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Abstract 

From, Analogies complete their primary task of generating new knowledge about a problem domain, 

based on a noted similarity between the problem and some other familiar domain. Analogical 

inferences are generated as a form of pattern completion occurring in the target domain, but not all 

comparisons between structurally similar domains generate valid inferences. We highlight the need 

for a domain independent verification mechanism. We describe an extended model of analogical 

reasoning that includes an explicit verification mechanism, employing existing memory to verify 

candidate inferences. We focus on the soundness of first-order predicates by comparing candidate 

inferences with background memory, with greater similarity leading to quicker and clearer 

verification.  

Introduction 

Analogical reasoning plays a central role in many cognitive processes affecting: problem solving 

(Gick and Holyoak, 1980), creativity (Boden, 1994), basic cognitive perceptions (Lakoff and 

Johnston, 1980) and especially learning (Duncker, 1945; Holyoak et al, 1994). However, analogy is 

primarily of interest as a workaday process, supporting inference in novel situations by comparison 

with past experience. Rather than reasoning from “first principles”, analogical reasoning uses a 

noted similarity between some problem domain and a well-known one to infer useful facts about 

that problem domain. 

 Pattern completion is the ubiquitous model for analogical learning, and good analogies 

introduce a cluster of useful knowledge to the target domain. However, poor analogies do not 

support learning - or worse, they cause “negative learning” by adding incorrect or unsound 

information to the target domain. Markman (1997) and others point out that analogy is too 

profligate an inference mechanism, and constraints on inferences are necessary. Markman also notes 

that the one-to-one mapping constraint also acts to constrain the inference set, when n-to-m 

mappings might be generated. Because analogies use domains that are rarely fully isomorphic 

(Holyoak et al, 1994), computational models can easily over-generate inferences. 

 We propose a novel set of constraints on analogy that serve to constrain the inferences 

generated by an analogy. These constraints reject unsound inferences early during verification, 

making these constraints less expensive than previous pragmatic approaches to this problem. 

Furthermore, our memory based verification mechanism operates, like analogy, in a domain 



 

 

independent manner. First, we distinguish between the pragmatic utility and the soundness of an 

inference. Pragmatics have been shown to constrain the analogical mappings considered, under 

ambiguous structural conditions (Holyoak and Thagard, 1989; Hummel and Holyoak, 1997). 

However, inferences are still generated by a pattern completion process, extraneous source 

information can be carried over to the target. This generates unwanted inferences, but our simple 

validation mechanism rejects many of these inferences. 

 Specifically, inference rejection and acceptance requires a distinction between sound and 

unsound inferences. A sound inference is one that represents some reasonable belief about the 

external world, while an unsound inference attempts to represent information with no relevance to 

the real world. Consider the following analogy between a source <1 double 2> and <1 successor 2>, 

and the target domain <“a” successor “b”>. Inference by pattern completion generates the grounded 

inference (Gentner, 1983) <“a” double “b”>, and although systematicity theory mandates such an 

(unwelcome) inference, our verification process to rejects such inferences. Our verification process 

tests for successive degrees of similarity between the candidate inferences and the contents of long-

term memory, in a simple domain-independent manner.  

 To highlight the difference between these approaches, pragmatic verification typically deals 

with systems of predicates, usually the candidate inference set and the pre-existing target domain. In 

stark contrast, our technique can determine the soundness of an individual (inferred) predicate, with 

reference only to background knowledge. Certifying the soundness of an inference halts the transfer 

of extraneous source material to the target. Finally, we point out the distinction between sound and 

true information, as a sound inference may actually be false. Consider an analogy between a last-

minute cramming for an exam and preparing for a marathon. The obvious (and sound) inference 

creates a false understanding of the target domain. One must be careful as to which analogies are 

treated seriously, regardless of their plausibility. 

Frameworks for Analogy 

Since identifying the role of systematicity in analogy (Gentner, 1983) there has been much focused 

work on computational modelling of analogy, largely on identifying the inter-domain mapping. 

From this and other influences many larger frameworks for analogy research have arisen, and are 

typically multi-phase models operating primarily in a sequential manner. Many of these frameworks 

refer to an evaluation phase, but supply little detail on its operation. These frameworks are notable 

by their lack of an explicit verification activity, which operates on the candidate inferences 

mandated by an analogy. None propose a validation activity based on the soundness of candidate 

inferences. 



 

 

 For example, Kokinov (1994) identifies phases of retrieval, mapping, transfer, evaluation and 

learning; Holyoak and Thagard (1989) recognise retrieval, mapping, transfer and subsequent 

learning; Eskeridge (1994) recognises retrieval, mapping and transfer and use; Falkenhainer, 

Forbus and Gentner (1989) identify phases of access, mapping, and evaluation and use. Forbus, 

Gentner, Markman et al (1999) decompose analogy into retrieval, mapping (alignment and 

projecting inference) and abstraction. Hall (1989) compares models using phases of recognition, 

elaboration, evaluation and consolidation. Hummel and Holyoak's (1997) Lisa model encompasses 

phases of access, mapping and induction. However, throughout this paper we use Keane’s (1994) 

framework as a reference point, and will later re-interpret its adaptation phase (Figure 1). 

representation retrieval mapping adaptation induction  

Figure 1 - Keane’s Five Phase Model of Analogy 

 Of course pragmatic knowledge can server to reject inferences based on irrelevant aspects of 

the source, thereby focusing on the pragmatic utility of candidate inferences. The Phinneas model 

(Falkenhainer, 1988, 1990) takes this pragmatic approach, situating analogy within the context of 

physical modelling. By including a real world model Phinneas tests each inference against an 

“empirical envisionment” of that prediction. By use of a qualitative simulation, Phinneas compares 

analogical inferences to observed phenomena. This forms a reliable basis for verification but with 

considerable computation expense - a large section of Phinneas is devoted to this task for the 

physics domain alone (QPE and DATMI). Only sound inference need be considered by such an 

expensive operation. Holyoak, Novick and Melz (1994) also detail evaluation/adaptation along 

with representation, retrieval, mapping, inference, and generalisation. This evaluates candidate 

inferences, however it is also pragmatically based. 

Analogical Inference and Pattern Completion 

The ubiquitous scheme for analogical inference is as “pattern completion”, and is realised by the 

CWSG algorithm - Copy with Substitution and Generation (Holyoak, Novick and Melz, 1994; 

Markman, 1997). When the inter-domain mapping identifies correspondences for all target entities, 

additional source structure can then be copied (with appropriate substitution) to the target domain. 

Semantically impoverished target domains leave source entities unmapped, and these must be 

generated in the target domain, to fulfil their role within that domain. In practice this can amount to 

positing the existence of skolem entities in the target domain (Falkenhainer et al, 1989), and this can 

lead to rampant inference generation for non-isomorphic domain pairs. 

 To reject unsound candidate inferences, we extended Keane’s five phase model and introduce a 

domain independent verification sub-phase. We re-label this phase as validation because we see this 



 

 

as an activity makes valid all inferences that can be made valid, by a combination of verification and 

adaptation. This verification process relies heavily upon the contents of background knowledge, and 

specifically upon existing predicate structure. Many unsound candidate inferences may be rejected 

by comparison to predicates from a reasonable background memory store. This is the basis for our 

verification sub-phase (Figure 2). We shall not discuss the adaptation process, but merely wish to 

highlight it as a related phase. 
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Figure 2 - An extended Model of the Validation Phase 

Verification Sub-Phase 

To develop the verification model, we adopt the quartic notation of Hofstadter (1995) and others 

and examine simple analogical inference; A:B :: C:D (read, A is-to B as C is-to D). As inference 

in Hofstadter’s CopyCat is a form of pattern completion, inferences do not undergo the type of 

validation we propose. This notation identifies simple transfer-based analogies, and although they 

do not provide grounded inferences (Gentner, 1983) they can be extended to do so.  

 For example, comparing <man drive car> with the target <woman ? bus> (no connecting 

predicate) offers a verifiable inference, which might be grounded by adding the predicate <man 

inside car> to the source. The target <groceries inside car> is identified as dis-analogous because of 

the non-verifiable candidate inference <groceries drive car>. An adequate model of analogical 

reasoning should reflect peoples’ ability to reject such non-analogical comparisons.  
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Figure 3 - A source and three alternate targets 

Verification by Memory Matching 

Verification may be achieved in a number of ways, depending upon the degree of overlap between 

the candidate inference and memory contents. Familiar inferences are more easily verified than less 

familiar ones. Here we focus on first-order predicates (between objects), where an identified source 

relationship is transferred to the target objects. The source domain identifies some relationship <A 

R1 B>, which we transfer to the target yielding <C R1 D>. For example, <2 double 4> applied to 

the target objects 3 and 6, yields <3 double 6>. 



 

 

 Our verification mechanism is sensitive to the commutativity of the inferred predicate, with 

additional verification mechanisms available to commutative predicates. Verification proceeds 

through a number of steps until one proves successful, beginning with the most specific and 

powerful, gradually uncovering extra information to aid verification.  

1. Non-commutative Verification. Firstly, an existing instance of the inferred predicate <C R1 D> is 

sought from memory. If this predicate has previously been encountered, verification is deemed 

successful. Whether such a predicate is pragmatically useful in the target domain is left to processes 

beyond the scope of our validation phase. Thus the inference <x-ray go-down path> is only verified 

if previously encountered (our knowledge base being generally structure in an agent-patient 

ordering). 

2. Commutative Verification. Commutative predicates may also be validated in a “piecemeal” 

fashion, so we search for either <C R1 D> or <D R1 C>, as commutative predicates can be 

validated with their arguments in any order. Thus, for <man next-to door> :: <house ? tree>; <tree 

next-to house> may be validated against itself and also against <house next-to tree>. 

3. Partial-Predicate Verification. Many inferences form novel combinations of a predicate and its 

arguments. However, many novel inferences may be successfully verified in a piecemeal fashion. 

Validating the agent and patient roles separately, we may validate <C R1 ?> and <? R1 D>, with 

commutative predicates being validated in either agent-patient or patient-agent order.  

 Thus, <x-ray go-down path> may be validated if we have encountered the partial predicates; 

<x-ray go-down ?> and <? go-down path>. In other words, verification is achieved if we know an x-

ray is something which fills the agent role of go-down and a path can fill its patient role. This would 

validate the “oesophagus” solution to the tumour problem, which Duncker (1945) regarded as 

“genuinely the solution of a problem”, although its not the required one (we return to the issue in 

later section). This looser form of verification would allow <3 double 50> as a candidate inference, 

but this can be rejected by the later application of domain knowledge. However, verification would 

still reject the analogy <1 double 2> :: <“a” ? “b”> on the basis of the candidate inference <“a” 

double “b”>.  

4. Similarity Verification. Some support for verification may also be achieved by application of a 

similarity metric (Tversky, 1977) between the candidate inference and the “most similar” contents 

of memory. The inference <monkey drive motor-car> could be validated (against a reasonable 

knowledge base) only if “monkey” was sufficiently similar to some man, but “groceries” would 

never be sufficiently similar. Because verification interacts heavily with adaptation, the degree of 



 

 

similarity sought can depend upon how an inference is adapted. We do not describe adaptation 

herein. 

 This technique seems to account adequately for inferences that conform to previous usage of 

the relevant predicate. How then can it account for more novel usage of predicates, which introduce 

a new interpretation of a predicate or present a new aspect of some object? We argue that many of 

these inferences are the same ones that people have difficulty with, and typically require additional 

support. New meanings for polysemous predicates may be added and can be differentiated by their 

argument types, such as learning that the bounce predicate may take a cheque as well as a ball as an 

argument. Alternatively, introducing a metal that can flow along a glass tube might introduce 

highlighting the unique properties of mercury, or introducing a mammal that flies (bat), and birds 

that can’t (emu).  

Analogical Inference 

We now return to Dunckers’ (1945) analogy between a tumour and a fortress, which is centred on 

the inference that x-ray beams travel along “paths” before they converge to destroy the tumour. This 

convergence solution can only be generated if the inference <x-ray go-down oesophagus> is first 

rejected (Dunckers’ protocol 1) - to make way for the required inference. Although rejected by the 

first two verification phases, partial predicate verification would accept such an inference. Thus, 

while the required inference is accepted, the “unwanted” inference is not first rejected by our 

verification method. As stated, Duncker regarded this as a (not prefereable) solution to the problem, 

so we contend that an analogy “use” phase is required to reject this inference. Clearly, not all 

unwanted inferences can be rejected by a simple verification scheme, some complex inferences 

require more complex reasoning, such as that of Phinneas (Falkenhainer, 1988).  

Conclusion 

Analogical verification is necessary to reject comparisons such as that between <1 double 2> and 

<“a” ? “b”>, while accepting valid comparisons between <1 successor 2> and <“a” ? “b”>. We 

present a model of domain independent memory-based verification, which ensures the structural 

soundness of candidate inferences. This enables a model to discriminate between a large number 

many analogical and non-analogical comparisons. Certifying the soundness of an inference stops 

inappropriate source material being transferred to the target - a necessary constraint because domain 

boundaries are rarely well-defined. These constraints greatly increase the inferential acuity of 

analogical reasoning models.  
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