
An Ancestor based Extension to Differential
Evolution (AncDE) for Single-Objective

Computationally Expensive Numerical Optimization
Rushikesh Sawant, Donagh Hatton, Diarmuid P. O’Donoghue

Department of Computer Science,
Maynooth University,
Co. Kildare, Ireland.

diarmuid.odonoghue@nuim.ie

Abstract—This paper presents the Ancestral Differential Evolution (AncDE) algorithm, which extends the
standard Differential Evolution (DE) algorithm by adding an archive of recently discarded ancestors. AncDE adds
the ability to occasionally compute difference vectors between current and archived solutions, using these inter-
generational difference vectors in place of traditional difference vectors. Results for AncDE are presented for the
CEC2015 Bound Constrained Single-Objective Computationally Expensive Numerical Optimization Problems using
AncDE/best/1/bin. Summary results are included for standard DE for comparison purposes and these show that
AncDE generally outperforms standard DE. These results suggest that the inter-generational difference vectors can
help overcome some local optima, leading to faster convergence towards the global optimum. AncDE involves the
very small overhead of storing and updating the ancestral cache. This paper introduces two empirically determined
stochastic rates; one for updating the ancestral cache and the other for using an ancestral difference vector in place of
the normal difference vector.

Keywords—differential evolution; ancestror archive; inter-generation difference vector

I. INTRODUCTION
Evolutionary algorithms apply the general Darwinian strategy of "Survival of the Fittest" to the task of

generating high-quality solutions for challenging and sometimes ill-defined problems. Among the attractive
features of evolutionary algorithms are their ability to generate solutions across a very wide range of problem
types and their ability to generate solutions when alternative approaches fail. 1

But an often overlooked aspect of evolutionary computing concerns the role played by the laws of Mendelian
inheritance. In this paper we focus on Mendel’s Second law - “The Law of Independent Assortment”. This asserts
that separate genes for separate traits are passed independently - and that this genetic information is reliably
transferred from the parents directly to the offspring. It is this second part of the “Law of Independent
Assortment” that is challenged by our particular extension to the (otherwise) standard of Differential Evolution
(DE) [1] algorithm. That is, we add an extra-Mendelian inheritance pathway that stochastically allows genetic
information from a cache of recent ancestors to influence the current population. We can think of this as an
infrequent “second chance” for some genetic information, helping broaden a search space that perhaps became
stuck in a local optimum.

Evolutionary algorithms that maintain not just the current population, but that also maintain a population of
recent solutions have been called archive algorithms [2]. However, very few of these archive algorithms have
been developed. One notable exception has been the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
[3]. NSGA-II combines the parent and offspring populations together forming a larger combined population from

 The authors would like to thank the Irish Research Council for Science, Engineering and Technology
(IRCSET), the John Pat Hume scholarship and the Erasmus Mundus DESEM program for part funding this
project and R. Storn and K Price for the DE code, extended to create AncDE.

1 Pre-Print Version of:
An Ancestor based Extension to Differential Evolution (AncDE) for Single-Objective Computationally
Expensive Numerical Optimization, IEEE Congress on Evolutionary Computation (IEEE CEC), Sawant R,

Hatton D, O’Donoghue D.P, pp 3228-3234, Sendia, Japan, May 2015. DOI: 10.1109/CEC.2015.7257293.

which solutions are selected – and from which the subsequent generation is generated. In contrast to NSGA-II,
the cache of ancestors introduced in this paper allows significantly older ancestors to conference the current
population.

A few other algorithms have explored the use of old ancestral archives. References [4] [5] [6] explored the use
of old ancestor archives to support a template-driven genetic repair process, used to generate solutions to
combinatorial optimization problems. This work explored ancestors that were up to three generations older than
the parent population – up to great-great-grandparents of a newly generated population of solutions.

The use of a significantly older archive of solutions has also been explored [7] [8], using a stochastic process
to update the ancestor archive - this work again focused on combinatorial optimization problems. Some of the
surprising outcomes of this work were that best results were often produced using archives that were tens of
generations older than the current population. While evolutionary algorithms can be slow to converge for large
combinatorial optimization problems, producing the best results using such ancient archives was considered very
surprising.

This paper describes the AncDE algorithm that incorporates some of the lessons learned from [7] [8] and
attempts to apply these to the (otherwise standard) Differential Evolution (DE) algorithm [1]. The main
modifications made to the DE algorithm concern firstly, the introduction and maintenance of an archive of recent
solutions. The second modification allowed the (occasional) calculation of difference vectors between a solution
from the population and the ancestral cache. It should be pointed out that much of the operation of AncDE is
identical to DE – what we have introduced is an additional (supplemental) extension to the algorithm that is used
to calculate a modified difference vector. The implementation of AncDE described in this paper was built on a
standard DE implementation – introducing as few modifications to the algorithm as possible.

II. DIFFERENTIAL EVOLUTION (DE)
We first describe the DE algorithm itself, before we describe the modifications required for the ancestral

extension required for the AncDE algorithm.

A. Differential Evolution
Differential evolution (DE) is an evolutionary based optimization algorithm that generates high-quality

solutions to numeric optimization problems. DE begins by creating a population of random solutions (called
agents) to the given problem. After this initialization step DE applies a series of update steps to help improve the
quality of these solution agents, as measured by the objective function being optimized. In effect DE then moves
these agents around the problem space, in such a way that their new positions result in an improvement in the
objective function.

For simplicity this paper will focus on the best/1/bin variant of DE, noting that this has been found to be a
particularly effective version of the algorithm [9]. The algorithm begins by creating a population of random
solutions (called agents) to the given problem. An agent is selected from the population, called the base. Then two
other distinct vectors are selected from the population and a difference vector is calculated between them, with
the result being called the difference vector. This difference vector is then multiplied by a scalar mutation factor F
(parameter), allowing some tuning of the impact of these difference vectors upon the population. This difference
vector represents the difference between two solution agents located within the problem space. The main novelty
associated with AncDE is that the trial vector is stochastically generated from differential mutation and binomial
crossover using the same one base vector from the ancestral cache – as shall be discussed in more detail below.

The difference vector is next added to the base vector and the result is called the donor vector. The “best/1”
allows for variation in the selection of the base vector and variation in the number of difference vectors used by
variants of the DE algorithm.

 The next step takes the existing agents and combines them with the donor vector to create a set of trial
vectors for possible inclusion in the population. Binomial “/bin” crossover selects elements from the parents
according to a probability CR, with elements being selected from one or other parent according to this CR value.

The final step of DE is selection that determines whether a new trial vector will enter the population. Selection
occurs by replacing a target vector with the corresponding trial vector if the trial vector has a lower objective-
function value (for minimization problems). DE typically terminates when the algorithm converges to a solution,
when a maximum number of function evaluations have been performed or when some known solution has been
reached.

We note that each of the different variations in the DE algorithm can, in principle, also make use of our
ancestral archive of solutions. However, his paper focuses on extending and adapting the best/1/bin variant of the
DE algorithm.

III. RE-VISTING ANCIENT SOLUTIONS
While ancestral solutions are not normally retained by evolutionary algorithms, we make a brief case for the

potential benefits that ancestor might introduce. EA are a form of stochastic beam search, where the breadth of
this beam is determined by the population size. However, for problems involving very large members of local
optima, the breadth of this beam may be lower than required for reliable convergence to the global optimum. In
some of these situations it might be considered beneficial to augment the search space using a cache of recent
ancestors. We point out that while recent ancestors might introduce some much needed diversity, they do so
without resorting to the potentially damaging impact of “true” randomness.

When viewed from the perspective of the search space, it may appear less surprising that a cache of ancestor
may have a beneficial impact on the final solution. We note that some other search procedures retain and re-use
past solutions or return to previous search state. The process of backtracking used in depth-first search returns the
search process to a previous state, while tabu search that maintains a finite list of recent states that cannot be
revisited [10]. Backtracking and tabu search can also been seen as techniques to avoid local minima.

This paper adds to the evolutionary algorithm a small population-sized cache of recent ancestors. This allows
calculation of difference vectors that are derived from a longer temporal base-line – between a current vector and
one that was generated and superseded in previous generations. That is, we suggest that in situations where
AncDE provides improved results when compared to DE, that some of this improvement may originate from the
fact that AncDE uses some ancestors that might overcome the current (perhaps local) optimum in the population
and help AncDE to reach the global optimum. Careful tuning of the age of these ancestors might even allow the
AncDE population to skip past some of the local optima and converge faster upon the global optimum.

We briefly look at some other work in non-standard and non-Mendelian inheritance theories. Recent advances
in biology have been exploring inheritance mechanisms beyond those covered by Mendel’s inheritance laws.
Among those attracting most attention have been the Horizontal Gene Transfer (HGT) strategies, also called
lateral gene transfer (LGT) associated with simple life forms such as viruses and the prokaryotes (such as
bacteria). Several specific mechanisms for HGT have been proposed that transfer genetic information by means
other than sexual reproduction. A HGT mechanism called conjugation, has previously been used to investigate
how the cost and benefit affect evolutionary outcomes [11]. Other evolutionary schemes like Lamarckian
evolution and the Baldwin effect have long been explored [12] [13].

A more controversial proposal has been for the vertical, extra-Mendelian transfer of genetic information [14]
[15]. This proposal states that genetic information appears to have been detected in the offspring – even though it
has not been detectable (by traditional means) in either of the parents. However, there does appear to be a link in
that the genetic information in the offspring has been detected in a grand-parent of that offspring. While this
inheritance theory has been subject to some criticisms information [14] is also the top rated paper by the
prestigious Faculty 1000. This paper was also the inspiration for AncDE.

IV. ANCESTRAL DIFFERENTIAL EVOLUTION (ANCDE)
As stated earlier, much of AncDE is identical to DE. The only modification involves the difference vector and

the information that is used to form that vector. The major architectural change is the introduction of a second
“ghost” population of recently “deceased” ancestors. This adjunct population is referred to as the ancestral cache.

The ancestral cache is a repository of genetic information that is normally discarded from the current
population when new trial vectors enter the population. This cache contains exact copies of agents that have been
replaced in the original population. The contents of this ancestral cache do not undergo any form of modification
or learning, but are stochastically replaced by newer solutions from the main population.

As with DE the base vector is always selected from the current population. As stated previously, the main
difference between DE and AncDE concerns calculation of the difference vectors. The difference is still
calculated between two vectors (for AncDE/best/1/bin) – one vector being source from the current population.
AncDE makes a stochastic choice for the origin of the second target vector that is used to calculate the difference
vector, as controlled by the aup parameter discussed below. We refer to the result produced by this new strategy
as an ancestral difference vector – to distinguish it from the normal DE difference vectors generated between two
agents from the current population. Thus, AncDE extends DE by allowing this additional type of difference
vector to be calculated.

In the variant of AncDE presented in this paper, one of the two vectors used to calculate the difference vector
is sourced from the current population – and additionally, this vector also used as the base vector.

donor vector = base vector + F* (ancestral vector - base vector)

We point out that AncDE retains the ability to calculate the normal difference vector (described in section II
above), but adds the possibility of calculating this new difference vector. Figure 1 outlines the most significant
changes to the DE algorithm, with the most significant new features highlighted by the dotted lines. AncDE adds
two significant new parameters into the differential evolution algorithm.

A. Additional Parameters for AncDE
• arp ancestor replacement probability This parameter controls the relative age of the ancestor archive. A

value of 1.0 will keep this archive as a duplicate of the current population. Lower values of arp (eg 10-2)
will update the archive very infrequently, maintaining a large ancestral (and temporal) distance between
the current population and the contents of the ancestor archive. We generally expect that lower arp values
will result in greater distance between the ancestor cache and the current population.

In our most recently work, we have been experimenting with different ancestor replacement strategies. The
results presented in this paper were produced with a strategy that only checks the ancestor replacement rate when
some vector in the population is being replaced. (An alternate strategy we have explored is to replace the ancestor
stochastically even when the current vector is not being replaced). The strategy presented in this paper tends to
result in older ancestors, especially during late convergence.

• aup ancestor usage probability This controls the frequency with which an ancestral difference vector is
used in place of the traditional DE difference vector – between agents from the current population.
Setting aup = 0 removes these ancestral difference vectors from consideration, while higher rates
increase the impact that archived agents have on the current population.

These are the two parameters introduced by AncDE and suitable values for them will be discussed in sub-
section C below.

Fig. 1. Ancestral DE (AncDE) modifies DE by adding a cache of recent ancestors and the ability to derive difference vector between an
agent from the population and one from the cache. The main modifications are highlithed by the dotted lines above. New ancestrally-based

features have obvious parallels in (non-ancestral) normal DE.

B. Initializing the Population
No special efforts were made to initialize the population for the CEC 2015 problems. The standard

initialization procedure for DE was adopted. Thus, the population was initialized using random values generated
uniformly from within the valid range.

The ancestral population was initialized by taking copy of the standard initial population. We don't give any
special treatment to the ancestral population at this point. And this is the only point where there is a direct
resemblance between current population and ancestral population. Typically the ancestor population is changed
when new values enter the main population, moving the older less-it values into the ancestral cache.

C. Setting Parameters
Standard DE also offers a number of other parameters that are also used by AncDE. Many of these parameters

were assigned values after performing preliminary ad hoc testing.

Firstly, we look at the parameters that originate with the standard DE algorithm. These parameters were used
to generate the results for the 10D and 30D problems presented in Table I and Table II below. For the 10D
problems NP was set to 12, F=0.6, CR=0.75, Range =75.

For the 30D problems CR the crossover probability was set to 0.6, NP the population size was set to 25. The
differential weight F was set to 0.6. One parameter was introduced for the CEC 2015 competition itself, limiting

stochastic
ancestor

usage

Current

Population

Ancestral

Cache

stochastic
ancestor

replacement

Ancestral difference vector Difference vector

Donor vector

the range of the input variable to -+75 and was used for all input parameters. These parameters we used to
produce all results presented in this paper.

The two remaining parameters relate specifically to the ancestor cache and its use. Firstly the ancestor
replacement probability (arp) that controls the relative age of the ancestor cache was set to 0.15. In this paper this
factor is significantly moderated by the fact that this stochastic parameter was only checked when a solution from
the main population is begin superseded. (Note: we are currently refining the best strategy to use for ancestor
replacement). Thus, during early evolution when solutions are regularly updated, the ancestors will also be
updated frequently. However, during late convergence the ancestor will tend to become even more ancient due to
the infrequent replacement of member of the population.

Secondly the ancestor usage probability (aup) controls the probability that a standard difference vector will
not be used, but that the ancestral difference vector strategy will be used to generate the trial vector instead. The
results presented in Table 1 were generated using aup = 0.3, indicating that approximately 30% of difference
vectors are derived using an ancient ancestor.

The best results produced for DE were generated with the following parameters (the parameter set described
above produced weaker results). CR=0.95, NP the population size was set to 55, the differential weight F was set
to 0.55 and range =75.

D. Algorithmic Variants of DE and AncDE
A number of standard algorithmic variants of standard DE can also be applied to AncDE. However for the

purposes of this paper, only a small subset of these possibilities has been explored. All results presented herein
were generated only using the following variants of DE/best/1/bin and DE/rand/1/bin.

Firstly, two selection mechanisms were investigated, as indicated by the “Best” part of Best/1/bin. Best
selection ensures that the best agent in the current population. An alternate selection strategy was also
investigated. Random (rand) selection chooses agents with uniform probability from within the current
population. The results presented in Table 1 used only the “best” selection strategy.

The number of difference vectors that are used during the mutation step provides one of the normal variations
in the standard DE algorithm. DE often uses use either 1 or 2 difference vectors to drive this mutation process.
We note that a difference vector is derived from the difference between 2 agents selected from the current
population. The implementation of AncDE presented in this paper uses only 1 difference vector for mutation.
AncDE either uses the normal difference vector, or it uses a difference vector that takes one agent from the
current population and one agent (only) from the ancestral population. It is interesting to note that we conducted a
control experiment that selected both agents of a difference vector from the ancestral population, but this did not
result in any measured improvement in performance or solution quality. All results presented in this paper used
just 1 difference vector that involved either; a) both agents being selected from the current (main) population or b)
one agent from the current population and one agent from the ancestral cache.

Finally, we look at the recombination step that generates the new solution as a combination of the target
vector and the mutant vector. Binomial (bin) crossover is used for all results presented in this paper. Because
AncDE only changes the evaluation of the difference vector, the process of crossover remains unaffected – except
for the influence that the ancestral difference vector may have on the donor vector and the trial vectors.

V. RESULTS
Numerical experiments were performed on a computer with Intel® Core™ i7-3520M CPU @ 2.90GHz × 4

and 16 GB RAM, under Ubuntu 14.04 LTS, 64-bit OS. The implementation of AncDE was done in Java, using
JDK 1.7. Note that the results presented in this paper were generated using Java 1.7 and its native random number
generator. Because of changes to the PRNG (pseudo-random number generator) algorithm in Java 1.8, the results
generated using AncDE on newer versions of Java will be different (and generally not as good). Hence, the
implementation of PRNG from Java 1.7 is explicitly included in AncDE.

Tables I and II details the results produced by the AncDE algorithm on the 15 problems of the IEEE CEC
expensive Numeric Optimisation problem set. These were all produced using the same settings and parameters
for all 15 problem sets, as discussed in Section IV C above. These tables also include a brief overview of results
for the standard DE algorithm, detailing the mean and median results for comparison purposes. Other tests not
shown in this paper suggest that the AncDE/best/1/bin variant produced better results than AncDE/Rand/1/bin.
However, this conclusion was reached after preliminary ad hoc testing.

Numbers displayed in boldface in Tables I and II indicate a victory for one of the two strategies: DE and
AncDE. AncDE outperformed DE on 13 of the 15 10D problems as measured by the mean results of each. This
is echoed by the median results, where AncDE outperforms DE on 12 of the 15 problems. Thus we conclude
that AncDE performs better overall than standard DE on these problems.

TABLE I. RESULTS FOR 10D PROBLEMS

 Standard DE AncDE

Func Median Mean Best Worst Median Mean St.Dev.

1 3.29E+08 4.33E+08 2.16E+06 8.87E+07 8.84E+06 1.78E+07 2.25E+07

2 1.93E+04 2.82E+04 1.41E+04 5.91E+04 3.78E+04 3.53E+04 1.49E+04

3 7.77E+00 7.64E+00 2.48E+00 1.06E+01 5.84E+00 5.73E+00 2.11E+00

4 1.95E+03 1.99E+03 1.03E+03 2.12E+03 1.66E+03 1.63E+03 3.21E+02

5 2.58E+00 2.75E+00 1.50E+00 4.05E+00 2.66E+00 2.60E+00 6.18E-01

6 1.02E+00 9.93E-01 2.85E-01 8.20E-01 5.55E-01 5.50E-01 1.43E-01

7 1.81E+00 2.27E+00 2.94E-01 1.29E+00 5.34E-01 6.35E-01 2.91E-01

8 1.23E+01 5.25E+01 4.46E+00 9.02E+00 6.32E+00 6.26E+00 1.12E+00

9 4.08E+00 4.05E+00 3.64E+00 4.35E+00 3.93E+00 3.97E+00 2.02E-01

10 8.02E+04 1.94E+05 3.10E+04 6.99E+05 1.98E+05 2.62E+05 2.09E+05

11 6.78E+00 7.76E+00 3.58E+00 1.05E+01 6.39E+00 6.65E+00 2.00E+00

12 2.80E+02 2.79E+02 9.10E+01 4.44E+02 2.18E+02 2.24E+02 9.90E+01

13 3.29E+02 3.32E+02 3.13E+02 3.39E+02 3.24E+02 3.25E+02 6.91E+00

14 2.06E+02 2.07E+02 1.96E+02 2.15E+02 2.03E+02 2.04E+02 5.33E+00

15 4.09E+02 3.68E+02 9.93E+00 5.03E+02 4.06E+02 3.59E+02 1.50E+02

TABLE II. RESULTS FOR 30D PROBLEMS

 Standard DE AncDE

Fnc. Median Mean Best Worst Median Mean St.Dev.

1 1.11E+10 1.24E+10 1.12E+08 1.49E+09 4.45E+08 5.21E+08 3.54E+08
2 6.25E+04 6.37E+04 7.64E+04 1.76E+05 1.15E+05 1.18E+05 2.49E+04
3 2.74E+01 2.80E+01 2.05E+01 3.96E+01 2.59E+01 2.67E+01 4.48E+00
4 7.68E+03 7.77E+03 5.90E+03 7.62E+03 6.81E+03 6.78E+03 4.94E+02
5 4.27E+00 4.30E+00 3.18E+00 5.34E+00 4.27E+00 4.24E+00 5.91E-01
6 2.78E+00 2.76E+00 3.30E-01 9.31E-01 5.58E-01 5.89E-01 1.39E-01
7 2.21E+01 2.15E+01 3.31E-01 1.15E+00 5.43E-01 5.77E-01 2.08E-01
8 3.32E+04 1.07E+05 3.93E+01 2.16E+03 2.43E+02 4.48E+02 5.51E+02
9 1.38E+01 1.38E+01 1.33E+01 1.41E+01 1.38E+01 1.38E+01 2.03E-01

10 1.44E+06 2.45E+06 6.97E+06 3.83E+07 1.83E+07 1.81E+07 7.95E+06
11 3.84E+01 5.37E+01 2.79E+01 1.86E+02 3.42E+01 4.24E+01 3.44E+01
12 1.23E+03 1.14E+03 1.09E+03 1.62E+03 1.33E+03 1.37E+03 1.51E+02
13 4.51E+02 4.69E+02 3.53E+02 3.87E+02 3.66E+02 3.68E+02 9.11E+00
14 2.45E+02 2.51E+02 2.42E+02 3.20E+02 2.66E+02 2.71E+02 2.24E+01
15 1.05E+03 1.04E+03 7.80E+02 1.19E+03 9.53E+02 9.71E+02 1.23E+02

AncDE also produces better results on the more challenging 30D problems. AncDE outperforms DE on 11 of the 15 30D
problems as measured by the mean results of each. This is echoed by the median results, where AncDE outperforms DE on 10 of
the 15 problems. We again highlight that this performance improvement was achieved without additional computation, but merely
involved re-visiting some recently discarded solutions form the main population.

A. AncDE Run times
 The run times for AncDE should not differ significantly from those of DE itself. The first overhead associated with AncDE is
storage of the ancestral population, which could in theory become exceptionally large. However, in our work we have limited the
size of this ancestral population to be the same size as the main population. This small ancestral population contains a sample of the
ancestors of the solutions contained in the current population. Thus, the additional memory footprint of AncDE is quite small.

 The most notable overhead associated with performance of AncDE is the act of occasionally storing an ancestor, by copying it
from the current population into the ancestor cache. Because updating the cache is stochastically controlled, this can be a very
infrequent operation.

Another overhead of AncDE concerns the two stochastic parameters, controlling the update and use of the ancestral vectors.
Calculating and checking these stochastic values is an overhead for AncDE. Computing the inter-generational difference vector
itself should not involve an additional overhead, compared with the standard intra-generation difference vectors.

The recorded runtimes for the 10D and 30D problems are listed in Table III, with the times measured in milliseconds. The
runtime for the CEC 2015 test function T0 (involving a for loop containing a simple function evaluation) on our test machine was
71.

TABLE III. RUN TMES FOR THE ANCDE ALGORITHM ON THE 10D AND 30D PROBLEMS

 10D Problems 30D Problems

Func Runtime T1/T0 Runtime T1/T0
1 48 0.676056338 149.5 2.105633803
2 48 0.676056338 141.5 1.992957746
3 105 0.676056338 581 1.992957746
4 48.5 0.683098592 153 2.154929577
5 68 0.957746479 239.5 3.373239437
6 48 0.676056338 146.5 2.063380282
7 48.5 0.683098592 140.5 1.978873239
8 50.5 0.711267606 155.5 2.190140845
9 48.5 0.683098592 145.5 2.049295775

10 51 0.718309859 163 2.295774648
11 74 1.042253521 252 3.549295775
12 64 0.901408451 200 2.816901408
13 105.5 1.485915493 272 3.830985915
14 88 1.23943662 245.5 3.457746479
15 166 2.338028169 718.5 10.11971831

VI. FUTURE WORK
The results presented in this paper suggest that any performance advantage conferred by AncDE is more noticeable on more
complex problems. One investigation that arises from this is to compare DE and AncDE on larger problems.

 One extension to AncDE is a newer variant currently being investigated (called 2AndDE) that uses two related caches
containing two chronologically related ancestors for each solution in the current population. These caches contain an older ancestor

and a newer ancestor. The presence of two ancestors may allow even better performance to be achieved, where the ancestors serve
to scale the difference vector sourced from within the current population.

VII. CONCLUSION
This paper presented an ancestral extension to the DE algorithm (called AncDE) that added an archive of solutions discarded

from the main population, stochastically updated from the main population. AncDE added to DE the ability to calculate difference
vectors between a current and an ancient solution. The resulting inter-generational difference vectors are controlled stochastically
in terms of both their relative age and the frequency that they impact on the current population.

Results were presented for the “CEC 2015 Special Session & Competition on Real-Parameter Single Objective Optimization”.
Summary results are included for standard DE and these show that AncDE outperforms standard DE on most of these problems.
Thus, the performance of DE has (surprisingly) been improved using a cache of solutions that were discarded from the main
population. We see this ancestral information as an extension to Mendel’s Law of Inheritance, acting as an additional inheritance
pathway. As an explanation for these results we suggest that AncDE’s occasional use of the difference vectors originating from a
long-temporal baseline – leads to difference vectors of larger magnitude and occasionally large jumps across the solutions space
that avoid some local minima.

ACKNOWLEDGMENT
The authors would like to thank the Irish Research Council for Science, Engineering and Technology (IRCSET) for part

funding this project. We would also like to thank the John and Pat Hume scholarship for part funding this project. The authors
would also like to thank the Erasmus Mundus DESEM program for part funding this project. We would also like to thank R. Storn
and K. Price for the DE code, which was extended to create the Ancestral DE (AncDE) implementation.

REFERENCES

[1] R. Storn and K. Price, "Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces," Journal
of Global Optimization, vol. 11, pp. 341-359, 1996.

[2] S. Luke, Essentials of Metaheuristics, 2nd ed.: Lulu, 2013.
[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II," IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.
[4] A. FitzGerald and D.P. O'Donoghue, "Genetic Repair for Optimization under Constraints inspired by Arabidopsis thaliana," in Parallel

Problem Solving from Nature (PPSN), 2008, pp. 399-408.
[5] A. FitzGerald and O'Donoghue D.P., "Biologically Inspired Non-Mendelian Repair for Constraint Handling in Evolutionary Algorithms,"

in The Genetic and Evolutionary Computation Conference (GECCO) - Constraint Handling Workshop, Portland, Oregon, 2010, pp. 7-11.
[6] A. FitzGerald, D. P. O'Donoghue, and X. Liu, "Genetic Repair Strategies inspired by Arabidopsis thaliana," in Lecture Notes in Artificial

Intelligence (LNAI 6206)., 2010, pp. pp 61-71.
[7] D. Hatton and D.P. O'Donoghue, "Explorations on Template-Directed Genetic Repair Using Ancient Ancestors and Other Templates," in

The Genetic and Evolutionary Computation Conference (GECCO) - Constraint Handling Workshop, 2011.
[8] D. Hatton and D.P. O'Donoghue, "Arabidopsis thaliana Inspired Genetic Restoration Strategies," International Journal of Biometrics and

Bioinformatics, vol. 7, no. 1, pp. 35-48, 2013.
[9] E. Mezura-Montes, J. Velazquez-Reyes, and C. A. Coello Coello, "A comparative study of differential evolution variants for global," in

Proc. Genet. Evol. Comput. Conf., 2006, pp. 485–492.
[10] S. Russell and P. Norvig, AI: A Modern Approach.: Prentice Hall, 2009.
[11] B. D. Connelly, L. Zaman, P.K. McKinley, and C. Ofria, "Modeling the Evolutionary Dynamics of Plasmids in Spatial Populations," in

Proceedings ACM GECCO Conference, Dublin, Irealnd., 2011.
[12] Darrell Whitley, V. Scott Gordon, and Keith Mathias, "Lamarckian Evolution, The Baldwin Effect and Function Optimization," in PPSN,

Jerusalem, Israel, 1994, pp. 6--15.
[13] A.E. Qin, Ke Tang, Hong Pan, and Siyu Xia, "Self-adaptive Differential Evolution with Local Search Chains for Real-Parameter Single-

Objective Optimization," in IEEE Congress on Evolutionary Computation (CEC), Beijing , China, 2014, pp. 467 - 474.
[14] S.J. Lolle, J.L. Victor, J.M. Young, and R.E. Pruitt, "Genome-wide non-mendelian inheritance of extra-genomic information in

Arabidopsis," Nature, vol. 434, no. 7032, pp. 505-509, March 2005.
[15] M.T. Hopkins et al., "De novo genetic variation revealed in somatic sectors of single Arabidopsis plants (v2)," F1000 Research, vol. 2, no.

5, July 2013.

