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Abstract. The neutral theory of molecular evolution and the associated notion
of neutrality have interested many researchers in Evolutionary Computation. The
hope is that the presence of neutrality can aid evolution. However, despite the
vast number of publications on neutrality, there is still a big controversy on its
effects. The aim of this paper is to clarify under what circumstances neutrality
could aid Genetic Programming using the traditional representation (i.e. tree-like
structures) . For this purpose, we use fitness distance correlation as a measure
of hardness. In addition we have conducted extensive empirical experimentation
to corroborate the fitness distance correlation predictions. This has been done
using two test problems with very different landscape features that represent two
extreme cases where the different effects of neutrality can be emphasised. Finally,
we study the distances between individuals and global optimum to understand
how neutrality affects evolution (at least with the one proposed in this paper).

1 Introduction

Evolutionary Computation (EC) systems are inspired by the theory of natural evolution.
The theory argues that through the process of selection, organisms become adapted to
their environments and this is the result of accumulative beneficial mutations. However,
in the late 1960s, Kimura [11] put forward the theory that the majority of evolution-
ary changes at molecular level are the result of random fixation of selectively neutral
mutations. Kimura’s theory, called theneutral theory of molecular evolutionor, more
frequently, theneutral theory, considers a mutation from one gene to another as neutral
if this modification does not affect the phenotype.

Neutral theory has inspired researchers from the EC community to incorporate neu-
trality in their systems in the hope that it can aid evolution. Despite the vast work car-
ried out towards understanding the effects of neutrality in evolutionary search, as will
be seen in the following section, there are no general conclusions on its effects.

In this paper we make an effort to understand how neutrality works and identify
under what circumstances it could aid Genetic Programming (GP) [13].

The paper is organised as follows. In the next section, previous work on neutrality in
EC is summarised. In Section 3, the approach used to carry out our research is described.
In Section 4 we review the notion of fitness distance correlation (fdc) and present the
distance used to calculatedfdc in tree-like structures. In Section 5 we introduce the
problems used to analyse the effects of neutrality. In Sections 6 and 7 we present and
discuss the results of experiments with unimodal and deceptive landscape problems and
draw some conclusions.
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2 Previous Work on Neutrality

As mentioned previously, there has been a considerable amount of work on neutrality.
However, there is a lack of final conclusions on its effects. For instance, Fonseca and
Correia [7] developed two redundant representations using different approaches based
on mathematical tools. The authors focused their attention on the properties highlighted
by Rothlauf and Goldberg [17] and pointed out some potential fallacies in such work.
In [17], Rothlauf and Goldberg stated that when using synonymously redundant repre-
sentations, the landscape connectivity is not increased. Fonseca and Correia, however,
stated that this is not necessarily true. They reported that in their proposed representa-
tions the connectivity tends to increase accordingly to the number of redundant bits.

In [5], an effort has been made to analyse some aspects of the search space in GP.
Ebner focused his attention on the fact that finding a given behaviour on such search
spaces is not as difficult as finding a given individual. As the author pointed out, this is
due to in GP using tree-like structures, many individuals map exactly to the same phe-
notype. Correspondingly, the same situation is observed in nature (i.e., highly redun-
dancy). With these elements in hand, Ebner suggested that search spaces that present
similar characteristics as the ones found in nature may be beneficial in evolving poten-
tial solutions towards finding a global solution to a specific problem.

This line of thought was further explored by Ebneret al. [6]. The authors pointed
out that the presence of neutrality could aid evolution under certain circumstances. To
illustrate this point,they used two types of mappings: random Boolean networks (RBNs)
and cellular automaton (see [6] for a full description of both mappings). In their stud-
ies, Ebneret al.pointed out that neutrality could have a positive impact in evolutionary
search, if a given population is spread out in a neutral network. To exemplify this point,
Ebneret al.used a dynamic fitness landscape and shown how the presence of neutrality
gives the opportunity to a population to ”start” over again and eventually (if this is the
case) being able to escape from local optima (which is not the case on a non-redundant
mapping). In [12], Knowles and Watson distinguished advantages and disantages of
what they called random genetic redundancy. In particular the authors used RBNs [6]
to conduct their experiments. In their work, Knowles and Watson mentioned that in
particular RBNs are useful because help to mantain diversity. On the other hand, the
authors also mentioned that the performance, in some cases, was better when neutral-
ity introduced by RBNs was not present and so, one should be carefull when adding
artificial neutrality.

Yu and Miller [22] argued that in the traditional GP representation, implicit neutral-
ity is difficult to identify and control during evolution and so, they used Cartesian GP
(CGP) to add what they calledexplicit neutrality. To analyse the effects of neutrality
they tested their approach on the even parity problems and used an Evolutionary Strat-
egy. CGP uses a genotype-phenotype mapping that allows programs to have inactive
code (i.e., this is how neutrality is artificially added) at genotype level. The genotype
uses an integer string coding. This type of encoding allowed the authors to use Ham-
ming distance to measure the amount of neutrality present in the evolutionary search. In
their studies, they found that the larger the amount of neutrality present during evolu-
tion, the higher the percentage of success in finding the global optimum, regardless the
mutation rate. They concluded that neutrality is fundamental to improve evolvability.
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Collins [4] claimed that Yu and Miller’s conclusions in [22] were flawed. Collins
started his analysis by highlighting that the use of a Boolean parity problem is a strange
choice given that the problem in itself is neutral (i.e., the fitness value of individuals is
the same except for the one that finds the global optimum) and, so, the effects of neu-
trality are harder to analyse using this type of problem. Moreover, Collins focused his
attention on the results found for the even-12-parity Boolean problem and pointed out
that the CGP representation used in [22] favours shorter sequences than those yielding
solutions for this problem. He also showed that the good results reported in [22] (i.e.,
55% of success in finding the solutions) are not surprising and that random search has
a better performance. He also concluded that the effects of neutrality are more complex
than previously thought.

Theoretical work has also been developed in an effort to shed some light on neu-
trality. In [8] we studied perhaps the simplest possible form of neutrality using GAs:
a neutral network of constant fitness, identically distributed in the whole search space.
For this form of neutrality, we analysed both problem-solving performance and popula-
tion flows. We used the fitness distance correlation, calculating it in such a way to make
the dependency between problem difficulty and neutrality of the encoding explicit.

In [2], Beaudoinet al.proposed a family of fitness landscapes called theND land-
scapes, where one can vary the length of the genomeN and the neutral degree distribu-
tion D. This presents some advantages over other types of landscapes (i.e.,NKp, NKq
andTechnological) previously proposed in the literature to analyse neutrality, which,
however, do not consider the distribution of neutrality. This, according to the authors,
is instead a key feature in evolution.

Recently, we [14] proposed and studied three different types of genotype-phenotype
encodings that add neutrality in the evolutionary search. To analyse in detail the effects
of these kinds of neutrality on three different types of landscape, we used thefdc and
the newly introduced notion ofphenotypic mutation rates. We also developed a mathe-
matical framework that helped explain some of our empirical findings.

As it can be seen from the previous summaries, the results reported on the effects of
neutrality in evolutionary search are very mixed (except perhaps the theoretical works
previously summarised).

3 Constant Neutrality

With many primitive sets, GP has the ability to create a rich and complex network of
natural networks. This may be a useful feature, but it is a feature that is hard to control
and analyse. For this reason, in this paper we propose to artificially create a further
neutral network within the search space, which is simple and entirely under our control,
thereby making it possible to evaluate the effects of neutrality on GP behaviour and
performance. In particular, we propose to add a neutral network of constant fitness.
More specifically:

– In our approach, calledconstant neutrality, neutrality is “plugged” into the tradi-
tional GP representation (i.e., tree-like structures) by adding a flag to the represen-
tation: when the flag is set, the individual is on the neutral network and, as indicated
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previously, its fitness has a pre-fixed value. When the flag is off, the fitness of the
individual is determined as usual.

– We use fitness distance correlation (fdc) as a measure of hardness when neutrality
is present in the evolutionary search and in its absence. We also perform extensive
empirical experiments to corroborate the results found byfdc.

– We use two benchmark problems with significantly different landscape features:
a unimodal landscape where we expect neutrality to be detrimental and a multi-
modal deceptive landscape where neutrality helps evolution by escaping from local
optima.

As mentioned previously, to allow the presence of constant neutrality in the GP
process, we added a flag to the representation. This is in charge of indicating if a given
individual is or is not on the neutral layer. To allow the migration to and from the neutral
layer we use a special mutation, which is applied with probabilityPnm. The process to
set or unset the neutral flag works as follows. Firstly, we initialise the population by
creating random individuals in the usual way, and, with probabilityPnm, we activate the
flag of the resulting individuals. Secondly, during the evolutionary process, every time
an offspring is created, it inherits the flag of its parent. However, before the individual
is inserted in the population, with probabilityPnm, we flip its flag. For example, if the
parent of the individual was already on the neutral layer (i.e., flag activated) and the flag
is flipped, the offspring is off the neutral layer and its fitness is calculated as usual. If,
instead, the flag was not flipped, the individual’s flag remains activated and its fitness is
constant. The situation is symmetric if the original parent was not on the neutral layer.

In the proposed approach, we used traditional crossover (i.e., swapping subtrees)
and structural mutation [20] and so, to add neutrality using any of these operators, we set
the value ofPnm> 0 (see Section 5). The main reason of using structural mutation in our
experiments is mainly because it is more close to the defition of distances between tree-
based structures widely discussed in [19, 20]. Structural mutation involves two types
of mutation: inflate and deflate mutation. Inflate mutation takes a random internal node
whose aritya is lower than the maximum arity defined in the function set, and it replaces
it with a random function of aritya+1. A terminal is inserted as the(a+1) argument
of the new function. Deflate mutation takes any internal node with an aritya greater
than the minimum arity defined in the function set and where at least one argument is
a terminal, and it replaces the node with a function of aritya−1, deleting one of the
terminals rooted on the original node.

In the form of neutrality explained previously, we can easily see how the size of
the search space has increased dramatically. However, we still are in the presence of a
single global optimum. So, the addition of neutrality comes at a cost: after all we are ex-
panding the search space without correspondingly expanding the solution space. Thus,
we should expect that the presence of neutrality will aid evolution only if it modifies the
bias of the search algorithm in such a way to make the sampling of the global optimum
much more likely.

With these elements in hand, it is very difficult to imagine how adding neutrality to a
unimodal landscape can aid evolution. The addition of the form of neutrality explained
previously –constant neutrality– changes the unimodal landscape into a landscape with
plateaus where the search becomes totally random, which could lead to not finding the
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optimum solution. If the global solution is found, we should expect that it will take
longer for the evolutionary process to find it because of the presence of plateaus.

At this point some question arise. What will the effects of neutrality be on multi-
modal landscapes? Specifically, will the problem be easier in the presence of neutrality?
Will neutrality provide a path to cross optima solutions and be able to find global so-
lutions? Will the presence of neutrality provide advantages on tree-like structures, like
for example, control bloat? To answer these questions, we will use fitness distance cor-
relation (f dc) as a measure of hardness. Moreover we will conduct extensive empirical
experiments to compare the performance of our approach and the findings off dc.

4 Fitness Distance Correlation

Jones [10] proposedfitness distance correlation(fdc) to measure the difficulty of a
problem by studying the relationship between fitness and distance. The idea behindfdc
was to consider fitness functions as heuristics functions and to interpret their results as
indicators of the distance to the nearest global optimum in the search space.

The definition offdc is quite simple: given a setF = { f1, f2, ..., fn} of fitness values
of n individuals and the corresponding setD = {d1,d2, ...,dn} of distances to the nearest
global optimum, we compute the correlation coefficientr, as:

r =
CFD

σFσD
,

where:

CFD =
1
n

n

∑
i=1

( fi − f )(di −d)

is the covariance ofF and D, andσF , σD, f and d are the standard deviations and
means ofF andD, respectively. Then individuals used to computefdc can be chosen
in different ways. For reasonably small search spaces or in theoretical calculations it is
often possible to sample the whole search space. However, in most other cases,f dc is
estimated by constructing the setsF andD via some form of random sampling.

According to [10] a problem can be classified in one of three classes: (1)mislead-
ing (r ≥ 0.15), in which fitness tends to increase with the distance from the global
optimum, (2)difficult (−0.15 < r < 0.15), for which there is no correlation between
fitness and distance, and (3)easy(r ≤ −0.15), in which fitness increases as the global
optimum approaches. There are some known weaknesses withfdcas a measure of prob-
lem hardness [1, 16]. However, it is fair to say that the method has been generally very
successful [3, 10, 14, 18–21].

Several papers have proposed the use offdc. Slavov and Nikolaev were among the
first to usefdc in GP [18]. In their experiments, they calculatedfdcusing fitness-distance
pairs which were recorded during runs. The authors defined the distance between a
given individual (DT) in the form of tree-like structure and the global optimum (O) as
follows

d(DT,O) =
{

1+∑i∈DT,Od(child(DTi),child(Oi)) if root DTi 6= rootOi ,
∑i∈DT,Od(child(DTi),child(Oi)) otherwise.
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Later, Clergueet al. [3] extended this idea. As a first step in their investigation, they
used the same function and terminal sets defined by Punchet al.[15] where the function
set wasFset = {A,B,C, · · ·}, whereA has arity 1,B has arity 2 and so on. The terminal
set included a single symbol,X. Moreover, they set a restriction and generated trees
respecting one rule: for every node in a tree, if the arity of the node isn, the nodes below
it must have an arity less thann. Initially, Clergueet al. defined the distance between
treesT1 andT2 as followsd1(T1,T2) = |weight(T1)−weight(T2)| whereweight(T) =
1 ·nX(T)+ 2 ·nA(T)+ 3 ·nB(T)+ 4 ·nC(T)+ · · · , nX(T) is the number of symbolsX
in the treeT, nA(T) is the number of symbolsA in the treeT and so on. However,
this definition of distance between a pair of trees had a major problem: two trees with
very different structures can have distance of 0. In an effort to overcome this problem,
Clergueet al. came up with following idea. Each tree with rooti must have a greater
weight than the trees with rootj, if j < i, where: (a)i, j ∈ {X,A,B,C, · · ·} and (b) there
is an order such thatX < A < B < C· · · . Moreover, a prize is given to each root. This
new definition improved the situation but there was still a problem: two individuals that
have vertical axis of symmetry have a distance 0, despite their structures being different.

The same authors eventually overcame these limitations [3, 21] and computed and
defined a distance (which is the distance used in this work) between two trees in three
stages: (a) The trees are overlapped at the root node and this process is recursively
applied starting from the leftmost subtrees, (b) For each pair of nodes at matching po-
sitions, the difference of their codesc (i.e., index of an instruction within the primitive
set) is calculated and (c) The computed differences are combined in a weighted sum.
That is, the distance between two treesT1 andT2 with rootsR1 andR2 is calculated as
follows:

dist(T1,T2,k) = d(R1,R2)+k
m

∑
i=1

dist(childi(R1),childi(R2),
k
2
) (1)

whered(R1,R2) = (|c(R1)−c(R2)|)z. childi(Y) is theith of thempossible subtrees of a
generic nodeY, if i ≤ m, or the empty tree otherwise, andc evaluated on the root of an
empty tree is equal to 0. Finally,k is a constant used to give different weights to nodes
belonging to different levels in the trees. This distance produced successful results on a
wide variety of problems [19–21].

Calculating distances between trees is not as simple as it is when the distance is
calculated for a pair of bitstrings. Once the distance has been computed between two
trees, it is necessary to normalise it in the range[0,1]. In [20], Vanneschi proposed five
different methods to normalised the distance. Here, we propose another way to carry out
more efficiently this task and that we have called “normalisation by maximum distance
using a fair sampling”. This works as follows: (a) A sample ofns individuals is created
using the ramped half and half method and using a global maximum depth greater than
the maximum depth allowed during evolution, (b) The distance is calculated between
each individual belonging tons and the global optimum, (c) Once all the distances have
been calculated, the maximum distancems found in the sampling is stored.

At the end of this process, the global maximum distancems is used to normalise
the distances throughout the evolutionary process. The global maximum depth1 used to

1 For our experiments the maximum distance is given bymaximumdepth+2.
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create a sample of individualsns
2 is greater than the maximum depth allowed through

evolution. So, through the evolutionary process a higher value for the global maximum
distance it is highly unlikely to be found. Moreover, to control bloat we allow a maxi-
mum length that is determined during the application of the sampling method.

In the following section, we calculatef dcusing Equation (1) on the problems used
to study the problem hardness in the absence and in the presence of neutrality in evolu-
tionary search.

5 Experimental Setup

We have used two problems to analyse neutrality. The first one is the Max problem. The
problem consists of finding a program, subject to size or depth (D), which produces the
largest possible output. For this problem we have definedF = {+}, T = {0.5} and
maximum depthD = 5 (for all our examples the root node is at depth 0). Naturally,
using these sets, the problem has only one global optimum (a full tree with depth 5)
and the landscape is unimodal. For this example, we have used the grow method [13]
to create our population.

The second problem is a trap function [9]. For this example, we have used the func-
tion:

f (X) =

{
1− d

B if d ≤ B,
R(d−B)

1−B otherwise

whered is the normalised distance between a given individual and the global optimum
solution.d, B andR are values in the range of[0,1]. B is the slope-change location
for the optima andR sets their relative importance. For our problem, there is only one
global optimum and by varying the parametersB andR, we make the problem easier or
harder.

Figure 1 depicts the global optimum solution used in the trap problem whereB =
0.01 andR= 0.8 (i.e., the problem is considered to be very difficult). The language that
has been used to code individuals in the trap function is the one proposed by Punchet
al. [15]. Their idea was to use functions with one increasing arity. That is, for a function
setF = {A,B,C, · · ·} their corresponding arities are 1, 2, 3,· · · and the terminal set is
defined byT = {x} which its arity is 0. Moreover, we have initialised our individuals
with the full method [13] usingD = 5. The maximum allowed depth for programs
was 7. Notice that we have used two different methods to initialise the populations for
each of the two examples. This has been done to avoid sampling the global solutions
for both problems.

The experiments were conducted using a GP with tournament selection size 10. We
used standard crossover and mutation (inflate and deflate) independently (i.e., when
crossover was used, mutation did not take place during evolution andvice versa). To
obtain statistically meaningful results, we performed 100 independent runs for each
of the values of fitness of the neutral layer. Runs were stopped when the maximum
number of generations was reached. The parameters we have used for both problems

2 For our experimentsns is typically 10 times larger than the population size.
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Fig. 1.A tree used as global optimum in the trap function settingB = 0.01 andR= 0.8
meaning that the problem is considered to be very difficult.

Table 1.Summary of Parameters.

Parameter Value

Population Size 400
Generations 300
Neutral Mutation Probability (Pnm) 0.05
Mutation Rate 90%
Crossover Rate 90%

are summarised in Table 1. In Tables 2 and 3 we show the constant value (fn) assigned
to the neutral layer for each of the problems.

6 Results and Analysis

6.1 Performance comparison

Let us focus our attention on the Max problem (see Table 2). As discussed previously,
it is very hard to imagine how neutrality could aid evolution in a unimodal landscape.
When neutrality is not present, GP is able to find the global solution without difficul-
ties both when using crossover and when using structural mutation, the percentage of
success being 100% regardless the operator used. This situation, however, changes rad-
ically when neutrality is added in the evolutionary search. That is, when neutrality is
added the performance of GP decreases. As shown in Table 2, the percentage of suc-
cess goes from 100% when neutrality is not present to 0% when the fitness of constant
neutrality is set to 15 (remember that for this problem the global optimum has fitness
16). This is easy to explain because as discussed previously, individuals which fitness
is below the fitness of the neutral layer will tend to move there and once they are in
the neutral layer, the search will behave like random search. Note thatf dc correctly
predicts these performance variations.

Now, let us consider the second problem – the trap function. In Table 3 we show the
results found on this problem when calculatingf dc. Again we have complemented this
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Table 2. Statistical information on the Max problem usingF = {+}, T = {0.5} and
D = 5. The fitness of the global optimum is 16. Avr. Gen. refers to the average number
of generations required to find the global optimum.

fn value f dc Crossover Structural Mutation
Avr. Gen % Suc.Avr. Gen % Suc.

No neutrality-0.9999 29.14 100% 14.22 100%
5 -0.1994 65.69 95% 17.08 100%
10 0.0661 350.29 17% 28.94 100%
15 0.1380 NA 0% 42.08 100%

Table 3.Statistical information on the Trap function using as global optimum the pro-
gram shown in Figure 1.

fn value f dc Crossover Structural Mutation
Avr. Gen % Suc.Avr. Gen % Suc.

No neutrality0.9971 5.00 1% 3.60 5%
0.10 0.9627 6.00 1% 3.25 3%
0.20 0.8638 6.00 1% 5.33 3%
0.30 0.7070 64.41 12% 107.75 4%
0.40 0.5677 66.83 12% 4.00 2%
0.50 0.4616 94.87 8% NA 0%
0.60 0.3828 202.20 5% NA 0%
0.70 0.3234 202.80 5% NA 0%
0.80 0.2778 470.00 1% NA 0%
0.90 0.2419 NA 0% NA 0%

by comparing the performance of GP in the presence and in the absence of neutrality
using standard crossover and structural mutation.

When neutrality is not present in the evolutionary search, we can see howf dcclas-
sify the problem as very difficult (i.e.,f dc= 0.9999), which is actually the case. When
neutrality is added, there are some circumstances where its presence is more helpful
than others. For instance, when the constant fitness in the neutral layer is 0.30 and 0.40,
the performance of GP increases dramatically when using standard crossover (i.e., when
neutrality is not present, the percentage of success is only 1% compared with 12% when
neutrality is added). By how much neutrality will help the search strongly depends on
the constant fitness assigned in the neutral layer,fn. However, for almost all values of
fn we observe improvements over the case where neutrality is absent when crossover is
used. Here there is a rough agreement betweenf dcand actual performance.

Surprisingly, however, when structural mutation is used, in virtually all cases the
addition of neutrality hinders performance, and there appears to be a general trend indi-
cating that the higherfn the worse the results. This goes exactly in the opposite direction
of the predictions off dc. This is perhaps the result of the distance in Equation (1) not
being well-suited to capture the offspring-parent differences produced by the actions of
the mutation operator.
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6.2 Distances between Individuals and Global Optimum

As shown previously, neutrality aids evolution in deceptive landscapes when using
crossover. This situation, however, varies depending on the constant value assigned to
the neutral layer. Since GP with crossover is effectively the standard, we want to anal-
yse in more detail how neutrality affects evolution. To do so, we study how the distance
between the individuals in the population and the global optimum (shown in Figure 1)
varies generation after generation for different values offn.

In the top left-hand side of Figure 2, notice how the normalised distance between
individuals and the global optimum for the casesfn = {0.10,0.20} effectively varies in
the same ways as when neutrality is not present in evolution. Indeed, as confirmed by
results shown in Table 3 the percentage of success are almost the same (i.e., in the range
of 0% and 1%).

This situation, however, changes radically when using fitter neutral layers, i.e.,
fn = {0.30,0.40}, as shown at the top right-hand side of Figure 2. Notice how the
average distance between individuals and the global optimum tends to drop dramati-
cally compared to whenfn ≤ 0.20. Individuals are now on average much closer to the
global optimum and, so, it is easier for the GP system to eventually sample it and solve
the problem.

A reason why GP with crossover is able to sample the global optimum more often in
the presence of neutrality withfn = {0.30,0.40} is that GP tends to produce shorter en-
codings. This can be observed in the bottom right-hand side of Figure 2. However, this
does not mean that GP produces in general smaller individuals regardless the constant
fitness set in the neutral layer.

7 Conclusions

The effects of neutrality are unclear. The goal of this paper is to clarify under what
circumstances neutrality could aid GP evolution.

In this paper we considered perhaps the simplest possible form of neutrality in GP.
This is introduced simply by adding a flag to each individual which indicates whether
or not the individual is on the neutral layer. We used the distance, shown in Equation
(1), proposed and studied in [19–21] to calculate fitness distance correlations (f dc) in
GP landscapes. We used it as a measure of hardness and compared its findings with
extensive empirical experimentation using the Max problem with unimodal landscape
features and a Trap function with deceptive landscape features.

We found thatf dc roughly predicts how problem difficulty is affected by the pres-
ence of neutrality for GP with subtree crossover. The prediction of difficulty for GP
with structural mutation is, instead, more problematic.

Based on these observations and on empirical results, it is clear that the form of
neutrality studied in this paper (constant neutrality) can only aid evolution when the
landscape is complex and multimodal. This is interesting, since, in fact, most realistic
GP landscapes present such features. However, we have also found that it is important
how to set the fitness of the neutral layer (fn) carefully if for the potential benefits
of neutrality to materialise. Much less we can say about the problems where GP with
structural mutation could benefit from the use of constant neutrality.
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Fig. 2. Average normalised distance (top) and average length of individuals (bottom)
using crossover on a difficult trap function. Figure 1 shows the global optimum.
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