
20 12271 – AI meets Formal Software Development

The system has been designed for developing large interactive proofs. In particular, the
GUI provides commands for reading and writing hierarchical proofs by letting the user focus
on part of a proof. TLAPS uses a fingerprinting mechanism to store proof obligations and
their status. It thus avoids reproving previously proved obligations, even after a model or
a proof has been restructured, and it facilitates the analysis of what parts of a proof are
affected by changes in the model.

The paper is a longer version of an article published at FM 2012.

3.27 Case Based Specifications – reusing specifications, programs and
proofs

Rosemary Monahan (Nat. University of Ireland, IE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Rosemary Monahan

Joint work of Monahan, Rosemary; O’Donoghue, Diarmuid
URL http://www.cs.nuim.ie/staff/rosemary
URL http://www.cs.nuim.ie/staff/dod

Many software verification tools use the design-by-contract approach to annotate programs
with assertions so that tools, such as compilers, can generate the proof obligations required
to verify that a program satisfies its specification. Theorem provers and SMT solvers are
then used to, often automatically, discharge the proof obligations that have been generated.

While verification tools are becoming more powerful and more popular, the major
difficulties facing their users concern learning how to interact efficiently with these tools.
These issues include learning how to write good assertions so that the specification expresses
what the program must achieve and writing good implementations so that the program
verification is easily achieved [4, 5]. In this presentation we discuss guiding the user in
these aspects by making use of verifications from previously written programs. That is by
finding a similar or analogous program to the one under development, we can apply the
same implementation and specification approaches. Our strategy is to use a graph-based
representation of a program and its specification as the basis for identifying similar programs.

Graph-matching was identified as the key to elucidating analogical comparisons in the
seminal work on Structure Mapping Theory [1]. By representing two sets of information as
relational graphs, structure mapping allows us to generate the detailed comparison between
the two concepts involved. So given two graphs we can identify the detailed comparison using
graph matching algorithms. For one application of graph matching to process geographic
and spatial data see [3]. However, we may not always have an identified “source” to apply
to our given problem. Thus, more recent work has taken a problem description, searching
through a number of potentially analogous descriptions, to identify the most similar past
solution to that problem [2].

Our work will develop a graph matching framework for program verification. The
associated tools will operate on a collection of previously verified programs, identifying
specifications that are similar to those under development. The program associated with
this “matching specification” will guide the programmer to construct a program that can
be verified as correct with respect to the given specification. Likewise, the strategy can
be applied when the starting point is a program for which we need to construct a correct
specification.

The core matching process can be thought of as a K+J colored graph-matching algorithm,



Alan Bundy, Dieter Hutter, Cliff B. Jones, and J Strother Moore 21

which coupled with analogical transfer will re-apply the old solution to a new problem. Graphs
can be flow graphs, UML diagrams, parse trees or another representation of a specification.
Therefore, an iterative implementation of a sigma function (say) using tail recursion will be
analogous to another recursive implementation—possibly using head-recursion. Similarly,
iterative calculations of the same function using while and for loops will be more analogous to
one another. Identical graph matching (isomorphism) will identify exact matches, given the
representation, while non-identical (homomorphic) matches will identify the best available
solutions.

In summary, our work will help to make software specification and verification more
accessible to programmers by guiding users with knowledge of previously verified programs.
A graphical representation of the specification, coupled with graph matching algorithms, is
used as the basis of an analogical approach to support reuse of specification strategies.

References
1 D. Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive Science,

7(2):155–170, 1983.
2 D. P. O’Donoghue and M. T. Keane. A creative analogy machine: Results and challenges.

In M. L. Maher, K. Hammond, A. Pease, R. Pérez y Pérez, D. Ventura, and G. Wiggins,
editors, 4th International Conference on Computational Creativity (ICCC 2012), pages
17–24, 2012.

3 D. P. O’Donoghue, A. J. Bohan, and M. T. Keane. Seeing things: Inventive reasoning
with geometric analogies and topographic maps. New Generation Comput., 24(3):267–288,
2006.

4 K. R. M. Leino and R. Monahan. Automatic verification of textbook programs that use
comprehensions. In 9th Workshop on Formal Techniques for Java-like Programs (FTfJP
2007), ECOOP 2007 Workshop, Berlin, Germany, July 2007.

5 K. R. M. Leino and R. Monahan. Dafny meets the verification benchmarks challenge. In
G. T. Leavens, P. W. O’Hearn, and S. K. Rajamani, editors, Verified Software: Theories,
Tools, Experiments (VSTTE 2010), volume 6217 of LNCS, pages 112–126. Springer, 2010.

3.28 Can AI Help ACL2?
J Strother Moore (University of Texas at Austin, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© J Strother Moore

Joint work of Moore, J Strother; Kaufmann, Matt; Boyer, Robert
Main reference M. Kaufmann, P. Manolios, J. S. Moore, “Computer-Aided Reasoning: An Approach,” volume 3 of

Advances in Formal Methods. Kluwer Academic Publishers, 2000.
URL http://www.cs.utexas.edu/users/moore/acl2

ACL2 stands for “A Computational Logic for Applicative Common Lisp,” and is a fully
integrated verification environment for functional Common Lisp. I briefly mentioned some of
its industrial applications, primarily in microprocessor design, especially floating-point unit
design, and security. ACL2 is used to prove functional correctness of industrial designs. I
then demonstrated an ACL2 model of the Java Virtual Machine highlighting (a) the size and
scale of the formal model, (b) the fact that it was executable and thus was a JVM engine, and
(c) ACL2 can be configured so that code proofs are often automatic. I then turned to how AI
could help the ACL2 user, including: facilitating proof maintenance in the face of continued
evolution of designs; facilitating team interaction in team based proofs (e.g., automatically
informing team member A that team member B has already proved a lemma that seems

12271


