is a genotype, andx0 is the “neutrality” bit. Similar expressions hold forσD andσF . Note

that f(x) can be written as

f(x) =











fn if x0 = 1,

fp(x1, · · · , xℓ) otherwise,

wherefp(·) is the “phenotypic fitness”, i.e., the fitness associated with the coding bits in a genotype. It follows that

f̄ =
fn
2

+
f̄p
2
,

f̄p being the average fitness in the absence of neutrality.

Note that, assuming all global optima have fitness higher than fn, the distance of a stringx0x1 · · ·xℓ from the

closest optimum is the same as in the absence of neutrality ifx0 = 0, while the distance is increased by 1 ifx0 = 1

(since the optima are outside the neutral network). Thus,

d̄ =
1

2
+ d̄p,

dp being the distance from the closest global optimum in the absence of neutrality.

Substituting these results in Equation (2) we obtain

CFDn
=

1

2ℓ+1

∑

y∈{0,1}ℓ

(fn − fn
2

− f̄p
2
)(1 + dp(y)− d̄p −

1

2
)

+
1

2ℓ+1

∑

y∈{0,1}ℓ

(fp(y)−
fn
2

− f̄p
2
)(dp(y)− d̄p −

1

2
).

By simplifying and collecting terms appropriately, one canrewrite this as

CFDn
=

3

8
(fn − f̄p)

+
1

2ℓ+1

∑

y∈{0,1}ℓ

(fp(y)− f̄p)(dp(y)− d̄p)

=
3

8
(fn − f̄p) +

1

2
CFD.

Proceeding similarly forσ2
F andσ2

D we obtain

σ2
Fn

=
(fn − f̄p)

2

4
+

1

2
σ2
F
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Fig. 3. Fitness distance correlation in OneMax in the presence of constant neutrality as a function offn for ℓ = 14.

and

σ2
Dn

=
1

2
+ σ2

D.

Combining the previous results we obtain

fdcn =
3
8 (fn − f̄p) +

1
2CFD

√

(fn−f̄p)2

4 + 1
2σ

2
F ×

√

1
2 + σ2

D

. (3)

Equation (3) makes it clear that, in the presence of constantneutrality, fdc depends on the difference between

the fitness of the neutral network,fn, and the mean fitness in the absence of neutrality,f̄p. In addition,fdc depends

on the fitness-distance covarianceCFD as well as the variancesσ2
F andσ2

D in the absence of neutrality.

As an example, let us use Equation (3) to calculatefdcn for the OneMax problem forℓ = 14 (the value ofℓ we

will use in the experiments in Section VII). We know that for this problemCFD = − ℓ
4 andσ2

F = σ2
D = ℓ

4 . Also,

f̄p = ℓ
2 . Sinceℓ = 14, with a little algebra we obtain

fdcn =
3fn − 35

8
√

(fn − 7)2 + 7
.
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Figure 3 shows a plot of this function. We can immediately seefrom this plot that the addition of neutrality

reducesfdc (i.e., is expected to make the problem harder) irrespectiveof the choice offn. For particularly high

values offn, however,fdcn gets very close to zero, indicating that the problem becomesreally difficult.

More generally, from Equation (3), we see that iffn = f̄p, we have thatfdcn = 1√
2
× CFD

σF×
√

1

2
+σ2

D

. This means

that if CFD is positive thenfdcn < 1√
2
× CFD

σF×σD
= fdc√

2
, while if CFD is negative thenfdcn > 1√

2
× CFD

σF×σD
= fdc√

2
.

In other words, the addition of constant neutrality with a neutral network of fitnessfn = f̄p would make easy

problems harder and deceptive problems easier.

One might wonder why this would be the case. The reason is thatadding a neutral network to the landscape

modifies the search process. The search operators will produce individuals on the neutral network (as well as outside

it). If the fitness of the neutral network is not too low, selection will use some of these individuals as parents. Since

these are all equally good, the search will effectively acquire some of the features of random search. Of course, the

part of the population outside the neutral network will be affected and guided by the fitness function. In an easy

problem, the guidance will generally be reliable. Therefore, having effectively hybridised the search with random

search will simply slow down the process of converging towards high fitness regions of the landscape. However,

in deceptive problems, where the information provided by the fitness function does not lead towards the global

optimum, the hybridisation is beneficial: by ignoring the guidance of the fitness function at least some of the time,

the probability of the searcher stumbling on a good area of the fitness landscapes is increased.

If fn 6= fp̄, as for OneMax, in general we will find that these effects are modulated by the value offn. For

example, iffn is high compared with̄fp, the neutral network will act as an attractor for the population. This will

make the search more random than in the casefn = f̄p considered above. So, in easy problems, we should see a

more marked worsening of performance. If, instead, the fitness function was originally deceptive, a highfn will

keep a bigger fraction of the population on the neutral network for longer. This will make it even more probable

for the population to escape from traps and locate good optima.

If fn is low compared withf̄p, selection will avoid using individuals on the neutral network as parents.

Consequently, the search does not really become more randomthan it would be without neutrality. In other words, a

neutral network with a lowfn does not really change hard problems into easier ones nor does it change easy problems

into harder ones. However, in both cases the search operators (particularly mutation) may produce individuals on the

neutral network. These individuals represent wasted samples. So, constant neutrality with a lowfn cannot provide

any benefit at all.

One other aspect should be considered. In the presence of constant neutrality, the landscape is divided into

two areas of identical sizes: the neutral network and the rest of the search space. For bit strings of lengthℓ,

there are2ℓ points in each region. However, there is still the same number of global optima. This means that

the addition of constant neutrality comes at a cost since thesize of the search space has been expanded without

correspondingly expanding the solution space. Thus, we should expect to see benefits of constant neutrality (e.g.,

improved performance) only when neutrality modifies the search bias of an algorithm-problem pair in such a way

as to make the sampling of the global optimum significantly more likely than without this form of neutrality. If
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this does not happen, or worse, if the original search bias ismodified in such a way as to make it harder to reach

the global optimum, then we should expect constant neutrality to be deleterious. These considerations apply also

to other forms of neutrality wherever neutrality alters unfavourably the proportion of solutions in the search space.

C. fdc in the Presence of Bitwise Neutrality

As mentioned in Section IV, another form of neutrality that is considered here is the one where each phenotypic

bit is encoded usingn genotypic bits. In this situation,CFDn is given by:

CFDn
=

1

2nℓ

∑

x∈{0,1}nℓ

(f(x)− f̄)(d(x) − d̄),

wherex = x1 · · ·xnℓ is a genotype andf(x) is the genotypic fitness. Similar expressions can be obtained for σDn

andσFn
. Note thatf(x) can be written as

f(x) = fp(g(x
(1)), g(x(2)), · · · , g(x(ℓ))) (4)

wherex(k) = x(k−1)n+1 · · ·xkn is a sub-string ofx, g is one of our encoding functions (e.g., Majority or Parity),

andfp(y) is the phenotypic fitness (y ∈ {0, 1}ℓ).
Let us define two sets:Xn = {x ∈ {0, 1}n : g(x) = 1} and X̄n = {x ∈ {0, 1}n : g(x) = 0}. In what follows

we require that the encoding functionsg respect one property: that on average they return as many 0s as 1s, i.e.,

∑

x∈{0,1}n

g(x) = 2n−1.

This property is respected by the encodings described in Section IV. So, |Xn| = |X̄n| = 2n−1.

If one knows the functionfp and the location of its global optima, one can simplify the expressions ofCFDn
,

σDn
andσFn

. This results in a formula forfdcn where there is an explicit dependency on the number of bits,n,

used in the encoding functions which induce bitwise neutrality. One can then see under what circumstances bitwise

neutrality makes problems easier or harder (note that whenn = 1 there is no added neutrality in the encoding).

The calculations involved here are doable but they are rather laborious. For this reason, in the following section

we will illustrate the process using the simplest of our testfunctions: OneMax.

D. fdc for OneMax with Bitwise Neutrality: General Results

For the OneMax function, the phenotypic fitness of a bit string y1...yℓ is fp(y1, ...yℓ) =
∑

i yi. Thus, from

Equation (4) we obtain

f(x) =
∑

i

g(x(i)). (5)

To computefdc we use a result originally derived by Jones [31, Appendix D]:the concatenation of multiple

copies of a problem does not change thefdc of the original problem, provided the fitness of the concatenated

problem is obtained by summing the fitnesses of the sub-problems. This result is applicable to Equation (5) because

g can be interpreted as the fitness function of ann-bit problem which is concatenatedℓ times to form anℓ × n

bit problem with fitness functionf(x). Therefore,fdc for OneMax can be computed for different forms of bitwise
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neutrality by simply computing thefdc of the correspondingg functions. Since these functions take only binary

values, this calculation is much simpler than the original.

Let us start by considering the mean value of the functiong, which we denote as̄g. By definition g(x) = 1 for

x ∈ Xn andg(x) = 0 otherwise. Thus, irrespective of the encoding used, we havethat

ḡ =
1

2n

∑

x∈{0,1}n

g(x) =
1

2n

∑

x∈Xn

1 =
1

2n
|Xn| =

1

2
.

Using this result in the computation ofσ2
F , we obtain

σ2
F =

1

2n

∑

x∈{0,1}n

(g(x)− ḡ)2 =
1

4
,

which, again, is valid for all encodings.

By definition

d̄ =
1

2n

∑

x∈{0,1}n

H(x,N(x)), (6)

whereN(x) is the global optimum ofg nearest tox andH is the Hamming distance. Becauseg can only take two

values, 0 and 1, all elements ofXn are global optima ofg. So, if x ∈ Xn, thenx = N(x) andH(x,N(x)) = 0.

As a result, Equation (6) simplifies to

d̄ =
1

2n

∑

x∈X̄n

H(x,N(x)). (7)

If the definition of Hamming distance is extended to sets via the definitionH(x, S) = miny∈S H(x, y), Equation (7)

becomes

d̄ =
1

2n

∑

x∈X̄n

H(x,Xn) =
1

2
E[H(x,Xn)|x ∈ X̄n], (8)

whereE[H(x,Xn)|x ∈ X̄n] is the mean Hamming distance between the elements ofX̄n and the setXn.

Let us now computeσ2
D. We have

σ2
D =

1

2n

∑

x∈{0,1}n

(H(x,N(x)) − d̄ )2

=
1

2n

∑

x∈Xn

(

0− d̄
)2

+
1

2n

∑

x∈X̄n

(

H(x,Xn)− d̄
)2

=
1

2

(

d̄ 2 + E
[

(

H(x,Xn)− d̄
)2
∣

∣

∣
x ∈ X̄n

])

=
1

2
E
[

H(x,Xn)
2
∣

∣

∣
x ∈ X̄n

]

− 1

4

(

E
[

H(x,Xn)
∣

∣

∣
x ∈ X̄n

])2

.
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Finally, we compute

CFD =
1

2n

∑

x∈{0,1}n

(g(x)− ḡ )(H(x,N(x)) − d̄ )

=
1

2n

∑

x∈Xn

(

1− 1

2

)

(

0− d̄
)

+
1

2n

∑

x∈X̄n

(

0− 1

2

)

(H(x,Xn)− d̄ )

=
1

2n+1

∑

x∈X̄n

H(x,Xn)

= −1

4
E[H(x,N(x))|x ∈ X̄n]

= − d̄

2

In the following subsections, these generic results are applied to the three encoding functions presented previously:

Parity, Truth Table and Majority.

E. fdc for OneMax under Parity Bitwise Neutrality

Let us start with the Parity encoding. The bit strings inX̄n have all odd parity. Therefore, they can be turned into

even-parity global optima by a single bit flip. That is, theirHamming distance from a global optimum is always 1,

wherebyE[H(x,Xn)|x ∈ X̄n] = 1. Thus, from Equation (8) one obtains̄d = 1
2 . It follows thatCFD = − 1

4 . We

also haveE
[

H(x,Xn)
2
∣

∣x ∈ X̄n

]

= 1. So,σ2
D = 1

4 .

Therefore, the fitness distance correlation for OneMax under the Parity encoding is

fdc =
− 1

4
√

1
4

√

1
4

= −1.

That is, thefdc of OneMax is unaffected by the presence of bitwise neutrality under Parity encoding, irrespective

of the number of bits (n) one uses. This was expected, since the parity encoding is a form of trivial neutrality [20]

(see Section II). So, the difficulty of OneMax should be unaffected by this form of neutrality.

F. fdc for OneMax under Truth Table Bitwise Neutrality

Let us now consider the Truth Table encoding. In order to apply Equation (8), we need to compute

E[H(x,Xn)|x ∈ X̄n]. To do this, we treatH(x,Xn) as a stochastic variable. We want to compute the probability,

p(d), thatH(x,Xn) = d for a randomly chosenx ∈ X̄n. Then, making use of the definition of the expected value,

we want to compute

E[H(x,Xn)|x ∈ X̄n] =

n
∑

d=1

d · p(d). (9)

We start by considering the cased = 1. Let us choose uniformly at random anx ∈ X̄n and then choose

randomly one of the Hamming-1 neighbours,x′, of x. Because the entries of the truth table are randomly assigned,

the probability thatx′ ∈ Xn is 1
2 . Note thatp(1) is the probability thatat leastone neighbour ofx is a member of
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Xn. Sincex hasn neighbours and each neighbour’s membership ofXn is a Bernoulli trial with success probability

1
2 , we have that

p(1) = 1−
(

1

2

)n

.

Thus, asn grows,p(1) rapidly approaches 1.

Let us now focus onp(2). This can be seen as the probability of a joint event, i.e., none of the Hamming-1

neighbours of a randomly chosenx ∈ X̄n is a member ofXn, but at least one of its Hamming-2 neighbours is.

These two events are treated as independent.7 Obviously, the probability that none of the Hamming-1 neighbours

of x is a member ofXn is simply 1− p(1) =
(

1
2

)n
. The probability of at least one of its Hamming-2 neighbours

being inXn is the complement of the probability that none of the Hamming-2 neighbours is inXn. Since there

are
(

n
2

)

such neighbours and the probability of each being inXn is 1
2 , the probability that none of the Hamming-2

neighbours ofx is in Xn is 1−
(

1
2

)(n
2
). Putting everything together we then get

p(2) =

(

1

2

)n
(

1−
(

1

2

)(n
2
)
)

.

Generalising the calculation we get

p(d) =

(

1

2

)

∑d−1

k=1
(nk)
(

1−
(

1

2

)(nd)
)

.

Note thatp(d) is a very rapidly decreasing function. For example, forn = 4 we havep(1) = 0.93750, p(2) =

0.061523, p(3) = 0.00091553 and p(4) = 0.000030518. Furthermore, asn increases, more and more of the

probability mass accumulates ontop(1). Effectively this means that typically onlyp(1) andp(2) have any relevance

in the calculation in Equation (9).

As a result, for sufficiently largen we can approximate

E[H(x,Xn)|x ∈ X̄n] ≈ p(1) + 2p(2) ≈ 1 +

(

1

2

)n

.

So, for the Truth Table encoding, we have

d̄ ≈ 1

2
+ 2−n−1, whereby CFD = −1

4
− 2−n−2.

Using similar approximations, we find that

E
[

H(x,Xn)
2
∣

∣

∣
x ∈ X̄n

]

=
n
∑

d=1

d2 · p(d)

≈ p(1) + 4p(2)

≈ 1 + 3× 2−n.

7This is an approximation, but its accuracy rapidly improveswith n. So, our calculations are already very accurate forn ≥ 3.
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From this, it follows that

σ2
D ≈ 1

2

(

1 + 3× 2−n
)

− 1

4

(

1 + 2−n
)2

≈ 1

2

(

1 + 3× 2−n
)

− 1

4

(

1 + 2−n+1
)

=
1

4
+ 2−n.

Therefore, the fitness distance correlation for OneMax under the Truth Table encoding can be approximated as

fdc ≈ −
1
4 + 2−n−2

√

1
4 + 2−n

√

1
4

= −2(−n−1) + 1
2

√

2−n + 1
4

.

This equation has been derived using approximations that are valid for sufficiently largen. For such values ofn,

the constant terms in the equation will tend to dominate and effectively fdc ≈ −1. This means that the Truth Table

encoding induces a form of neutrality which, for sufficiently largen, leaves thefdc / problem difficulty unchanged.

For relatively small values ofn, however, this encoding makes the OneMax problem harder, albeit to a small degree.

G. fdc for OneMax under Majority Bitwise Neutrality

Let us now consider the Majority encoding. Again, we start bycomputingE[H(x,Xn)|x ∈ X̄n].

With a Majority encoding whereT = n/2 andn odd, X̄n is the class of all strings of lengthn which have 0,

1, ... ⌊T ⌋ bits set to 1.8 That is, one can naturally describēXn by saying that it contains all strings with unitation

valueu < T . Given a string inX̄n having unitationu, we can compute how close this is toXn just by looking

at how many additional 1’s would be needed to transform the string into a member ofXn. This number is simply

⌈T − u⌉. Since for each unitation class,u, we have
(

n
u

)

strings, we can then write

E[H(x,Xn)|x ∈ X̄n] =
1

2n−1

∑

x∈X̄n

H(x,Xn)

=
1

2n−1

∑

u<T

(

n

u

)

× ⌈T − u⌉.

This can be computed numerically. ForT = n/2, n odd, and small values ofn, E[H(x,Xn)|x ∈ X̄n] grows

approximately as0.63 + 0.37
√
n. Thus, we have

d̄ ≈ 0.315 + 0.185
√
n

and

CFD ≈ −0.1575− 0.0925
√
n.

8The operation⌊T ⌋ returns the largest integer not bigger thanT , while ⌈T ⌉ returns the smallest integer not smaller thanT .
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Using a similar approach, we compute

E
[

H(x,Xn)
2
∣

∣

∣
x ∈ X̄n

]

=
1

2n−1

∑

x∈X̄n

H(x,Xn)
2

=
1

2n−1

∑

u<T

(

n

u

)

× ⌈T − u⌉2

≈ 0.725 + 0.334× n,

whereby

σ2
D ≈ 1

2

(

0.725 + 0.334× n− 2
(

0.315 + 0.185
√
n
)2
)

≈ 0.133n− 0.117
√
n+ 0.263.

Therefore, the fitness distance correlation for OneMax under the Majority encoding is

fdc ≈ − 0.315 + 0.185
√
n

√

0.133n− 0.117
√
n+ 0.263

.

This equation makes it clear that, in this case, there is a much more marked effect of the encoding on the difficulty

of a problem: thefdc progressively increases (from the original value of−1) as n increases. For example, for

n = 3, 5, 7, 9, 11 we obtainfdc values of approximately -0.9376, -0.8926, -0.8554, -0.8261 and -0.8028, respectively.

H. Lessons for other problems

Naturally, fdc could be computed also for the Multimodal problem generator, the Trap function and any given

MAX-SAT problem in the presence of bitwise neutrality. Unfortunately, for these functions one cannot not use

Jones’ “trick” [31, Appendix D] to simplify the calculations. This makes the derivation of theoretical results much

more complex. However, based on what we have learnt from the results on constant neutrality, from our results with

bitwise neutrality and OneMax, and from the theory in [20], it is easy to understand that the Parity and Truth Table

encodings will have a limited influence on thefdc of the Trap, Multimodal and MAX-SAT functions. However, we

should expect the Majority encoding to change thefdc (and potentially the difficulty) of these problems significantly.

VI. PHENOTYPIC MUTATION RATES

The analysis based onfdc indicates that the choice of encoding function used to introduce neutrality may be

critical in determining whether the difficulty of a problem is decreased, increased or left unaltered by neutrality.

However, fitness landscapes andfdc effectively neglect to model the fact that the precise distribution of mutants

may have an important effect on search behaviour and performance. For example,fdc remains the same irrespective

of the mutation probabilitypm.

Thus, to evaluate the benefits and drawbacks of neutrality itis also important to understand what effects different

types of neutral encodings have on the way the search proceeds. In particular, we want to understand how genotypic

mutations are related to phenotypic mutations, since only phenotypic changes can lead to fitness changes. To do

so, the notion ofphenotypic mutation ratewill be used.
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A. Constant Neutrality

In the case of constant neutrality, the genotype-phenotypemapping is not fully specified. This is because we

directly associate a fitnessfn to all bit strings of the formx0x1...xℓ with x0 = 1, without really going through a

process of transformation of the genotype into a phenotype.Only whenx0 = 0 the genotype-phenotype mapping is

specified: this is a simple transformation, where the phenotype is directly determined by the genotypic bitsx1...xℓ.

However, if we imagine, for simplicity, that all strings on the neutral network represent the same phenotype, we have

a fully specified genotype-phenotype map for constant neutrality. This allows us to define the notion of phenotypic

mutation rate for this representation. To further simplifyour treatment we will further assume that the “neutral”

phenotype is different from all other phenotypes.

Let pm be the mutation rate and letpp be the probability of a phenotype change when the genotype ishit by

a mutation in the absence of neutrality. In general,pp is a monotonically increasing function ofpm (more on this

below). Letp(x0 = 1) andp(x0 = 0) represent the probability of selection for individuals on the neutral network

and outside the neutral network, respectively.

Let us consider the possible ways in which the bitx0 can be modified by a mutation and what consequences

this has on the phenotype represented by a stringx0x1...xℓ:

(1) If a parent string hasx0 = 1 and the bitx0 is not mutated, irrespective of how many mutations will hit the

remaining bits in the string, there cannot be a phenotypic change (the offspring will still be on the neutral

network as its parent). If insteadx0 is mutated into a 0, which happens with probabilitypm, then there is

always a phenotypic change.

(2) If a parent string hasx0 = 0 and the bitx0 is not mutated, which happens with probability1− pm, then the

mutations on bitsx1...xℓ determine whether there is a phenotypic change. This will occur with probability

pp. If insteadx0 is mutated into a 1, which happens with probabilitypm, then, again, there is always a

phenotypic change.

Naturally, case (1) applies only to a proportionp(x0 = 1) of mutations, while case (2) applies to a proportion

p(x0 = 0).

By properly combining these probabilities, one finds that the probability of a phenotypic mutationppn
in the

presence of constant neutrality is

ppn
= p(x0 = 1)pm + p(x0 = 0)[(1− pm)pp + pm]

= pm + p(x0 = 0)(1− pm)pp (10)

≈ p(x0 = 0)pp,

where we used the propertyp(x0 = 1) + p(x0 = 0) = 1 and we assumed thatpm is small. In other words, we

have that with constant neutrality the probability of a phenotypic mutation is proportional to the probability of a

phenotypic mutation observed in the absence of neutrality.The proportionality factor — the selection probability for

strings outside the neutral network — is not fixed. It dependson how attractive individuals in the neutral network
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Fig. 4. Effective phenotypic mutation rate for invertible fitness functions as a function of the genotypic mutation ratefor strings of length

ℓ = 14 and different values of the selection probability for strings outside the neutral network induced by constant neutrality.

appear to selection. Iffn is high, we should expect to see a bigger proportion of the population on the neutral

network than iffn is low. If fn is high, we should expect the selection probabilityp(x0 = 0) and, correspondingly,

the probability of a phenotypic mutation to be smaller than if fn is low, andvice versa.

Note that the exact expression of the probability of a phenotypic mutationpp depends on the problem. If the

fitness functionfp is invertible, each stringx1 · · ·xℓ has a unique fitness associated to it. Therefore, effectively any

mutation hitting bitsx1 to xℓ causes a phenotypic mutation. In these cases,pp is the complement of the probability

that none of the bits inx1 · · ·xℓ are mutated, i.e.,pp = 1− (1− pm)ℓ.

Let us define theeffective phenotypic mutation rate, pmp
, for constant neutrality as a quantity such that the

probability of a phenotypic mutation in the left-hand-sideof Equation (10) can be rewritten asppn
= 1−(1−pmp

)ℓ.

For invertible fitness functions, this is exactly the same form aspp. For such functions, substituting the expressions
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for pp andppn
in Equation (10) and solving for the effective phenotypic mutation rate yields

pmp
=

1− [p(x0 = 0)(1− pm)ℓ + p(x0 = 0)pm + 1 (11)

−p(x0 = 0)((1− pm)ℓpm)− p(x0 = 0)− pm]1/ℓ.

This equation allows us to get a feel for how constant neutrality alters the effects of the mutation operator. Figure 4

illustrates the relationship, indicating how, as expected, constant neutrality reduces the effective mutation rate used

in the search.

B. Bitwise Neutrality

When the parity encoding is used, the phenotypic mutation rate,pmp
, corresponding to a genotypic mutation rate

pm is given by:

pmp
=

∑

i=1,3,5,...

(

n

i

)

pim(1− pm)n−i.

This is because only an odd number of genotypic bit-flips can produce a phenotypic change.

When the Truth Table encoding is used, the mutation rate at phenotype level is given by:

pmp
=

1− (1 − pm)n

2
.

This is because there is the potential for a change in a phenotypic bit whenever the row is changed from which

the output in the truth table is read. This happens if at leastone genotypic mutation takes place (hence the factor

1 − (1 − pm)n). However, not all row changes lead to a flipped phenotypic bit. Because the table is random, this

happens only in 50% of the cases (hence the denominator, 2).

The calculation of the phenotypic mutation rates for Majority is more difficult. However, obtaining numerical

estimates for these is very easy. This can be done by generating genotypic mutants of groups ofn bits using a

particular genotypic mutation rate, and recording how frequently the mutants are in a different majority class than

the original configuration.

Table I shows the phenotypic mutation rates corresponding to the mutation ratespm = 0.01, 0.06 and 0.1 for

Parity, Truth Table and Majority. In the case of Majority, the figures are estimated by generating 10,000 mutants

starting from a uniform random population.

There are conditions in which different encodings produce similar phenotypic mutation rates. This is the case,

for instance, for the pairs of numbers inboldface, underlined, doublyunderlined and
::::::::::

underlined with a wavy line

in the table. Note that the Parity and Truth Table encodings (for the values ofn used in the table) leave the fitness

distance correlation of a problem unchanged, as discussed in the previous section. So, whenever the phenotypic

mutation rates also match, we should expect to see similar performance under these two encodings.
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TABLE I

PHENOTYPIC MUTATION RATES CORRESPONDING TO DIFFERENT GENOTYPIC MUTATION RATES FOR DIFFERENT FORMS OF BITWISE

NEUTRALITY.

Type of pm = 0.01 pm = 0.06 pm = 0.1

redundancy

Parity (n bits = 5) 0.0480 0.2361
::::

0.3362

Parity (n bits = 6) 0.0571 0.2678 0.3689

Parity (n bits = 7) 0.0659 0.2957 0.3951

Parity (n bits = 8) 0.0746
:::::

0.3202 0.4161

Truth Table (n bits = 5) 0.0245 0.1331 0.2048

Truth Table (n bits = 6) 0.0293 0.1551 0.2343

Truth Table (n bits = 7) 0.0340 0.1758 0.2609

Truth Table (n bits = 8) 0.0386 0.1952 0.2848

Majority (n = 5, T = 2.5) 0.0168 0.0916 0.1530

Majority (n = 7, T = 3.5) 0.0204 0.1072 0.1725

VII. E XPERIMENTAL RESULTS

In Section IV-C, we presented the problems used to conduct our experiments. In the experiments with OneMax,

Trap and the multimodal landscapes we used chromosomes of length ℓ = 14. In the MAX-3-SAT problem domain

the size of the chromosomes,ℓ, was determined by the number of variables,v. Thus, we usedℓ = 7, ℓ = 10 and

ℓ = 14.

For the multimodal landscape, we setP = 400 (i.e., there are400 peaks). These were distributed in such a way to

give the problem deceptive features. Specifically, the highest peak was at position11 · · ·1, the second highest peak

was at position00 · · ·0, and the remaining peaks were randomly distributed. This last feature makes the problem

easier than the trap function.

For the trap function, the following parameters were used:umin = 13, a = 39, b = 40. Figure 5 depicts this

trap function.

We created MAX-3-SAT instances by randomly constructing clauses (disallowing repeated literals). To build

problems of varying difficulty we varied the ratio between the number of clauses and variables in the range 2 (easy)

to 6 (very hard). We ensured that all SAT instances were satisfiable by brute force testing of all possible assignments

or, for the larger instances, by using the latest version of WalkSat [60]. We considered problems including between

c = 14 andc = 84 clauses.

The experiments were conducted using an EA with selection, bit-flip mutation and no crossover. Runs were

stopped when the maximum number of generations was reached.For the OneMax, Trap and multimodal problems

fitness proportionate selection was used; the other parameters of our runs are given in Table II. For MAX-3-SAT we

used a form of EA which is more common in practical applications: a steady-state EA with tournament selection

(which provides good control on selection pressure); otherrun parameters will be provided in Section VII-B4.

For the OneMax, Trap and multimodal problems, a sample size of 4,000 has been used to calculatefdc. For
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Fig. 5. The trap function used in our experiments (umin = 13, a = 39, b = 40).

MAX-SAT the sample size was the size of the search space.

A. Constant Neutrality

To empirically test the effects of constant neutrality and corroborate the theory presented in Sections V-B

and VI-A, we used three problems: OneMax, where neutrality is always expected to be detrimental, the trap

function, where we expect neutrality to aid evolution, and MAX-SAT which we suspected to be half-way between

the first two.

1) OneMax Problem:Let us start by looking at the results of the experimentationwith the OneMax problem.

Table III reports thefdc, the number of generations required to reach the optimum solution and the percentage

of successes for the OneMax problem with and without constant neutrality. As one can see, thefdc correlates

with the difficulty of the problem in terms of percentage of successes and/or number of generations required to

find a solution. For example, we see a significant decrease in performance associated with the large change tofdc

resulting from the introduction of constant neutrality. Also, we see that asfn increases,fdc increases and so does
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TABLE II

PARAMETERS USED FOR THE EXPERIMENTS USING CONSTANT AND BITWISE NEUTRALITY FOR THEONEMAX , TRAP AND MULTIMODAL

PROBLEMS.

Parameter Value

Length of the genome 14

Population Size 80

Generations 100

Mutation Rate (per bit) 0.01, 0.06, 0.1

Generation gap 1

Independent Runs 1,000

TABLE III

PERFORMANCE OF A MUTATION-BASEDEA ON THE ONEMAX PROBLEM USINGCONSTANT NEUTRALITY.

fdc pm = 0.01 pm = 0.06 pm = 0.1

Avr. Gen % Suc.Avr. Gen % Suc.Avr. Gen % Suc.

No neutrality -1.0 21.11 100.0 14.39 100.0 16.47 100.0

fn = 11 -0.1645 38.12 63.0 29.60 99.0 31.81 99.1

fn = 12 -0.0914 38.79 19.8 46.15 68.9 44.77 82.1

fn = 13 -0.0396 27.47 2.0 48.63 12.3 43.14 13.1

the difficulty of the problem.

These results are not surprising, as we argued previously. In the case considered here (ℓ = 14) the maximum

achievable fitness is 14, so a neutral network with fitnessfn = 13 turns the search of a mutation-only EA into a

set of parallel random walks. This is why performance decreases so much. On the contrary, when the fitness of the

neutral network is lower, e.g.,fn = 11, the original character of the search is maintained. However, the number of

generations required to find a solution is increased (in fact, by a factor of about 2) w.r.t. the no-neutrality case.

The experimental results in Table III are in agreement with the theory presented in Section V-B: the problem

is getting harder in the presence of constant neutrality andthe higherfn the lower the performance of the EA.

Note also that the values offdc reported in Table III are very similar to the corresponding predictions obtained via

Equation (3) (e.g., see Figure 3).

If we compare the performance of different representationswhenpm is varied in Table III, we can see a reduction

in performance in the presence of the unusually low mutationrate of pm = 0.01. In the absence of neutrality,

the success rate is still 100%, thus the problem remains veryeasy although we can see a 50% increase in the

average number of generations required to find the optimum. When constant neutrality is used, however, the drop

in performance seems to be modulated bypm. By definition,fdc cannot predict this type of effect (see Section III).

Note also that, whilefdc changes by a very small amount as we go fromfn = 12 to fn = 13, the EA’s success

rate drops significantly. The magnitude of change infdc does not seem to correlate well with the magnitude of the
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TABLE IV

PERFORMANCE OF A MUTATION-BASED EA ON THE TRAP FUNCTION WITH AND WITHOUT CONSTANT NEUTRALITY.

fdc pm = 0.01 pm = 0.06 pm = 0.1

Avr. Gen % Suc.Avr. Gen % Suc.Avr. Gen % Suc.

No neutrality 1.0 1 0.6 1 0.6 1 0.6

fn = 30 0.5909 - 0.0 38.37 1.6 39.91 3.6

fn = 38 0.4908 28.66 0.3 44.34 2.9 51.33 5.3

performance drop.

Focusing on the phenotypic mutation rates can give us some explanations. Iffn is relatively low, after a while

selection will start neglecting the neutral network, i.e.,p(x0 = 0) will start to increase towards 1. So, the probability

of phenotypic mutations,ppn
in Equation 10, will tend to approachpp. However, for higher values offn this happens

later in the search. In particular, forfn = 13 all points in the search space (except the global optimum) are at or

below the fitness of the neutral network. Thus,p(x0 = 0) may be small for most of the time, effectively reducing

the number of genotypic mutations that can generate new phenotypes. The more we reducepm, the more the effect

becomes important: if the probability of a phenotypic mutation becomes very small, then most offspring will be

identical to their parent, thereby slowing down the search.With pm = 0.01 the search is already slowed down

significantly even in the absence of neutrality (only one in about 7 mutants actually being different from their

parents). The composition of this effect with the modulation of the probability of phenotypic mutations due tofn

explains why results are so poor forpm = 0.01 and highfn.

2) The Trap Function:Table IV reports results for the Trap function with and without constant neutrality.

As expected based on the predictions we made in Section V-B, the situation is reversed with respect to the case

of the OneMax problem. The addition of constant neutrality here is beneficial for relatively high values of the

fitness of the neutral networkfn (the maximum fitness value for the problem is 40).9 Furthermore, we see that the

higher the value offn, the less difficult the problem.

Again, if we look at what happens aspm is varied, we see that the success rate reduces aspm is reduced and

drops to almost zero forpm = 0.01. Again, these findings could not be explained by simply considering thefdc.

As for the case of OneMax, however, the reduction is clearly an effect of the probability of phenotypic mutations

being reduced in the presence of constant neutrality.

3) MAX-3-SAT:As shown in Figure 6, in the case of MAX-SAT instances, thefdc increases with the clause-to-

variables ratio (i.e., with the difficulty of the problem) irrespective of whether constant neutrality is used or not.

However, we see that the addition of constant neutrality increases thefdc suggesting that this form of neutrality is

harmful in this problem. Also, the figure clearly shows that setting the fitness of the neutral network,fn, to a high

value changes thefdc dramatically. Instead,fdc is much less affected whenfn = c/2.

9As we discussed in Section V-B, constant neutrality with lowfn cannot be beneficial.
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fn=c/2

fn=c-1

no neutrality

Fig. 6. Fitness distance correlation in MAX-3-SAT problemsof increasing complexity in the absence of neutrality and inthe presence of

constant neutrality, with two different values offn: fn = c/2 wherec is the number of clauses andfn = c− 1 (c is also the fitness of the

global optimum in our SAT problems). The data are averages over 100 random satisfiable 3-SAT instances.

Figure 7 reports the success rates of our mutation-based EA on MAX-3-SAT problems with 14 variables as a

function of the problem difficulty, the genotypic mutation rate andfn. Success rates for the no-neutrality case are

also provided for reference.

The figure confirms that, as suggested by thefdc analysis (and prior knowledge on SAT), problems get harder,

i.e., success rates decrease, as the clause-to-variable ratio increases. Note that success rates are generally reduced

in the presence of constant neutrality, confirming the prediction of the analysis offdc. Also, we find that constant

neutrality withfn = c/2 is associated with a slightly higher performance than in thecasefn = c−1, but results are

very close. Even though we report averages over 1,000 runs, differences are unlikely to be statistically significant.

Given the significant differences shown by the two encodingsin terms of fdc (see Figure 6) , one might have

expected to see correspondingly big differences in performance. However, there is no evidence of this being the

case.
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Fig. 7. Plots of the success rate of a mutation-based EA on MAX-3-SAT problems with 14 variables as a function of the problem difficulty,

the genotypic mutation rate and the fitness of the neutral network induced by constant neutrality (solid lines). The correspondence between

these and success rates in the absence of neutrality (dashedlines) is indicated by the curved arrows on the right.

The reason why performance figures are so close is, again, very much related to the probability of phenotypic

mutations and its dependency on selection. We performed some theoretical calculations and some associated

numerical simulations (not reported) to identify the fixed-points for the probability of selecting individuals outside

the neutral network,p(x0 = 0). Results show that with tournaments of size of 2,p(x0 = 0) varies significantly

with fn (in addition to varying withpm) and that such variation implies thatfn = c− 1 has a higher probability

of producing phenotypic mutations. This increased search vigour is responsible for the performance of constant

neutrality withfn = c− 1 not being too far from the performance offn = c/2 despite the fitness landscape in the

former providing much less guidance than the fitness landscape in the latter (as indicated by thefdc).

B. Bitwise Neutrality

To empirically study the effects of bitwise neutrality and verify the theory presented in Sections V-C and VI-B,

we used all four test problems described in Section IV-C.

1) OneMax Problem:Table V (second column) reports thefdc for OneMax for a representation without neutrality

and for various forms of neutral encodings (i.e., Parity, Majority, Truth Table). As predicted in Sections V-D
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TABLE V

FITNESSDISTANCE CORRELATION ESTIMATED FOR THEONEMAX PROBLEM, THE MULTIMODAL PROBLEM GENERATOR AND THETRAP

FUNCTION.

Type of OneMax Multimodal Trap

redundancy Problem Problem Function

No neutrality -1 0.5114 1

Parity (n = 5) -1 0.5190 0.9925

Parity (n = 6) -1 0.5190 0.9999

Parity (n = 7) -1 0.5144 0.9999

Parity (n = 8) -1 0.5086 0.9999

Truth Table (n = 5) -0.9999 0.5102 0.9999

Truth Table (n = 6) -1 0.5374 0.9925

Truth Table (n = 7) -1 0.5264 0.9999

Truth Table (n = 8) -0.9999 0.5233 0.9925

Majority (n = 5, T = 2.5) -0.8488 0.4444 0.8434

Majority (n = 7, T = 3.5) -0.8308 0.4471 0.8308

TABLE VI

PERFORMANCE OF A MUTATION-BASED EA ON THE ONEMAX PROBLEM. PAIRS OF NUMBERS INboldface, UNDERLINED, DOUBLY

UNDERLINED AND
::::::::::

UNDERLINED WITH A WAVY LINE REPRESENT SITUATIONS WITH ALMOST IDENTICAL PHENOTYPIC MUTATION RATES.

Type of pm = 0.01 pm = 0.06 pm = 0.1

redundancy Avr. Gen % Suc.Avr. Gen % Suc.Avr. Gen % Suc.

No neutrality 21.35 100 14.39 100 16.58 100

Parity (n = 5) 14.55 100 36.06 90.1 44.02
:::

62.7

Parity (n = 6) 14.46 100 38.38 82.6 45.14 54.4

Parity (n = 7) 14.49 100 40.09 73.3 42.12 49.7

Parity (n = 8) 15.06 100 43.26
:::

68.2 44.56 47.6

Truth Table (n = 5) 16.63 99.9 20.02 99.5 29.21 95.0

Truth Table (n = 6) 16.89 100 22.87 99.4 33.14 90.5

Truth Table (n = 7) 15.89 100 24.41 97.5 35.49 84.5

Truth Table (n = 8) 15.01 100 28.16 97.4 38.89 78.8

Majority (n=5, T=2.5) 23.39 99.8 17.26 99.7 22.08 99.3

Majority (n=7, T=3.5) 23.51 99.8 17.93 100 22.50 98.6

and V-E, the Parity and Truth Table encodings leave thefdc unchanged w.r.t. whatever value it had in the absence

of neutrality10. On the contrary, as predicted, Majority moves thefdcof the problem slightly towards zero, suggesting

that OneMax might get harder with this encoding. The question now is: will actual search performance correlate

with the fdc?

10This is not unexpected, since, as discussed in Section V, theParity encoding is a case of trivial neutrality (where the evolution of phenotypic

bit strings can be modelled without referring to the corresponding genotypes). Also, the Truth Table encoding effectively becomes a case of

trivial neutrality for sufficiently largen.
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Table VI shows the average number of generations required toreach the optimum of OneMax and the percentage

of successes in finding the optimum in 1,000 independent runsof an EA. Analysing the results, it can be seen that,

when pm = 0.01, there is a good match between the predictions offdc and problem difficulty. In particular, the

Parity and Truth Table encodings show almost exactly the same performance both in terms of percentage of runs

where the OneMax problem was solved and average number of generations required to solve it. Also, as predicted

by our fdc analysis in Section V, the problem is easy and remains easy under all encodings, being solved in almost

100% of cases in all configurations. In addition, it can be seen that, under Majority, more generations are required

to solve the problem than under Parity and Truth Table. This,again, confirms the predictions of thefdc analysis.

There is, however, one element that is unexpected. In the absence of neutrality, runs take longer to find the

optimum than with Parity and Truth Table. In fact, they take approximately as long as for Majority. This is another

case wherefdc alone is insufficient.

Whenpm = 0.06, the situation becomes less clear. Here, the Parity and Truth Table encodings do not perform

identically any more, Truth Table still being able to solve the problem in almost all runs, while Parity doing so

only in between 70% and 90% of the cases. This, too, was not predicted by thefdc analysis.

What is particularly surprising here is that, in all cases, Parity and Truth Table take longer to solve the problem

than Majority and the no-neutrality case. Therefore, Parity and Truth Table effectively make the problem harder,

while the other two encodings are still performing approximately the same and their performance seems to be

unaffected by the increase in mutation rate.fdc analysis also did not predict that performance would vary with the

number of bits,n, when using the Parity encoding.

These rather confusing trends continue also at the highest genotypic mutation rate,pm = 0.1. Now, also the

performance with Truth Table varies withn. Furthermore, in the no-neutrality case the problem is now solved in

fewer generations than with the Majority encoding.

In summary, it is clear that whilefdc captures some of the characteristics of a problem in relation to its difficulty

for an EA, it does not capture all.

To explain these results one really needs to look at phenotypic mutation rates discussed in Section VI. If these

are very low, we should expect that mutation will not generate a new phenotype every time it is applied. If new

individuals are generated only rarely then evolution will be dominated by selection and the algorithm is likely to

converge to a suboptimal solution. If phenotypic mutation rates are very high, the search tends to become almost

random. In a unimodal landscape, such as the one associated with OneMax, where the fitness function provides

good guidance towards the global optimum, this randomness is very likely to be deleterious. Clearly, the ideal

phenotypic mutation rate is somewhere in between these two extremes. In the case of our specific instance of

OneMax, the optimal phenotypic mutation rates are perhaps between 0.04 and 0.12.

As one can see in Table I, whenpm = 0.01, our bitwise neutrality induces phenotypic mutation ratesbetween

0.0168 and 0.0746. At these mutation rates the EA solves the problem in almost all runs, although the phenotypic

mutation rates associated with the Majority encoding (and those in the absence of neutrality) are marginally outside

the optimal range and, so, runs last on average slightly longer.
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TABLE VII

PERFORMANCE OF ANEA ON THE MULTIMODAL FUNCTION . PAIRS OF NUMBERS INboldface, UNDERLINED, DOUBLY UNDERLINED AND

::::::::::

UNDERLINED WITH A WAVY LINE REPRESENT SITUATIONS WITH ALMOST IDENTICAL PHENOTYPIC MUTATION RATES.

Type of pm = 0.01 pm = 0.06 pm = 0.1

redundancy Avr. Gen % Suc.Avr. Gen % Suc.Avr. Gen % Suc.

No neutrality 8.56 3.2 5.22 2.7 11.54 1.9

Parity (n = 5) 5.61 3.4 41.2 5.8 44.07
:::

14.2

Parity (n = 6) 4.76 3.4 45.27 7.2 50.41 19.4

Parity (n = 7) 2.80 2.1 44.41 9.9 46.31 24.6

Parity (n = 8) 4.85 2.1 42.14
:::

12.7 46.94 23.2

Truth Table (n = 5) 6.41 3.6 15.86 2.5 34.11 3.5

Truth Table (n = 6) 8.18 2.5 20.27 2.2 34.32 4.8

Truth Table (n = 7) 6.59 2.6 24.07 3.1 44.44 5.6

Truth Table (n = 8) 4.95 3.6 19.10 3.2 33.03 7.9

Majority (n=5, T=2.5) 11.41 2.0 23.6 1.4 15.62 1.9

Majority (n=7, T=3.5) 9.76 2.3 9.44 2.2 25.42 2.4

When the genotypic mutation rate is increased to 0.06, the phenotypic mutation rates for the no-neutrality case and

for the Majority encoding (see Table I) are still within the optimal range and, thus, performance remains very good.

The Truth Table encoding provides phenotypic mutation rates which are marginally outside the optimal range. Here,

while success rate remains high, we can see that the number ofgenerations required to find the optimum increases

with n. For the Parity encoding, phenotypic mutation rates are wayoutside the optimal range. So, performance

worsens even more, with the higher values ofn showing a particularly significant drop in performance. It is then

not surprising to see that the EA performs better with Majority (or without neutrality) than with all other encodings.

Whenpm = 0.1, the phenotypic mutation rates for all encodings are further increased, leading to an even more

undirected search. Note, however, that for the no-neutrality case the mutation rate is still within the optimum range

and that the phenotypic mutation rates for Truth Table are not too far from it. Thus, performance is still good for

these representations. The phenotypic mutation rates associated with Parity are much higher, ranging from 0.3362

for n = 5 to 0.4161 in the casen = 8. In these conditions the search is almost random and, so, performance is

significantly affected by this neutral encoding.

2) The Multimodal Problem Generator:Table VII shows the results of bitwise neutrality on the multimodal

problem. Again, at the lowest mutation rate, the predictions of the fdc (see Table V (third column)) are roughly

correct: the problem is hard (fdc > 0) and remains hard irrespective of the encoding used. Also, Parity and Truth

Table lead to the same level of difficulty. Again, however, atthe higher genotypic mutations rates the situation

becomes rather more confusing, with Parity showing improved performance over the other encodings. Furthermore,

there is a dependency of performance onn. Effectively, we can observe the opposite effects as in the OneMax

problem.

The confusion, again, disappears by considering the phenotypic mutation rates (see Table I) corresponding to
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TABLE VIII

PERFORMANCE OF ANEA ON THE TRAP FUNCTION. PAIRS OF NUMBERS INboldface, UNDERLINED, DOUBLY UNDERLINED AND

::::::::::

UNDERLINED WITH A WAVY LINE REPRESENT SITUATIONS WITH ALMOST IDENTICAL PHENOTYPIC MUTATION RATES.

Type of pm = 0.01 pm = 0.06 pm = 0.1

redundancy Avr. Gen % Suc.Avr. Gen % Suc.Avr. Gen % Suc.

No neutrality 0.6 0.3 7.2 0.7 4.55 0.7

Parity (n = 5) 1 0.5 47.77 10.4 44.85
:::

22.0

Parity (n = 6) 1 0.8 45.96 15.6 44.73 23.8

Parity (n = 7) 1 0.6 48.62 15.4 46.82 32.0

Parity (n = 8) 13.57 0.7 46.27
:::

20.2 46.69 31.5

Truth Table (n = 5) 1 0.7 13.05 1.4 41.49 6.3

Truth Table (n = 6) 1.25 0.6 35.16 2.1 47.19 7.8

Truth Table (n = 7) 1 0.1 32.36 3.5 47.32 10.9

Truth Table (n = 8) 1 0.9 34.44 4.8 58.54 13.0

Majority (n=5, T=2.5) 1 1.1 4.4 1.2 19.91 2.3

Majority (n=7, T=3.5) 1 0.5 1.16 0.6 28.15 1.9

each encoding. If these are too low, as for OneMax, evolutionwill be dominated by selection, resulting in poor

performance. Here, however, if phenotypic mutation rates are high, i.e., there is significant randomness in the search,

we can expect to escape more easily from local and deceptive optima thereby increasing the success probability. This

explains why all encodings are hardly able to solve the problem atpm = 0.01, while some can solve the problem

at least some of the times at higher mutation rates. Furthermore, we can now understand why the Parity encoding,

having the highest phenotypic mutation rates, does better than all other representations. Finally, we can understand

why for all encodings performance increases withn: the phenotypic mutation rate increases asn increases.

3) The Trap Function:As shown in Table VIII, the behaviour of the EA in the Trap problem is a mirror image of

that observed on the OneMax problem and it is similar to the behaviour obtained for the multimodal problem. Again,

it can be seen howfdc (see Table V (fourth column)) makes reasonably good predictions of relative difficulty under

different encodings whenpm = 0.01, but that the picture becomes less and less clear aspm increases. However,

again, performance differences can be explained easily by considering phenotypic mutation rates. In this case,

because the problem is fully deceptive, the more random the search is, the more likely the global optimum will be

found. As a result, performance improves as the phenotypic mutation rate increases.

4) MAX-SAT: For space limitations, we will report here the results obtained on MAX-3-SAT problems with

14 variables, to which the results for 7 and 10 were qualitatively very similar. As mentioned before we used

clause-to-variable ratios in the range{2, 3, 4, 5, 6}.

To gain general insights on our chosen MAX-3-SAT class, for each clause-to-variable ratio, we studied 100

random satisfiable problems. The same bitwise-neutrality encodings as for the other problems were used.

Figure 8 reports thefdc on different classes of the MAX-SAT problem in the absence ofneutrality and when

using bitwise neutrality with 3, 5 and 7 bits. For each level of difficulty and encoding, thefdc was computed by
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averaging thefdc values estimated over our 100 random problems. For each problem, we estimated thefdc via

Monte Carlo sampling of2ℓ bit strings. As the figure shows, in all conditions, the higher the clauses-to-variables

ratio, the higher thefdc. This confirms our expectations (based on copious SAT literature) that, in this problem,

difficulty increases with the number of clauses (see SectionIV-C4). The figure also indicates that, irrespective of the

number of bits used, the Parity and Truth Table encodings leave thefdc of a problem unchanged, which confirms

our expectations from the theory we developed earlier in thepaper. Finally, it is interesting to see that, as predicted,

the Majority encoding has an effect on thefdc of SAT suggesting that the difficulty of the problem is increased by

that encoding.

To see to what extent the predictions obtained via anfdc analysis of MAX-SAT were correct, we performed

a large number of runs of our EA. Forℓ = 14, we used populations of 128 individuals with runs lasting 64

generations. This ensured that the number of fitness evaluations was exactly half the cardinality of the search space

(for 7 and 10 variables, runs were parametrised with the sameobjective in mind). Again, we used tournaments of

size 2 to avoid premature convergence. The same bitwise-neutrality encodings and genotypic mutation rates as for

the other problems were used. For each clause-to-variable ratio and on each of the 100 problems with such a ratio,

we did 10 independent runs of our mutation-based EA. Thus, ineach condition, success rate figures represent the

average over 1,000 independent experiments.

A subset of the experimental results thus obtained is reported in Figure 9.11 Reassuringly, results show that, in

all conditions, the higher the clauses-to-variable ratio,the lower the success rate, thereby confirming the predictions

based on thefdc. We also see that, within experimental errors, the Majorityencoding is always the worst (or on

par with the worst) of the three bitwise-neutrality encodings, again confirming the prediction of thefdc. In other

words, fdc does a good job at broadly classifying the difficulty of our MAX-SAT problems.

There are situations, however, where thefdc was unable to predict relative performance accurately. Forexample,

thefdcvalues for the Parity and Truth Table encodings in Figure 8 are always the same. However, Figure 9 shows that

the Parity encoding was the best (or on par with the best) at finding solution for MAX-3-SAT problems in all cases.

Also, while thefdc in the absence of neutrality was identical to thefdc for bitwise neutrality with Parity or Truth

Table, as a matter of fact, the addition of neutrality almostalways improves performance. Furthermore, performance

improves with the number of genotypic bits per phenotypic bit used, whilefdc remained either constant (Parity and

Truth Table) or increased (for Majority). Finally, as for other problems, we see ample variations of performance

associated with changes in genotypic mutation rates, whichwere not (and could not) be predicted by thefdc.

Most of these anomalies can only be explained by consideringthe effects of the encoding on the phenotypic

mutation rates. Looking at the no-neutrality case, we see that performance increases with the mutation rate,

suggesting that encodings which present a higher phenotypic mutation rate may provide even better performance.

With the exception of the no-neutrality case, phenotypic mutation rates are the lowest for the Majority encoding, and

11In the figure, we have excluded the results for the clauses-to-variable ratio of 2, since success rate was 100% is all cases. This indicates

that the problem is very easy to solve with our parameter settings for the EA.
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Encoding

no neutrality 3 bits 5 bits 7 bits

no neutrality

Fig. 8. Fitness distance correlation estimated for MAX-SATproblems of various degrees of difficulty (clause-to-variables ratios) with different

encodings.

this is likely to be the reason why such an encoding provides the lowest performance among the bitwise-neutrality

representations. Also, the relatively high performance ofthe Parity encoding is likely to be associated with such

an encoding presenting the highest phenotypic mutation rate. The Truth Table encoding positions itself half-way

between the other two encodings. Since phenotypic mutationrates grow with the number of bits used, this produces

the trends in the bitwise-neutrality plots in Figure 9.

C. Phenotypic Mutation on Rates and Problem Hardness acrossProblems

In the previous subsections we emphasised the importance ofconsidering the phenotypic mutation rates to

complement the information provided by thefdc. Figure 10 illustrates how critical this information is.

In particular, Figures 10(a) and (b) plot the success probabilities for the OneMax, Trap and multimodal problems

(reported in Tables VI, VII and VIII) against the corresponding genotypic and phenotypic mutation rates, respectively.

Distinctions between encodings are totally ignored. Figures 10(c) and (d) report similar results but for MAX-3-SAT

problems of different levels of difficulty. It is clear how the success rates for each of the problems studied strongly

correlate with the phenotypic mutation rates. Instead, correlation with the genotypic mutation rates is much weaker.

We did not experiment with genotypic mutation rates higher thanpm = 0.1. However, it is easy to predict what

would happen. The Parity and Truth Table encodings would progressively move towards phenotypic mutation rates

of 50%, making the search effectively random. We can easily compute the expected success rate of the EA in these

conditions. In the OneMax, Trap and multimodal problems, ineach EA run we do 8,000 trials (80 individuals

for 100 generations), which represent 48.82% of the search space size,2ℓ, sinceℓ = 14. This is anupper limit

for the success rate. Of course, because of re-sampling, we should only expect to find the optimum with a lower

probability. The exact value is 38.3%, as one can compute using the theory for the coupon collector problem (see

[61]). So, 38.3% is the limit performance for high mutation rates for these problems. Note that this limit is problem

independent as long as a problem has a single global optimum as in the case of the three problems mentioned

above. Indeed, the three plots in Figure 10(b) show a convergence towards this limit.
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Encoding

c/v no neutrality 3 bits 5 bits 7 bits

3

4

5

6

Fig. 9. Success rates for MAX-SAT problems of varying difficulty (clause-to-variables ratios) with different encodings and genotypic mutation

rates.

For MAX-3-SAT the situation is very similar, but there is nota unique limit to the success rate as the search

becomes more and more random. This is because the limit success rate depends on the average number of global

optima (assignments that satisfy a formula) in the search space and the higher the clause-to-variables ratio, the

fewer the global optima. So, we find that the limit decreases as the ratio increases andvice versa. It is interesting

to see in Figure 10(d) that, in most cases, the limit is rapidly approached as the phenotypic mutation rate increases.

The plots thus present a knee. Interestingly, this is not toofar from 1/ℓ ∼= 0.0714, which, on average, corresponds
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Fig. 10. Plots of the success probability as a function of thegenotypic mutation rate (a) and the phenotypic mutation rate (b) for the OneMax,

Multimodal and Trap fitness functions, and corresponding plots for MAX-3-SAT with 14 variables (c–d).

to a single variable flip per mutation. At this mutation level, the EA’s search strategy becomes quite similar to the

one-flip strategy adopted by many modern local search heuristics for SAT.

VIII. D ISCUSSIONS

In this section we discuss the results reported above from both the point of view of understanding neutrality and

the practical consequences of the work in relation to the solution of real-world problems. In particular, we want to

highlight what has and has not been achieved with this study from these viewpoints.

To make the problem as simple as possible, we adopted the strategy of using one of the simplest possible EAs and

extremely simple encodings to increase the neutrality of a search space. Nonetheless, both our theoretical derivations

and our empirical results indicate that changing the problem or performing small changes in the details of the

representation and search parameters used can turn a neutral encoding from being beneficial to being disadvantageous

and vice versa. That the neutrality could not always be helpful is an obvious consequence of the no-free-lunch
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theory [62], but that the performance of an EA in the presenceof neutrality could be so sensitive to details was much

less expected. This is probably the key source of the confusion and controversy reigning in the sizable literature

on the use of neutrality in EAs.

Our results indicate that, in many conditions,fdc provides a rough indication of problem difficulty and of how

problem difficulty is affected by neutrality. However, we have also found that, in order to obtain more accurate

information, one also needs to consider how the chosen representation translates genotypic mutations into phenotypic

ones.

For some representations,fdc and phenotypic mutation rates can be computed theoretically, while for others they

need to be estimated via sampling. Theoretical formulations are particularly important because they reveal how

specific details of the representation (including the valueof the fitness of the neutral network in constant neutrality,

the details of the encoding function used in bitwise neutrality and the number of genotypic bits used in the encoding)

influence the features of the landscape and search operators. Another advantage of theoretical formulations is that

their complexity is often scale-invariant, unlike empirical evaluations where computational cost may prevent the

analysis of large, realistic problems.

Both theoretical analyses and empirical estimations offdc, however, are basically impossible for real-world

problems where, typically, the position of the global optima is unknown. Other predictive performance measures

exist which do not require knowledge of the optima (e.g., see[63]–[67]), but, to the best of our knowledge, they

have not been used to study the effects of neutrality so far. Also, fitness landscapes can be studied via the analysis

of their Walsh coefficients. For some problems, for example SAT [68], this can be done efficiently for large scale

instances, although we are not aware of any Walsh analysis relating to neutrality. These are certainly areas that

future research on neutrality could beneficially target to gather insights on its benefits and drawbacks in relation to

real-world problems.

While fdc cannot really be applied to real-world problems, the notionof phenotypic mutation rate can, at least

in the case of bitwise neutrality. This is because, in this form of neutrality, phenotypic mutation rates are only

a function of the representation adopted, not the fitness function (while in constant neutrality there is a partial

dependency on fitness). So, our calculations in Section VI-Bare applicable to problems of any size and in any

application relying on a binary encoding.

For a mutation-based EA, trivial neutrality (see Section II) is ineffective at changing the difficulty of a problem,

provided one ensures the phenotypic mutation rate used withneutrality matches the mutation rate with the original

representation. If this is not the case, then behaviour and performance can change very significantly.

Non-trivial neutrality (e.g., Majority), is neithera priori beneficial nor disadvantageous. It can be beneficial in

problems where the original landscape is misleading/deceptive, but only if it is set up in such a way to ensure that a

large enough proportion of the population spends long enough exploring neutral networks. In a mutation-only EA,

the exploration of neutral networks is essentially a random-walk type of search. While normally this form of search

is inefficient, in the presence of a misleading fitness function, it is the only hope for a population to eventually

locate superior areas in the search space (e.g., the global optimum). However, having neutral networks in the search
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space does not mean that the population will stay on them. This will not happen, for example, if neutral networks

have a particularly low fitness. In such cases, it is unlikelythat neutrality will benefit a deceptive problem.

In easy problems, where the fitness function provides reliable guidance towards good areas of the search space,

it is unlikely that non-trivial neutrality will provide anybenefits irrespective of whether neutral networks have

high fitness or not. This is for the following reasons. Randomsearch is inefficient for problems where the fitness

function provides good guidance. In such problems, if neutral networks have high fitness, a part of the population

will randomly drift on them, thus reducing the overall efficiency of the search. If, instead, neutral networks are

unfit, selection will avoid giving individuals on them a chance to mutate. Such individuals are, therefore, wasted

samples, which reduce the efficiency of the search.

While we have introduced and used the notion of phenotypic mutation rate as an atomic quantity, in fact, the

phenotypic mutation rates we computed are averages across all possible strings. This, however, does not mean

that all strings have the same probability of being mutated into a string that represents a different phenotype.

For example, in Figure 11 we show the distribution of phenotypic mutation rates with 7-bit bitwise neutrality for

different encodings and genotypic mutation rates. From this figure it is immediate to see that, except for the Parity

encoding, some strings may be exceedingly robust to genotypic mutations (in the sense that they are more likely to

represent the same phenotype after mutation) while others are extremely fragile. For example, under the Majority

encoding the string 00000 can have any bit flipped and still remain in the same majority class while 3 out of 5

times flipping one bit in the string 00011 will change its phenotypic class.

To some extent, we would expect evolution to exploit these differences. For example, it could protect certain

particular genes or highly epistatic groups of genes by using a very robust genotypic representation for them, while

keeping the phenotypic mutation rate high for suboptimal phenotypic bits by using fragile encodings. However, at

this stage, we do not know how important this effect is in a mutation-based EA. Also, while it is likely that the

addition of recombination will further emphasise the importance of representational inhomogeneities, we have not

turned this particular stone.

This leads to another unturned stone in our work. Following from our earlier work, recently [69] have highlighted

the possibility and benefits of using different numbers of bits for different parts of a representation with bitwise

neutrality.12 It would be interesting to see what effects this has on thefdc of a problem. Also, while [69] considered

the adoption of different numbers of bits as roughly equivalent to providing different parts of the representation with

different mutation rates, as shown in Figure 11, the equivalence is only correct an average. It would be interesting

to see if the results of [69] could be extended to consider phenotypic mutation rate distributions.

In some sense all this is related to the point of view developed in [17] who suggests that the core aspect of

neutrality is that different genomes in a neutral set provide a variety of different mutation distributions from which

evolution may choose in a self-adaptive way. In the future, it would be interesting to reinterpret our results by

looking at neutrality as adaptation of the representation.

12They have also reported a closed form representation for oneof our results on phenotypic mutation rates and inverted ourformulae.
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genotypic mutation rate= 0.01 genotypic mutation rate= 0.06 genotypic mutation rate= 0.10

Fig. 11. Distribution of phenotypic mutation rates with 7-bit bitwise neutrality for different encodings and genotypic mutation rates.

IX. CONCLUSIONS

Does neutrality help or hinder the search of an EA? This question has been debated at considerable length in

the literature without really reaching any form of consensus on its answer.

As we discussed in Sections I and II, the reasons for this situation include the lack of a single definition of

neutrality, the multiple ways in which one can add neutrality to a representation, the focus on pure performance

when evaluating the effects of neutrality without attention to the changes in the behaviour of the search operators

and in the features of the fitness landscape, and, finally, thevariability in the choice of problems, algorithms and

representations for benchmarking purposes. Also, very often studies consider problems and representations that are

quite complex and results represent the composition of multiple effects.

In this paper, we have attempted to address these problems and to shed some light on neutrality. Our strategy

has been as follows. Firstly, we have used one of the simplestevolutionary algorithms — a mutation-only binary

EA. Secondly, we have considered only extremely simple representations that can be used to artificially increase

the neutrality in a system: constant neutrality, where neutrality is plugged into the original encoding by adding

an extra bit to the representation, and bitwise neutrality,where each phenotypic bit is obtained by transforming

a group of genotypic bits via an encoding function. Thirdly,we have studied neutrality both theoretically — via

fitness-distance correlations and phenotypic mutation rates — and empirically (using both standard benchmarks for

binary EAs and the class of MAX-SAT problems, which is more interesting for practitioners), and made an effort

to integrate the results of the two viewpoints.

The key lessons we have learnt during our explorations are the following. Firstly, we have found thatfdc is often

able to predict the relative difficulty of problems correctly with and without the addition of neutrality. For example,

in the case of MAX-SAT instances, it correctly ranked them bydifficulty in total agreement with the well-known

clause-to-variables ratio criterion. Secondly, we found thatfdcwas not able to predict the fine details of the behaviour

of our mutation-based EA, unavoidably neglecting the influence that mutation rates have on performance. Thirdly,

we understood that by complementing thefdc analysis with an analysis of the changes in phenotypic mutation rates

associated with representation changes provides a much clearer picture of the effects of the two forms of neutrality
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we studied. Fourthly, we have found that the performance of an EA in the presence of neutrality is extremely

sensitive to details such as the problem being solved, the type of encoding adopted and the rate of application of

operators. Therefore, the question of whether neutrality helps or hinders the search in EAs is ill-posed and cannot be

answered in general: one can only answer this question within the context of a specific class of problems, (neutral)

representation and set of operators.

While we feel that these lessons are quite useful and general, many avenues have been left unexplored by this

study. The effects of recombination, for example, have not been analysed. Also, the effects of the distribution of

phenotypic mutation rates have not been considered in detail. We have made an effort to include in the analysis

also a real-world application domain (MAX-SAT), but the size of the instances we considered had to be very small

to make thefdc analysis viable. Furthermore, we have only studied two forms of neutrality, while many other

interesting forms exist, including, for example, the encoding of search parameters (such as mutation rates) in the

chromosomes which was studied in [17]. Finally, we have not looked at the effects of neutrality in noisy or dynamic

fitness functions. All of these areas would be worthy of future research.
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