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Abstract

Timbre morphing is a technique of music sound synthesis which combines existing
sounds (timbres) to form a new sound. Musical timbre is defined as the temporal
development of harmonics within a sound . We implement the Wigner time-frequency
distribution as our representation of the temporal variation of harmonics. Similarity
between input signals provides a basis for generating the Wigner distribution of the
new timbre. In this paper we develop signal processing techniques for multi-signal
timbre morphing using linear region-based interpolation and geometric warping. A
cost function is used for the correspondence problem encountered in matching timbral
features (peak of attack etc.) in each sound. Recovery of the new timbre is achieved
through additive synthesis. Due to interference terms, the Wigner distribution needs to
be perturbed for the correct recovery of any signal. Results of synthesis are presented
for synthetic signals. These provide a means to test and ensure a robust synthesis.



1 Introduction

The process of timbre morphing is a technique of music sound synthesis which
combines existing sounds (timbres) to form a new sound with intermediate timbre and
duration [1]. We apply timbre morphing to sampled instrumental sounds of equal
pitch. We us the Wigner time-frequency distribution as our representation of timbre to
show how harmonics develop over time within a sound. The principal method used
for time frequency analysis has been the short-time Fourier transform (STFT), or
spectrogram, developed in response to the analysis of human speech in the 1940’s [2].
The spectrogram, however, contains an inherent tradeoff between time and frequency
resolution [3], whereas, the Wigner distribution gives good localisation in both time
and frequency. The synthesis of a new musical timbre is enabled by identifying an
analogy [4,5,6] between the input signals and using their similarity as a basis for
constructing the new “synthesised” timbre. To facilitate this process, we represent all
input signals by their respective Wigner distributions (see Figure 2). The Wigner
distributions represent the variations in signal strength over the frequency and time
domains, with the vertical axis representing loudness. Features in the input spaces are
identified and used as a basis for identifying the inter-signal similarity, with the most
significant features including peak of attack, loudest point, quietest point, and start of
decay. Each feature is identified in the input spaces, and then mapped to each
corresponding feature in the other signals to ensure the generation of a suitable output
signal. This mapping and transfer process in guided by a number of constraints which
serve to ensure that the output signal is a Wigner distribution of the required timbre.
Such constraints may, for example, influence the role played between the base
frequency and its harmonics or the treatment of cross-terms generated during the
mapping process. It is these constraints which ensure that the generated signal
contains the required timbre features of the input signals.

Indeed, the structural diagram (Figure 1) detailing our approach to musical
synthesis highlights the similarity between our approach and that of conceptual blends
[7]. While some blend principles such as integration and good reason have parallels in
our model, other principles find no place within our model. The unpacking and web
principles for instance, do not apply to our model as there is no need to manipulate the
generated conceptual space as an entity, while maintaining the association between the
generated space and the input spaces.
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Figure 1. Timbre morphing as a blend.
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We develop signal processing techniques for morphing consisting of linear
interpolation and non-linear warping. The identification of a correspondence between
features in both sounds is recognised as an NP-hard problem. We, therefore, limit the
number of features used in morphing to reduce the complexity of correspondence
matching.

1.1 Timbre

Musical timbre is an important ingredient in the composition, performance and
appreciation of music both vocal and instrumental. The word timbre, also termed
‘sound quality’ and ‘die klangfabre’ is used to describe that characteristic quality
which distinguishes sounds played on one instrument from those of another or to
distinguish between different sounds played on the same instrument. We can
immediately recognise the difference between a note played on, e.g., a trombone, from
one played on a violin. Much work has been done through the physical [8,9,10] and
the psychological [11,12] approaches in musical acoustics. Helmholtz [8] lists timbre
as one of the three distinguishing attributes of musical tones, i.e. force (intensity or
loudness), pitch (frequency) and quality (timbre). We often associate particular
timbres with words such as ‘smooth’, ‘sharp’, ‘hollow’ etc., with colours and feelings
as a means of comparing our perceptions of sounds. We define timbre, formally, as
the temporal development of harmonics within a sound i.e., the time-dependent
variation in amplitude of each frequency comprising the sound. The importance of
timbre can be appreciated when we distinguish between ‘good’ or ‘poor’ quality of
tone in an instrument. Various explanations have been proposed for the superior
quality of tone of the Stradivarius string instruments and attempts have been made to
reproduce this quality in modern instruments [13].

All musical tones are comprised of a series of pure (sinusoidal) tones. The lowest
and generally the loudest of these ‘partial’ tones is termed the fundamental, or prime,
tone. This, with the other partial tones, the upper partials or harmonics, forms an
harmonic series as propounded by J.B. Fourier (1768-1830) and the series of upper
partials is the same for all musical tones. The frequencies of the partials are in the
ratio 1:2:3:4, etc. and are termed fundamental, first upper partial (second harmonic),
second upper partial etc. The fundamental is generally the loudest harmonic and its
frequency gives the frequency of the compound tone. We distinguish between musical
sounds and noise (unwanted information in a signal [14]), and are interested,
primarily, in sounds within the aural range (20Hz - 20kHz). Furthermore, the
importance of the transient part of a musical sound in the identification of a particular
instrument is well established. An attack transient is characteristic of all acoustic
musical instruments and is the most important identifying element of the sound [9].
For timbre morphing, then, we choose sounds with short impulse responses(~0.4secs),
where onset attack is followed almost immediately by the decay transient. We sample
sounds at a chosen pitch (e.g. A = 440Hz, i.e., A above middle C) over the
instruments’ ranges and use these as the sounds to be morphed.



2 Representations of sound.

In order to analyse the timbre of a sound we need to know which frequencies are
present in the signal and also when they are present. For the first requirement, namely,
which frequencies are present, a suitable prediction can be made as all musical sounds
contain the same relative makeup of harmonics and their relative strengths are known
for different instruments. Fourier analysis provides the mathematical tool for the
frequency domain representation of a signal. By expanding the signal as a set of
functions it reflects the compound nature of the signal. The energy density spectrum
(the absolute square of the Fourier transform) contains this information [2]. The
second requirement, that is, when the frequencies are present, requires a frequency-
time distribution to show how the spectral content is changing with time. For timbre
morphing we use the Wigner Distribution' [15] which belongs to the Cohen General
Class of time-frequency distributions. The General Class can be used to derive all
time-frequency distributions by choosing a suitable, two dimensional, kernel function.
The kernel function for the Wigner Distribution is unity. Other time-frequency
distributions belonging to the General Class are due to Rihaczek, Page and Margenau-
Hill. The Wigner Distribution as given by Cohen [2] is as follows:
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The Wigner distribution in terms of the signal, s(¢) or its spectrum, S(w) are equivalent.
We have used the former of the two definitions. The Wigner distribution, however,
contains cross terms and negative values which are difficult to interpret [2]. For
computational purposes the Wigner distribution is windowed giving the Pseudo
Wigner Distribution (PWD) [16]. Further smoothing of the PWD produces the
Smoothed Pseudo Wigner Distribution (SPWD) which helps reduce the influence of
cross terms. We use the SPWD defined as follows:

SPWD(n,0)=2 3 e *p(k) 3. 2(1)g(n,k) )
k=~L+1 I=—M+1

where p(k) = w(k)w'(—k) and g(n,k)=s(n+k)s"(n—k).w(k)is the window
function, s(n) is the signal and z(I) is the smoothing window.

The transition from the Wigner distribution W(z,®) of a continuous time-signal to that

of a discrete time-signal SPWD(n,G) is non trivial requiring sampling of the signal at
twice the Nyquist rate, i.e., f, <4f, where f is the sampling frequency and f, is the

! Wigner developed his distribution in the field of quantum mechanics in order to calculate the
quantum correction to the second virial coefficient of a gas, indicating how it deviates from the
ideal gas law. This required a joint distribution of position and momentum.



highest frequency present in the signal [16]. Equation (2) may be viewed as a discrete
Fourier Transform with respect to variable k of

[p(k) ﬁz(l)g(n,k)}

[=— M+1

for window size 2L — 1. However, the Wigner Distribution is periodic inzz compared
with a period of 27 for the DFT [16]. The difference is caused by the factor 2 in the
exponent of (2). We, therefore, need a sampling frequency which is twice as high as
for the Fourier Transform to avoid aliasing in the Wigner Distribution. Alternatively
we can compute the analytic signal [2,16] where the frequency spectrum vanishes for
negative frequencies and then use the Nyquist sampling rate. Nuttall’s Fourier domain
implementation produces an alias-free representation using just the Nyquist sampling
rate [17].
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Figure 2. Wigner Distribution of synthetic signal for fundamental frequency and
harmonics 3,5,7,9,12,15,and 17.

3 Interpolation and Warping - Morphing.

3.1 Interpolation

We develop a general formula for interpolation between # instrumental timbres

(2-D Wigner Distribution surfaces ). Interpolation is implemented as region-based
linear interpolation ,a region size of 1x 1 giving point wise linear interpolation. (See
Figure 3). We give a general formulation for interpolation in terms of the signature
value at a point, the neighbourhood around the point and its position in the time-
frequency plane:

S(f,t):I'\,{N‘\,(f,t),s(f,t),f,t} 3)

where:



S ( ! t) is the new interpolated time-frequency surface representing the new

timbre.
I is the interpolation function where subscript s denotes the series of

s
signals used in the interpolation. s = s,,s,,...s, , where n is the number
of signals. e.g., I, could represent interpolation between a clarinet
sound and a violin sound.

N, ( f ,t) is a series of neighbourhood functions for the series s defined above.

I, is therefore a function of n neighbourhood functions, e.g.

S(F.0) =L AN(FON(F0)e(F M) Frt) @

could be the interpolation function for a clarinet (subscript ¢) and a
violin (subscript v) sound.
s( f ,t) is the series of signal signature values at frequency f and time ¢.
f .t  are the frequency and time co-ordinates of the time-frequency

representation.
The interpolation function is also, therefore, a function of position.
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Figure 3. Rectangle (region) of interpolation (w x k) for violin surface.

Some linear interpolation methods can now be defined:

i. linear mean value interpolation for two sounds (e.g., clarinet and violin).

S(£.0)= (N, (f.0)+ N(£.0)} )
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where

N (f.1)=



i.e. the local average of the frequency-time signature values on, e.g., a clarinet
surface, where w X/ is the dimension of the morph window (region size). We require

that the points c(i , j) lie on harmonics and we can specify which harmonics are used

in the interpolation. Similarly for N, ( f ,t).

1. Variable gradient-weighted interpolation. The interpolation function is given by:

(1= + 1 N, (F,0) vl fo0) + (1=K + kN, () pee( £ 1)
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where the gradient(for the violin surface) is given as:
N, (£.8) = (o(F +18)=v(£.0)) + (oot + 1) =o(£ 1)) @

Similarly for N, ( f ,t) . The variable k determines the relative sharing between N, and
vor N, and c. k determines how the gradient at a point weights the signature value at
that point. The gradient here is the normalised gradient. Varying k in increments of
0.1, 0<k <1, will result in a progression from a simple mean of the surface
signatures (k=0) to a maximum weighting by the gradient (k=1).

Interpolation as a function of position ( f ,t) may occur when the points for

interpolation are in the neighbourhood of a specified timbral feature (e.g. peak of
attack).

3.2 Warping

Warping is a geometric operation which distorts the original image by specifying
control points in both the original and required image [14]. While the interpolation
function is defined as non-geometric (i.e. time-frequency or position invariant), the
warping function is geometric (Figure 5.). Timbre morphing requires that certain
corresponding features in each sound are aligned so that one new feature results when
the sounds are morphed. The peak of attack, for example, in each sound will need to
be aligned giving one attack peak in the new sound. Other features such as loudest
point, quietest point, start of decay, or repeatable features such as vibrato peaks will
also be aligned. The position of the harmonic in the harmonic series (low or high), its
magnitude and its maximum spread will be taken as features for morphing. These
will then constitute the control points for warping. We identify features initially by
finding extrema in each surface. For this we use the simple mathematical formula:

A=AC-B? (3
where
AC-B’=f_f, -f2= f’“ f"y is the discriminant of f. 9)
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A=f_ (a,b),B =fy (a,b) and C=f (a,b) and f_ and f  are the second partial
derivatives of f in the x and y directions respectively and f_ is the mixed second

partial derivative of f. For a local minimum at (a,b) we have A>0and A>0 . Fora

local maximum at (a,b),A >0and A <O0. For a saddle point at (a,b),A <0 and

A =0 implies an inconclusive test.

Correspondence between features (see Figure 4), then, needs to be established
before morphing. The number and choice of features will be kept to a minimum due to
the complexity involved in correspondence matching. For n control points there are
n! possible configurations or correspondences. This represents an NP hard problem.
However, for small », the problem is manageable. To find which correspondence is
best we implement a cost function which uses all possible correspondences and we
then minimise this cost function. An example is the sum of distances between control
points (Figure 4). In the case of two sounds this cost function is given by:

c=Y|r)

(10)

where:

C is the cost function.
P; is a control point in the first image (timbre).
P; is a control point in the second image (timbre).

i=1L.n

j=1. n} where n is the number of extrema in each sound.

and

=\/(x2—x1)2+(y2—y1)2 (11)

Figure 4. Correspondence between features for two sounds.

We can have a number, n say, of cost functions C,., i=1,2,3,..n, each as a measure of
the correspondence between control points. Finally, we specify the order or the
warping function (e.g., third order). Interpolation and warping are summarised in
Tablel and Table2.
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Figure 5. Interpolation and Warping
TABLE 1.

Interpolation
Window (region) size Linear Gradient Weighted
Ix1 Point wise linear Variable
3x3 Gradient weighted
5%5 i ;
%7 Region based linear
TABLE 2.

Warping (order specified, e.g. third)

Choice of Extrema

Features (control points)

Optimality Criteria For

Extrema Correspondence Match
(Cost Function)
Start of attack, 1,2,3,...n C,
Peak of attack C,
Loudest point, C,
Quietest point
Vibrato peaks, Ca
Start of Decay
Harmonics (Low, High,
Random, Magnitude

Maximum Spread)




4 Synthesis of new signals from the Wigner
Distribution.

New signals will by synthesised from the Wigner Distribution of the new timbre by
‘additive’ synthesis. The transformation is from the 2-D time-frequency representation
to the 1-D signal (Eq. 12).

S(f.2)= s(2) (12)

Since the Wigner Distribution gives us the decay envelope over time for each
frequency component we can reproduce the new sound by additive synthesis. The
amplitude information at each discrete frequency component in the Wigner
Distribution is the decay rate for a sinusoid of that frequency. We use a polynomial to
model this synthesis. Sinusoids of each discrete frequency are weighted by their
respective time decay envelopes (the Wigner Distribution amplitudes) and then we
sum over all frequencies (Eq. 13).

M -1 N -1
Y S A, (13
i=0 j=0
where:
M is the number of frequency sampled points.

N is the number of time samples in the sound.

A, is the amplitude in the Wigner Distribution at point (7, /) .

: . S L
f:; 1s the amplitude of a sinusoid with frequency I73 at time j.

(4
The discrete frequency components are given by —”1:7 , where m=0... M —1is the

length of the frequency window chosen.

As already stated, the Wigner Distribution will contain interference or cross terms.
These provide frequency contributions which are not present in the original signal.
Therefore, the summation over all frequencies in Eq. 13 will contain unwanted
components. The amplitude of these cross terms will determine their contributory
effect on the resultant synthesised signal. In the case of music signals this could result
in non-harmonic components or extra harmonic components in the synthesised signal
with significant magnitudes which are not contained in the original signal. Smoothing
in the SPWD has the effect of reducing the effect of the cross terms. Another factor is
the effect of a spreading in frequency of the SPWD which gives rise to extra frequency
contributions for each discrete frequency component of a signal. The synthesised
signal will, therefore, deviate from a ‘correct’ synthesis( i.e. a synthesis which returns
the original signal from its Wigner Distribution ) by the contribution of these
interference terms. We choose to ignore the energy contributions due to the spread in
frequency and use only the energy of frequencies which are harmonics of a
fundamental for synthesis. We can now redefine our polynomial to sum only the
fundamental and its harmonics as follows:



S@=Y sin(—j‘h7 X ix n) x W(h,i) (14)

h+=fy

where:

hm . .
— are the discrete frequency components for harmonics in the Wigner

Distribution.
h denotes the discrete frequency of each harmonic in the Wigner
Distribution. The value of % is incremented at each iteration by the offset
of the fundamental f, from the origin on the frequency axis of the Wigner
Distribution.

W(h,i) is the Wigner Distribution signature at frequency point % at time .

s’(i) is the synthesised signal.
N is the number of time samples on the Wigner Distribution.
M is the number of frequency samples on the Wigner Distribution.

There still may be some deviation due to cross terms and we therefore need a method
which retrieves the correct signal from the Wigner Distribution. We can measure the
size of the deviation by taking the RMS error of the original and synthesised signals.

The RMS is given by:

P
15)

rms —

1 N-1 )
]—v-;h(k) -5 (k)l
where:

s(k) is the original signal.
s’(k) is the synthesised signal.

Since the Wigner distribution may need to be perturbed in order to recover a correct
signal, we can modify Eq.(14) by including an error e(h,i) :

s'(i) = iisin(—hﬂzx i x n)x (W(h,i)+ e(h,i)) (16)

i=0 h=0

A test suite of synthesised ‘music’ signals will be used initially to test the synthesis
routine (see Figures 7,8,9,10). A simple sinusoid (pure tone) will be processed and
subsequently more complex (multi-component ) signals (compound tones). A
fundamental with just a few harmonics ( e.g. second and third) will be taken as a
compound tone. The amplitudes of the harmonics relative to the fundamental will be
chosen so as to simulate different instrumental timbres.

4.1 Multi-Note Synthesis
A series of notes (tones) can be synthesised from the Wigner distribution of a single

tone by specifying the new fundamental frequency. For example, the note middle C =
264Hz has the following harmonic structure:
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C(1) = fogs () + Fing(O) + fa ()4 = 2nX foe(£) t=0..T=1 (17)

where N is the number of harmonics specified and T is the time extent of the signal

and IX frgy = fag4:2X foq = fig etC.

A complete scale (e.g. middle C,C#,D,D#EFF#G,G# A A#B,C 2) of notes
(tones) could be synthesised from one Wigner Distribution. Other scales could
likewise be synthesised from notes sampled from lower or higher registers in each
instrument. The timbre of an instrument varies from low to high registers and therefore
sampling of new tones from one tone (we will call it the source tone) should be
restricted to within an octave or two of the source tone. A whole keyboard of
synthesised tones of new timbres is thus possible. Also, by simply adding
combinations of different notes (e.g. middle C + E(330Hz) + Gr(396(Hz))3 , chords can
be produced, making possible the production of harmonised melodies played using
multiple new timbres.

5 Conclusion

We have presented signal processing techniques for timbre morphing and have
identified an analogy between the two inputs signals using their similarity as a basis
for constructing the new “synthesised” timbre. We have defined the varying frequency-
temporal nature of timbre and have implemented the Wigner Distribution as its
representation. The interpretative difficulties of the Wigner distribution due to cross
terms have been highlighted. We have given the theoretical foundations for non-linear
interpolation and have implemented geometric warping as a means of aligning
corresponding features in each sound. This constrains the mapping and transfer process
of timbre morphing which serves to ensure that the output signal is a Wigner
distribution of the required timbre. We have highlighted the correspondence problem
in matching features and suggested a cost function to compute the mapping. We use
the RMS as a correcting measure in perturbing the Wigner distribution to produce a
‘correct’ synthesis of the original timbre. This has been verified by using synthetic
signal data. This still requires some refinement but present results are quite accurate
and suggest only slight alterations. Finally, we have suggested creative methods of
synthesising a whole keyboard of new timbres from the Wigner distribution of
morphed sounds using our synthesis technique.

% This is known as a Chromatic Scale as it contains all the semitones (half-tones) between the first note
(middle C) and its octave (C). The # sign means a sharp in musical notation and signifies the semitone
directly above the note.

* This combination CEG is known as the root chord of the key of C and is denoted (g) ,E being a third

above middle C and G a fifth above middle C.
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Figure 8. Signal in Figure 7 synthesised from its Wigner distribution.
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Figure 10. Signal 9 synthesised from its Wigner distribution.
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