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Abstract. Over the last years, neutrality has inspired many reseexdhethe
area of Evolutionary Computation (EC) systems in the hopeitltan aid evolu-
tion. However, there are contradictory results on the &fe€ neutrality in evo-
lutionary search. The aim of this paper is to understand hewtrality - named
in this paper degree neutrality - affects GP search. Foysisgburposes, we use
a well-defined measure of hardness (i.e., fitness distarrcela@ion) as an indi-
cator of difficulty in the absence and in the presence of aéitytrwe propose a
novel approach to normalise distances between a pair of tneet finally, we use
a problem with deceptive features where GP is well-knownaetpoor perfor-
mance and see the effects of neutrality in GP search.

1 Introduction

Despite the proven effectiveness of Evolutionary CompanaEC) systems, there are
limitations in such systems and researchers have beeedtgerin making them more
powerful by using different elements. One of these elemismigutrality (the neutral
theory of molecular evolutiof8]) which the EC community has incorporated in their
systems in the hope that it can aid evolution. Briefly, ndityraonsiders a mutation
from one gene to another as neutral if this modification da¢sffect the fitness of an
individual.

EC researchers have tried to incorporate neutrality irr $yatems in the hope that
it can aid evolution. Despite the vast number of publicatiom this field, there are
no general conclusions on the effects of neutrality and at, fauite often, there is
a misconception with regard to what neutrality is. Therease many contradictory
results reported by EC researchers on neutrality.

For instance, irfFinding Needles in Haystacks is not Hard with Neutralitj20],

Yu and Miller performed runs using the well-known Cartesi@@iR (CPG) representa-
tion [9, 10] and also used the everparity Boolean functions with different degrees of
difficulty (n = {5,8,10,12}). They compared performance when neutrality was present
and in its absence and reported that the performance ofthstiem was better when
neutrality was present.
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A few years later, Collins claimed the opposite and preskttie paper entitled
“Finding Needles in Haystacks is Harder with Neutralitf2]. He further explored the
idea presented by Yu and Miller and explained that the chafitieis type of problem is
unusual and in fact not suitable for analysing neutraliipg€GP. This is because both
the landscape and the form of the representation used hagé aégree of neutrality
and these make the drawing of general conclusions on thetefiéneutrality difficult.

These works (both nominated as best papers in their cordfereacks!) are just
two examples of many publications available in the spesadlliliterature which show
controversial results on neutrality.

The aim of this paper is to understand the effects of netitiialiGP search. For this
purpose a new form of neutrality, calldégree neutralitywill be proposed and studied
in detail and a problem with deceptive features will be usesete how GP behaves in
the absence and in the presence of neutrality.

This paper is structured as follows. In the next sectionyafoem of neutrality will
be introduced. In Section 3, a well-known measure of difficidalled fitness distance
correlation will be described. A novel method to normalise distance between a pair
of trees will be explained in Section 4. Section 5 provideitke on the experimen-
tal setup used. Analysis and conclusions of the resultsdasing our approach are
presented in Section 6.

2 Degree Neutrality

Degree neutrality is a form of neutrality induced by addidgrnmy’ arguments (i.e.,
terminals) to internal nodes (i.e., functions). More sfieally, this type of neutrality
works as follows:

— Once an individual has been created, the internal nodeshtvwat an arity lower
than a given arity are marked (i.e., if an internal noda and needs to be marked,
itis relabelled adA).

— Dummy terminals are added to the internal nodes (i.e., fons} that have been
marked. The number of dummy terminals that will be added terd@ned by a
given arity (i.e., an arity specified by the user). For ins&rsuppose that the given
arity is 5 and a tree has functions of arity 1 then those nodéb¥emarked and
4 dummy terminals will be added to the marked nodes. Thesdwarany in the
sense that their value is totally ignored when computingtitput of the node.

Suppose that one is using the language proposed in [14].i§hite function set
is formed by letters (i.eFset = {A,B,C,---}) and the arities of each function are as
follows: 1 for functionA, 2 for functionB, 3 for functionC and so forth. The terminal
set is defined by a single eleméRt: = {X}. Now, let us define a function sBte; =
{A,B,C,D,E}. This function set has a maximum arity of 5. Let us assumettisis
the arity that will be used to add degree neutrality. A typi&® individual using the
function setFset is shown at the top of Figure 1 and the same individual withreleg
neutrality is shown at the bottom of the figure. Notice howimatérnal nodes of the
resulting individual (Figure 1 bottom) have now the samgydiie., 5).
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Fig. 1. A typical GP individual created using the language propasdd4] (top) and
the same individual with degree neutrality using a maximuity af 5 (bottom).

This can easily be extended if one would like to specify, fatance, that the func-
tions defined in the function set are of arities 4 and 5. Thethalfunction with arities
lower than 4 could be marked and extended with dummy argwsnAdata result of this,
all the functions of the function set would be of arities 4 &d'he same technique
could be applied if the user wanted all the functions defimetthé function set to have
arities 3, 4 and 5 (i.e., all the internal nodes whose ardieslower than 3 should be
“filled” by dummy arguments).

To analyse how degree neutrality will affect the samplingndividuals performed
by GP, this form of neutrality will be examined in conjunetiwith constant neutrality.
This form of neutrality was first studied using a binary GA3band then analysed
using GP [4]. Briefly, the idea is that in this approach, naitir is “plugged” into the
traditional GP representation by adding a flag to the reptasien: when the flag is set,
the individual is on the neutral network and its fithess hasedfiged value (denoted in
this work by f,). When the flag is not set, the fitness of the individual is ieieed as
usual. See [4] for a full description of its implementatidve decided to use constant
neutrality to study the effects of degree neutrality beeauish many primitive sets, GP
has the ability to create a rich and complex set of neutralowds. This may be a useful
feature, but it is a feature that is hard to control and amali®wever, using these types
of neutrality we are in total control so, we are in positiorstifdy its effects in detail.

In the following section, a well-defined measure of hardiwélde introduced and
this will help us to better understand the effects of neityral evolutionary search.
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3 Fitness Distance Correlation

In [7], Jones proposed an heuristic calldess distance correlatio(fdc) using the
typical GA representation (i.e., the bitstring represgotg and successfully tested it
on several problems.

fdcis an algebraic measure to express the degree to which theditanction con-
veys information about distance to the searcher.

The idea of usingdc as an heuristic method, as stated in [7], was to create an
algebraic metric that can give enough information to deteerthe difficulty (for a GA)
of a given problem when the global optimum is known in advaficeachieve this,
Jones explained that it is necessary to consider two mainezits:

1. To determine the distance between a potential solutiahtla@ global optimum
(when using a bitstring representation, this is accometishsing the Hamming
distance) and

2. To calculate the fitness of the potential solution.

With these elements in hand, one can easily computiltteoefficient using Jones’
calculation [7] thereby, in principle, being able to deterenin advance the hardness of
a problem.

The definition offdcis quite simple: given a s&t = {f1, f2, ..., fy} of fithess values
of nindividuals and the corresponding &t {di,dy, ...,dn} of distances of such indi-
viduals from the nearest optimurfidicis given by the following correlation coefficient:

Crp

fdc= ,
OFOD

where: L
CrD = ﬁi;(fi — f)(di fd)

is the covariance df andD, andog, op, T andd are the standard deviations and means
of F andD, respectively. Tha individuals used to compufec are obtained via some
form of random sampling.

According to [7] a problem can be classified in one of threes#a, depending on
the value offdc:

— misleading(fdc > 0.15), in which fitness tends to increase with the distance from
the global optimum,

— difficult (—0.15 < fdc < 0.15), for which there is no correlation between fitness
and distance; and

— easy(fdc< —0.15), in which fitness increases as the global optimum appexac

There are some known weaknesses Vdihas a measure of problem hardness [1,
15]. However, it is fair to say that this method has been gadhyevery successful [3-5,
7,12].

Motivated by the good results found Hgtc, this measure of hardness has been
further explored using tree-like structures. There areesanitial works that have at-
tempted calculating the distance between a pair of treed gl1However, these works
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Fig. 2. Distances calculated between different trees. The largythed has been used is
the one proposed in [14k = 1 andc has been defined as the arity that each function
has (i.e.c(A) = 1, c(B) = 2, c(C) = 3 and so forth). The distance between trees (a)
and (b) is denoted bylistancéa,b). So, distanc€a,b) = 1.5, distancéb,c) = 4.0,
distancéc,d) = 11.75 anddistancéd, e) = 36.75.

were limited in the sense that they did not offer a reliabktatice. In, [18,19, 17] the
authors overcame these limitations and computed and dedirtbstancé between a
pair of tress.

There are three steps to calculate the distance betweeh tegel T,:

— T1 andT, must be aligned to the most-left subtrees,

— For each pair of nodes at matching positions, the differefitkeir codes (typi-
cally cis the index of an instruction within the primitive set) idadated, and

— The differences calculated in the previous step are cordbitte a weighted sum
(nodes that are closer to the root have greater weights thd@srthat are at lower
levels).

Formally, the distance between trégsandT, with rootsR; andRy, respectively, is
defined as follows:

dist(T1, T2,K) = d(R,R2) + k.idist(childi (R1),childi(R), IE() 1)

where:d(Ry, Ry) = (|c(Ry) — ¢(Rz)|)? and;childi(Y) is theit" of them possible children
of a nodey, if i < m, or the empty tree otherwise. Note tltatvaluated on the root of
an empty tree is 0 by convention. The paramé&tier used to give different weights to
nodes belonging to different levels in the tree. In Figuresthg Equation 1, various
distances have been calculated using different trees. iBtende produced successful
results on a wide variety of problems [3, 4, 17-19].

Once a distance has been computed between two trees, itissagg to normalise
it in the rangel0, 1]. In [18], Vanneschi proposed five different methods to ndisea
the distance. In this work, however, we will introduce a neetnod that carries out this
task more efficiently. This will be presented in the follogisection.

3 This is the distance used in this work. We will use the codevigeml in [3, Appendix D] to
calculate the distance between a pair of trees.
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4 Normalisation by Maximum Distance Using a Fair Sampling

Inspired by the methods proposed in [18], we propose a neuodetalled “Normal-
isation by Maximum Distance Using a Fair Sampling” which &ed to conduct the
empirical experiments show in this work. This method work$adlows.

1. A sample o individuals is created using the ramped half-and-half metlsing
a maximum depth greater than the maximum depth defined toatdoat,

2. The distance is calculated between each individual lgghgrto the sample and the
global optimum,

3. Once all the distances have been calculated usingdividuals that belong to the

sample, the maximum distankg found in the sampling is stored,

. np individuals that belong to the population are created adoam

5. The distance is calculated between each individual lgghgrto the population and
the global optimum,

6. Once all the distances have been calculated ugjngdividuals that belong to the
population, the maximum distanég found in the population is stored,

7. The global maximum distanck, is the largest distance betwelénandKp,.

N

At the end of this process, the global maximum distakdde found. Given that the
depthds used to create a sample of individuals (for our experimentss is typically
10 times bigger than the population size) is greater thad¢ipthd, defined to control
bloat (for our experimentss = dp + 2), then throughout the evolutionary process, it is
highly unlikely we will ever find a higher value for the globalaximum distance. In
fact, as we mentioned previously, this normalisation metivas used to conduct the
experiments reported in this work and in none of them was ladhridistance found.

The global maximum distance is found after the sampling dividuals and the
creation of the population. Clearly, the main advantagéisfiirocess is that during the
evolution of individuals, the complexity of the process mrmalise distances can be
reduced substantially compared to Vanneschi’'s methods (eonstant-normalisation
by iterated search”).

5 Experimental Setup

5.1 Trap Function

The problem used to analyse the proposed form of neutraligy Trap function [6].
The fitness of a given individual is calculated taking inte@mt the distance of this
individual from the global optimum. Formally, a trap furamiis defined as:

1- ﬂir{ if d(¢) < dmin,

% otherwise

whered(?) is the normalised distance between a given individual ardythbal opti-
mum solutiond(?), dmin @andr are values in the rand®, 1. dmin is the slope-change
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Table 1. Parameters used for the problems used to conduct extemspiei@al experi-
ments using degree neutrality.

|Parameter [Valud
Population Size 400
Generations 300
Neutral Mutation ProbabilityR,ny)|0.05
Crossover Rate 90%
Tournament group size 10
Independent Runs 100

location for the optima and sets their relative importance. For this problem, there is
only one global optimum and by varying the parametkfig andr, the problem can be
made either easier or harder.

For this particular problem, the function and terminal s&ts defined using the
language proposed in [14] (see Section 2).

Fig. 3. A global optimum used in our first experiment (top) and a glaipiimum used
in our second experiment (bottom).
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Table 2. Performance of GP using swap-crossover. Constant ndwtrali
(i.e., {1,2,3,4,5}) and degree neutrality with functions of different arities
(i.e.{2,3,4,5},{3,4,5},{4,5}) were used.f, stands for the different fixed fit-
ness values used. The global optimum is shown at the top afr&ig and setting
B=0.01 andR= 0.8 (i.e., the problem is considered to be very difficult).

fovalug {1,2,3,4,5} {2,3,4,5} {3,4,5} {4,5}
Avr. Gen % SugAvr. Gen % SugAvr. Gen % SugAvr. Gen % Sua.

- 4.50 2% | 4.00 1% | 4.00 2% 4 1%
0.10 N/A 0% N/A 0% N/A 0% N/A 0%
0.20 6.00 1% | N/A 0% 6.00 1% | N/A 0%
0.30 | 11.16 6% | 15.50 2% | 29.66 3% | 18.00 9%
0.40 | 43.75 12%| 37.00 9% | 65.83 6% | 86.57 7%
0.50 | 76.80 10%| 61.30 13%| 67.00 10%| 80.69 13%
0.60 | 111.75 8% | 97.00 6% | 107.85 7% | 104.87 8%
0.70 | 157.25 8% | 118.00 3% | 124.60 5% | 83.00 1%
0.80 | 266.50 2% | N/A 0% N/A 0% N/A 0%
0.90 N/A 0% N/A 0% N/A 0% N/A 0%

Standard crossover was used to conduct our experimentsadfment selection was
used to conduct our experiments. Furthermore, runs weppstbwhen the maximum
number of generations was reached. The parameters usedemargTable 1.

To avoid creating the global optimum during the initialisatof the population for
the Trap function, the full initialisation method has besed. Figure 3 shows the global
optima used in our experiments.

6 Analysis of Results and Conclusions

The results ofdc, the average number of generations required to find thedalgbg-
tima and the percentage of successes are shown in Tables¥vaimeh constant neu-
trality and degree neutrality with a maximum arity of 5 aredi¢i.e., all the functions
are of the same arity).

In Tables 2 and 3, we show the results when using constamatigu{indicated by
{1,2,3,4,5} which means that there are functions of those arities) agtbéemeutrality.
As we mentioned previously, the performance of the GP systereases when either
form of neutrality is added, specifically in the range[@30— 0.65]. As can be seen
from these results, degree neutrality has almost the safet e constant neutrality
when the functions declared in the function set are of mixéksa.

This, however, is not the case when neutral degree is addktharfunctions de-
clared in the function set are of the same arity. Under thsarostances, the perfor-
mance of the GP system is increased in almost all cases, as $hdables 4 and 5. As
can be seen, the predictions doneftbyare roughly correct. That is, in the presence of
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Table 3. Performance of GP using swap-crossover. Constant ndyt(aé., arities
of functions ={1,2,3,4,5}) and degree neutrality with functions of different arities
(i.e.{2,3,4,5},{3,4,5},{4,5}) were usedf, stands for the different fixed fitness val-
ues used. The global optimum is shown at the bottom of Figuamed3setting® = 0.01
andR= 0.8 (i.e., the problem is considered to be very difficult).

fovalug {1,2,3,4,5} {2,3,4,5} {3,4,5} {4,5}
Avr. Gen % SugAvr. Gen % SugAvr. Gen % SugAvr. Gen % Sua.
- N/A 0% N/A 0% N/A 0% N/A 0%

0.10 N/A 0% N/A 0% N/A 0% N/A 0%
0.20 N/A 0% N/A 0% N/A 0% N/A 0%
0.30 | 52.20 10%| 66.55 20%| 62.07 13%| 58.50 18%
0.40 | 79.57 14%| 113.69 13%| 77.66 9% | 86.09 11%
0.50 | 110.30 10%| 109.30 13%| 75.07 13%| 70.66 3%
0.60 | 204.00 3% | 129.50 6% | 82.71 7% | 145.00 2%
0.70 | 128.00 2% | 101.00 1% | 10.66 3% | 161.00 1%
0.80 N/A 0% N/A 0% N/A 0% N/A 0%
0.90 N/A 0% N/A 0% N/A 0% N/A 0%

Table 4. Performance of GP using swap-crossover. Constant neytfiadi., arities of
functions ={1,2,3,4,5}) and degree neutrality using the maximum arity (i.e., alicfu
tion have the same arity ) were usdglstands for the different fixed fitness values used.
The global optimum is shown at the top of Figure 3 and setirg0.01 andR= 0.8
(i.e., the problem is considered to be very difficult).

faovalug fdc | {1,2,3,4,5} {5}
Avr. Gen % SugAvr. Gen % Sug.
- 0.99871 4.50 2% | N/A 0%
0.10 [0.9623 N/A 0% N/A 0%
0.20 |0.8523 6.00 1% | N/A 0%
0.30 |0.7012 11.16 6% | 35.60 10%
0.40 |0.5472 43.75 12%| 49.38 13%
0.50 |0.4682 76.80 10%| 84.11 18%
0.60 |0.3912 111.75 8% | 120.40 15%
0.70 |0.3298 157.25 8% | 100.25 8%
0.80 |0.2892 266.50 2% | 104.33 3%
0.90 |0.2498 N/A 0% | 56.00 2%

neutrality, the percentage of successes tends to incneageularly when the fitness
of the constant value lies in the range[0f30— 0.75. There is, however, a variation
in the percentage of successes when there is a mixture iesajiie{ 1,2, 3,4,5}) and
when all the functions are of the same arity (agty = 5). So, it is clear that whiléc
computes some of the characteristics of a problem in relaidts difficulty, it does not
capture all.
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Table 5. Performance of GP using swap-crossover. Constant newttadi., arities of
functions ={1,2,3,4,5}) and degree neutrality using the maximum arity (i.e., alicfu
tion have the same arity ) were usdy.stands for the different fixed fitness values
used. The global optimum is shown at the bottom of Figure 3satiihgB = 0.01 and
R=0.8 (i.e., the problem is considered to be very difficult).

faovalug fdc | {1,2,3,4,5} {5}
Avr. Gen % SugAvr. Gen % Sua.
- 0.9991 N/A 0% N/A 0%
0.10 [0.9714 N/A 0% N/A 0%
0.20 [0.8693 N/A 0% N/A 0%
0.30 [0.7023 52.20 10%| 82.76 17%
0.40 |0.5802 79.57 14%| 78.00 14%
0.50 (0.4674 110.30 10%| 81.40 15%
0.60 [0.3879 204.00 3% | 147.12 6%
0.70 [0.3342 128.00 2% | 246.23 2%
0.80 [0.2787 N/A 0% N/A 0%
0.90 [0.2467 N/A 0% N/A 0%

By how much neutrality will help the search strongly depem¢he constant fithess
assigned in the neutral laydp. However, for almost all values df improvements can
be seen over the cases where neutrality is absent and whesoeer is used. Here there
is a rough agreement betweflt and actual performance although fass increased
beyond a certain leveldc continues to decrease (suggesting an easier and easier prob
lem) while in fact the success rate reaches a maximum andthes decreasing again.

To explain why GP with crossover is able to sample the gloptihmum in the pres-
ence of neutrality (i.e., see for instance Tables 4 and 5 vihien{0.30,0.40,0.50}), we
need to consider the following elements. Firstly, the flaite landscape becomes the
more GP crossover will be able to approach a Lagrange disiwibof the second kind
[13]. This distribution samples heavily the short progra®acondly, since the global
optima used in our experiments (i.e., see Figure 3) are lalively small, this natural
bias might be useful.

On the other hand, as can be seen in Tables 4, and 5, when ttamovalue on the
neutral layer is high (i.ef, > 0.70) the perfomance of the GP system tends to decrease.
This is easy to explain given that the higher the valuéptthe flatter the landscape.
Thus, flattening completely a landscape (ifg.> 0.80) makes the search totally undi-
rected, i.e., random. So, there is no guidance towards ttimapThe flattening of the
landscape also reduces or completely removes bloat. Thig@d feature to have in
this type of problem and for the chosen global optima bechles moves the search
towards the very large programs, but we know that none of tbembe a solution.
So, if bloat were to take place during evolution, it wouldden the search. Effectively,
we can say that by changing the valuesfgfthe user can vary the balance between
two countering forces: the sampling of short programs aedjthidance coming from
fitness.
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