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ABSTRACT 
 
This paper describes an automated classifier for the 
identification of good wood and knotty wood from 
computer tomography (CT) images of logs. Such a 
system is intended to allow better assessment of saw 
logs before being cut into timber. We describe a new 
empirical model for the growth of Sitka Spruce (Picea 
Stichensis (Bong, Carr)) whose operation is adapted to 
Irish conditions. The use of Hopfield networks for 2D 
cross-section image reconstruction from CT data 
obtained from the model is investigated. We also used 
a multi-layer feedforward neural network trained with 
fast-backpropagation to identify good wood from 
knotty wood. The Hopfield approach to image 
reconstruction was seen as being unsuitable for 
application with the wood industry. However, the use 
of a feedforward neural network for wood 
classification produced very promising results when 
trained on our tree model. It is expected that results 
from real wood data would be even more accurate.  
 
 
1. INTRODUCTION  
 
The quality of wood is currently assessed from its 
external appearance (Som, 1992). In this paper we 
present results from a investigations into the use of 
neural networks for automatic classification of good 
versus knotty wood using computer tomography (CT) 
data generated from an algebraic model of Sitka 
Spruce growth. This model is based on the Norway 
Spruce growth model of Kucera (1994) of wood 
density through a log section at various heights, in 
conjunction with empirical Irish data. Two formulae 
defining ring width and ring density for trees up to 55 
years of age, form the basis of this model. As most 
trees in plantation forests are ready for felling at 50 
years this seemed sufficiently accurate to test our 
classification system.  
 

A two-stage (see Figure 1) neural network based 
classifier was investigated. The input network 
constructed cross-sectional images from tomographic 
data, and a classifying network identifyed knotty wood 
from them. Systems incorporating multiple stages of 
neural networks have already been used to model 
shape recognition Beiderman (1993) and to detect 
abnormal cervical cells McKenna (1992). 
 
First, a Hopfield network was used for cross-sectional 
image reconstruction from modelled CT data for a 
variety of scan patterns and  scan-beam densities in 
order to examine the effectiveness of a Hopfield image 
reconstruction technique to wood. The results for these 
experiments are presented and our conclusions 
discussed. Second, we used a multi-layer feedforward 
network trained with fast-backpropagation to segment 
cross-sections of wood, thus identifying regions which 
contain knots. As before, classification is based on 
image segments of model cross-sections. This model is  
discussed in some detail in the following section. 

CAT-scan 
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Hopfield Image 
Reconstruction 
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Knot/No Knot  
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Figure 1 : Architecture of wood classification system. 
 
 
2. AN EMPIRICAL MODEL OF TREE GROWTH  
 
We developed a mathematical model of ideal Irish 
Sitka Spruce (Picea Stichensis (Bong, Carr)) growth 
adapted from an empirical model of Norway Spruce 
(Kucera (1994)) and Irish data (Evertsen (1986)). The 
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density of wood (d) is dependent on the age (a) of the 
ring from which that wood is taken, and is given by 
 

d = 0.1437 * a
0.242
   + 1.100 * e

-0.228 * a
   

Timber from young wood is denser than that of old 
wood, and early wood (grown in Spring) denser than 
late wood. To compute the width of a ring (w) we use 
the formula   
 

w = -66.46 * a
-1.444
   + 7.816 * e

-0.0209 * a
   

where the width w is measured in millimetres. From 
this model we can generate a synthetic cross-section of 
an ideal tree. However, to train our classification 
network to identify knots we also wish to be able to 
model knotty wood. To do this we use the basic tree 
growth model, and apply it to branch growth within 
the tree. Branches are approximated by cones formed 
within the volume space of a tree trunk. This is an 
approximation as ring growth in the immediate vicinity 
of a knot is narrower than normal growth, thus forming 
contours around the knot. 
 
To generate a sufficiently varied training set we model 
trees of different ages and heights, with branches 
emanating from the pith at different angles. Here our 
model of tree growth is specified by a 3-tuple 
T(A,L,Bi  ; i=1,...,N) where A is the age of the trunk, 
and L the length of the trunk segment. Bi  is a 3-tuple 
Bi(ai,φi,θi)  where ai  is the age of branch i; φi  the 
branch's cardinal position, and θi  is the branch angle 
to the vertical (see Figure 2). 
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Figure 2 : Parameters describing model tree used to 
generate cross-sectional images. 
 
 
Many different cross-sections can be generated from a 
single trunk model by taking cross-sections at different 
heights (l). If l is less than the knot base height, the 
scan is that of the tree itself. Increasing l beyond h  
generates successive cross-sections where the knot 
increases in size and moves radially from the centre of 
the tree. At different sectional heights the dense knot 
wood may be surrounded by juvenile wood of variable 
density, adult wood of high density or a combination 
of these. 
 
 

3. IMAGE RECONSTRUCTION  
 
Computerised tomographic imaging is widely used in 
medicine and industry for generating cross-sectional 
images, and is typically performed in a manner similar 
to the CAT-scan image reconstruction technique 
developed by Hunsfield (1973). The image 
reconstruction process may be performed using an 
algebraic reconstruction technique (ART) (Kak and 
Stanley, 1988), a feedforward neural network trained 
using a filtered back-propagation algorithm (Floyd, 
1991) or a modified recurrent Hopfield network 
(Srinivasan et al, 1993).  
 
We have investigated the suitability of the method 
proposed by Srinivasan (1993) to the reconstruction of 
synthetic cross-sectional images of tree trunks. From 
our tree model we computed the attenuations suffered 
by beams of x-rays passing through the trunk of the 
tree (Lindgren, 1988). These attenuation figures 
formed the basis of the image reconstruction process, 
allowing calculation of the accuracy of the regenerated 
image by comparing it with the original model cross-
section. The signal-to-noise ratio of the reconstructed 
image to the original is a measure of the technique's 
accuracy. The SNR is given by   
 

SNR = 10 log 
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where fsi  and fi  are the attenuation coefficient of cell i 
for the actual and the reconstructed image respectively, 
and N the size of the image.  
 
For the purposes of this paper it is assumed that the 
imaging system consists of an x-ray emitter-detector 
pair, that can be translated and rotated along various 
paths about the tree obtaining a variety of attenuation 
readings. By measuring beam attenuation and 
computing the path of these beams through the tree, 
we can compute the required weights and biases for 
the Hopfield network. 
 
 

beam(i)

1

N

 
Figure 3 : Beam passing through cells of image area.  
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The image area is divided into an array of square cells 
(see Figure 3), each represented within the Hopfield 
network by a neuron whose output corresponds to the 
density for that image area. Each of the N cells covers 
an area A, with a constant attenuation coefficient fi , 
and each beam is assumed to have a constant width τ 
equal to the cell width. The total attenuation suffered 
by ray m is  
 

ρm  =  ∑
=

N

i
mix

1
fi  

 
where xm i   is the area covered by beam m in cell i; fi  
is the output of neuron i. The input bias to cell i is 
calculated from the area covered by each beam 
intersecting that cell and the attenuation suffered by 
these beams, thus   
 

Ii  = 2 ∑
m=1

M
 xmi   ρm  

 
where Ii  is the input bias to cell i, and M is the total 
number of beams. Since the attenuation data is in the 
form of a single attenuation figure for each beam, the 
path followed by each beam through the image area 
must be determined.  
 
Bresenham's line drawing algorithm was used to 
identify this path. This circumvented the calculation of 
partial intersection areas between beams and image 
cells, speeding up the computation of the input biases 
and weights of the artificial neurons. Since this is 
merely an approximation of the actual beam trajectory, 
it is accepted that this is a potential source of 
inaccuracy in the final reconstructed image. 
 
From our results it seems that this approximation did 
not have a major impact on the accuracy of the 
reconstructed image, this being attributed to the fact 
that wood density (generally) varies gradually across 
the tree section (Lindgren et al, 1989). The use of 
Bresenham's algorithm means that  xmi   = 1 if beam m 
intercepts cell i, and 0 otherwise. The weights are 
calculated as follows  
  

wij  = - 2 ∑
m=1

M
xmj  xmi  

 
The dynamic behaviour of the network is governed by  
 

ui(t + Δt)   = 
⎭
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where ui  is the input to neuron i, N the total number of 
cells, fi(t)  is the output of neuron i at time t. From an 
initial state the neurons undergo a series of transitions, 

reaching a final state corresponding to a minimum of 
the energy function.  
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A modified version of this network (Srinivasan et al., 
1994) was implemented which required considerably 
fewer interconnections between neurons. A summation 
layer was introduced as follows  
 

Sm  = ∑
=

N

i
mix

1
fi  

 
The modified update function becomes  
 

ui(t + Δt)   = 
⎭
⎬
⎫

⎩
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⎧

+− ∑
=

imi

M

m
m IxS

1
2 Δt + ui(t)  

 
From our model a number of simulated attenuation 
readings were calculated for different scan patterns 
across the model tree. These attenuations were then 
used to generate the input biases and weights of the 
Hopfield network. The network was allowed to 
stabilise after which the output corresponds to 
densities in the reconstructed image. The accuracy of 
this reconstructed image was then compared with the 
original and the corresponding error calculated, using 
the formula for SNR above.  
 
The following table shows the high ratio of beams to 
pixels required to construct an accurate image. This 
has the effect of slowing down the operation of the 
Hopfield network.  
 
 
Table 1 : Correspondence between beams per pixel ratio 
and SNR. 

 
  Beams/pixel ratio Signal/Noise ratio 
 
 0.37  10.82 
 0.45  11.00 
 0.51  12.50 
 0.73  12.02 
 0.85  21.36 
 0.97  31.72  
 1.04  35.4 
 1.16  106.6 
 1.42  109.6  
 1.61  117.4  
 1.84  125.8   
 

 
 
It was found these results are better than those 
generally obtained using algebraic reconstruction 
techniques. However when larger amounts of 
tomographic data are collected, it was observed that 
there must be an even distribution of beams over the 
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surface of the image for this regeneration to succeed. It 
was found that in order to keep the error to an 
acceptable level the number of beams must 
approximately equal the number of image cells.  
 
These results indicate that Hopfield networks should 
not be used with a single emitter-detector pair for CT 
image reconstruction, due to the excessive time taken 
to reconstruct wood and that radial scanning does not 
facilitate accurate image regeneration.   
4. KNOT IDENTIFICATION 
 
The accurate detection of knots in wood is central to 
the production of good quality structural lumber from 
logs (Samson, 1993), the position and orientation of 
knots in lumber having a serious effect on the load 
carrying ability of wood. We present a method for the 
accurate identification of knots based on cross-
sectional images of (simulated) logs, using a multi-
layer feedforward neural network trained by fast-
backpropagation (Samad, 1988). 
 
Fast-backpropagation is a variant of the standard 
backpropagation algorithm, the only difference being 
that the error is added to the activation value prior to 
weight update. Thus   
 

Δw
[s]
ji   = η e ( )]1[]1[][ −− + s

i
s

i
s
j ex  

 

where Δw
[s]
ji   is the change in weight connecting the 

ith neuron in layer (s-1) to the jth neuron in layer s, η 

is a constant learning coefficient, e
[s]
j   is the local 

error at neuron j in layer s, x
[s-1]
i   is the output of jth 

neuron in layer s. 
 
A further refinement to this method adds a multiple of 
the error to the activation value 
 

Δw
[s]
ji   = η  e ( )]1[]1[][ −− + s

i
s

i
s
j kex  

 
where k = 1.0 yields the unrefined fast-
backpropagation update function above. Altering the 
value of k can produce a further increase in the 
learning rate. 
 
In order to generate a neural network which segments 
the image into "knot" and "no knot" regions, pixels 
where randomly chosen from a series of images, and 
classified according to the density variation in a (2L + 
1) x (2L + 1) window about the pixel. Experiments 
showed that L = 3 produced the most satisfactory 
results. The training data were taken from a variety of 
cross-sectional images associated with a trunk sample 
specified by a 30 year old tree with one branch at 
various angles to the vertical. Each window was 
classified as a "knot" or "no knot" region, forming the 
training set. Simulations were carried out using a 49-

25-1 feedforward network trained using fast-
backpropagation. 
 
In Table 2, test datum B0(10,180,45)  showed 
relatively poor test results (85% success). This is due 
to the difference between this cross-section and those 
of the learning set. Adding this category to the learning 
set improved network performance.  
 
 
Table 2 : Sample training sets and associated network 
performance.  

  
 No knots θ l % Success 
 
 1  70 130 60 
 1  70 130 72 
 2  70 120 89.25 
 3  60 150 89.25 
 4  45 170 97 
 4  70 170 85 
 4  70 140 90 
 5  70 140 95 
 6  70 140 95 
     

  
 
Additional contour information in the immediate 
vicinity of a real knot leads us to believe that even 
better results could be expected from real wood data. 
This would be particularly useful for classifying the 
centre of a knot as opposed to classifying the pith of 
the tree itself.  
 
 
5. CONCLUSION  
 
From the work described here we have reached two 
separate conclusions. The first is that a single emitter-
detecter pair in conjunction with reconstruction 
techniques based on Hopfield networks are not 
suitable for imaging in an industrial environment. This 
conclusion is based on both the time taken for the 
Hopfield network to execute, and the number of scans 
of the image area necessary to create a sufficiently 
accurate cross-section.  
 
However, our results on the classification of wood 
quality are very encouraging. Training on just one 
cross-sectional image yielded a 72% detection rate 
when tested on different cross-sections. We expect that 
additional contour information from real wood 
samples would yield an even greater detection rate. 
Also, wood density can be greatly affected by such 
conditions as rot and wet wood. These are currently 
being included in our our model tree, and their effects 
upon classification are under investigation.  
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