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Abstract This paper examines two seemingly unrelated qualitative 
spatial reasoning domains; geometric proportional analogies and topographic (land-
cover) maps. We present a Structure Matching algorithm that combines Gentner’s 
structure mapping theory with an attribute matching process. We use structure 
matching to solve geometric analogy problems that are centered on manipulating 
attribute information, such as colors and patterns. Structure matching is also used to 
creatively interpret topographic (land-cover) maps, serving to add a wealth of 
semantic knowledge and providing a far richer interpretation of the raw data. We 
return to the geometric proportional analogy problems and identify alternate attribute 
matching processes that are required to solve different categories of geometric 
proportional analogy problems. Finally, we assess some implications for 
computationally creative and inventive models.  
 
Keywords: Geometric proportional analogies, attributes, topographic maps, 
context, creative interpretation. 

1 Introduction 
Analogical comparisons play a well documented role in the creative process 1). Many of 

the most famous breakthroughs in science can be neatly summarised by a simple analogical 
comparison 10). For example, Kekule’s famous analogy between a chain of carbon atoms and 
a snake biting its own tail marks the birth of aromatic chemistry. This paper uses analogical 
inference as its primary means of generating new information, for both geometric 
proportional analogies and for topographic maps. 
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The focus of our work is on the domain of qualitative spatial reasoning – that is 
reasoning about figures in a qualitative (not a quantitative) manner. We examine two 
seemingly unrelated problems from the domain of qualitative spatial reasoning; geometric 
proportional analogies 2, 7, 17) and topographic (land-cover) maps 14, 15). We will show how 
many problems in topographic maps can be treated as geometric proportional analogy (GPA) 
problems – using a similar mechanism to solve both problems.. 

The category of GPA problem that is described involves manipulations of attribute 
information, such as pattern and color. We describe a structure matching algorithm for 
solving these problems that combines Gentner’s structure mapping theory 9) with an attribute 
matching process. We then describe how this algorithm can be adapted to process topographic 
maps, where successive analogical inferences are used to gradually generate an interpretation 
of the map’s raw data. This interpretation more closely resembles our understanding of a 
semantically rich three-dimensional world.  

Towards the end of this paper, we explore an entirely different category of geometric 
proportional analogy problem. These new problems seem to rely more heavily on lateral 
thinking to identify the more complicated yet subtle patterns involved. We describe how the 
attribute matching processes can also identify solutions to these more challenging problems.  

The remainder of this paper is structured as follows. First we examine some GPA 
problems that involve attributes and attribute transformations. We present a structure 
matching solution to these problems, which combines Gentner’s structure mapping theory 
with a subsequent attribute matching process. Secondly, we describe how structure matching 
was used to generate creative interpretations of topographic maps. The third part of the paper 
returns to GPA problems, describing how some more difficult GPA problems can be solved 
by creatively re-interpreting the problem to find radically different solutions. Finally, we 
assess the implications of our work for the area of computational creativity.  

2 Geometric Proportional Analogies  
Geometric, proportional analogies 2, 7, 17) (GPA) are comparisons between two 

collections of geometric figures, called the source and target domains. A GPA is of the form 
A:B::C:D (read as “A is-to B as C is-to D”), where A, B & C are given.. Typically the source 
domain (A:B) identifies some transformation, which must then be applied to C, yielding D.  

Geometric, proportional analogies define two key pieces of information. First, the 
transformation is defined within the source domain (i.e, the change from A to B). For 
example, the analogy in Fig. 1 centers on inverting the polygons of part A to produce part B.  

Secondly, the inter-domain mapping is found between parts A and C of the two 
domains. We map the structure 9) of domain A to the structure of domain C. So, the square in 
part A maps to the circle in part C, while the circle in A corresponds to the triangle in C. It is 
by combing the mapping and the transformation that the missing target (D) can be generated. 

 :::: 
A B C

?
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Fig. 1 A Plain Geometric Proportional Analogy (GPA) 

Two models of analogy by Evans 7) and Tomai et al 17) have also sought to solve GPA 
problems that involve plain figures (these problems are often recognized as the Miller IQ 
analogy problems). While the underlying mechanisms in these two models are significantly 
different, there are number of similarities between the two models. Firstly, both models take 
graphic images of the GPA problems as input. Secondly, both models make use of the 
geometry of the objects in finding a solution and thirdly, both models choose between a 
number of given alternative solutions (i.e. D1, D2…D5) that are presented along with the 
problem parts A, B and C.   

Our model, called Ludi, differs from these models in a number of important ways. 
Firstly the input to our models is in symbolic form, rather than in the form of a graphic 
image. (Later we will see that topographic maps are also stored in a symbolic format, rather 
than as an image or picture). Secondly, we actually generate the required solution (D), rather 
than selecting the best solution from a list of alternatives. Thirdly, we ignore the geometry of 
the objects and therefore make our solution applicable to a wider range of problems. This 
third point will prove invaluable in adapting our solution to the domain of topographic maps. 

2.1 The Ludi Model 
This section describes a computational model for solving geometric proportional 

analogies, called Ludi 2). Ludi is a two phase model for solving GPA problems. The first 
phase alone can generate solutions to plain GPA problems (like the classic Miller analogy 
problems) such as that depicted in Fig. 1. The second phase of Ludi is required to solve GPA 
problems that contain and manipulate attributes, such as color and pattern information.  

The first phase of Ludi relies on Gentner’s Structure Mapping Theory 9) to identify the 
inter-domain mapping (between A and C). Structure Mapping Theory has been used in many 
models of conceptual (non-geometric) analogies 8, 11,, 12 13). Accordingly, Ludi examines the 
topological arrangement of objects within the presented problem. Note that Tomai et al17) also 
focus on topology, but combine this with geometric information. Davies and Goel 6) also look 
at analogies involving visual information, but they do not explicitly address GPA problems. 

We start by describing how Ludi represents each of the GPA problems, using a 
symbolic representation of the source and target domains. A unique identifier is assigned to 
each object in the source and target domains – as illustrated in Fig. 2. A number of binary 
spatial relations are used to describe the topology of each part (A, B, and C) of the GPA 
problem – above(x,y) and inside(y,z). Additionally, Ludi can use the line-
adjacent(x,y) and point-adjacent(x,y) relations where appropriate. (We will 
discuss these adjacency relations later). Typically, each part of a GPA creates a number of 
predicates, but in this simple example only one predicate is required. (Ludi represents shape 
as an attribute, like circle(1) and square(2), but we shall leave our discussion of 
attributes until the next section). So, the different parts of Fig. 1 might be described by the 
following predicates, based on the labeling shown in Fig. 2:  
A: above(1,2) point-adjacent(1,2) 
B: above(2,1) point-adjacent(1,2) 



C: above(i,ii) point-adjacent(i,ii) 
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Fig. 2 Labeling objects in the source and target 

Next Ludi uses Gentner’s Structure Mapping Theory 9) to generate the inter-domain 
mapping. This step is central to all analogical comparisons, not just GPA problems. The inter-
domain mapping (or mapping) identifies the structural isomorphism between the descriptions 
of parts A and C of the GPA. Ludi also uses the predicate identicality constraint 8), which 
ensures that only identically named relations can be mapped between A and C. In this simple 
example, the relations in domains A and C can be mapped directly to one another – allowing 
us to identify the object mapping.  
Mapping: above-above, point-adjacent - point-adjacent, 1-i, 

2-ii 

Therefore object 1 maps to i, while object 2 maps to ii. Because the mapping process 
concentrates on the structure of parts A and C (i.e. the mapping is based on the above and 
point-adjacent relations), non-identically shaped polygons can be mapped to one 
another. In this way, square 1 of part A is mapped to circle i of part C. Similarly, circle 2 in 
A is mapped to triangle ii in part C.  

Of course, the source domain also includes the crucial A-to-B transformation. The A-
to-B transformation is represented implicitly within the Ludi model. That is, the 
transformation is represented by the difference in the collections of predicates that describe 
parts A and B of the GPA. Unlike Davies and Goel 6) we do not use a separate vocabulary to 
represent transformations. So, the A-to-B transformation in Fig. 1 involves a reorganization 
of the objects in part A.  
A: above(1,2) point-adjacent(1,2) -> B: above(2,1) point-

adjacent(1,2) 
Armed with both the mapping and the transformation, we are now ready to solve the 

GPA. The correct solution (D) is generated by the standard “pattern completion” algorithm 
for analogical inference, called Copy With Substitution and Generation 11) (CWSG). 
Additional source domain information (i.e. part B) is copied to the target domain (forming 
D), with all source domain labels being substituted by their target domain equivalents - 
obtained directly from the mapping. Therefore, we copy B to the target forming 
above(2,1), but we now substitute each label with its mapped equivalent (1-i and 2-
ii). This generates the following solution, as illustrated in Fig. 3. 

D: above(ii,i) point-adjacent(i,ii) 
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Fig. 3 Solution to the Geometric Proportional Analogy in Fig. 1 

Larger GPA problems involve more predicates and objects but are solved by the same 
sequence of steps.  

2.2 Adding Attributes to Geometric Proportional Analogies 
We now move onto GPA’s that involve attributes and attribute transformations (see Fig. 

4). We point out that including attributes in the analogy process is central to solving these 
problems. While both Evans 7) and Tomai et al’s 17) models solve plain GPA problems, they 
do not address the GPA problems described in the remainder of this paper.  

 :::: 
A B C

?
D  

Fig. 4 A Geometric Proportional Analogy with Attributes 

To solve these GPA problems, we add the attribute information about each polygon to 
the earlier predicate descriptions. For simplicity, we focus on the pattern attribute. The 
analogy in Fig. 4 is represented by the same predicates as in Section 2.2, plus the following 
attributes:  
A: striped(1) plain(2) 
B: striped(1) gray(2) 
C: striped(i) plain(ii) 

The addition of this attribute information complicates the analogy process because there 
are multiple ways of identifying the mapping that occurs between the source and target 
attribute transformations. We define attribute matching as the process of determining the 
attribute changes in the transformation and mapping process.  

Of course we still identify the mapping between the source and target domains, but this 
process initially ignores the attribute information. We use the inter-domain mapping to 
identify the object correspondences which then allows us to align the attributes of the objects 
in A with the objects in C.  

2.3 Identical Attribute Matches (Object Independent) 
 We begin with the simplest class of GPA problem that uses the same attribute matches 

throughout the analogy problem. We use the object correspondence to identify a 1-to-1 
matching between the attributes in A with those in C. In the GPA in Fig.4 the striped 
attribute of object 1 matches to the striped attribute of object i, and similarly the plain 
attribute of object 2 matches the plain attribute of object ii. In this case all striped 
attributes in A match to striped attributes in C, forming what we call an object independent 
attribute match.  



 Attribute Match: striped-striped, plain-plain  
In fact, in this problem all matched attributes are identical to one another, conforming 

to the identical attribute matching constraint. These are the simplest type of GPA problem.  
This generates a complete correspondence between the two domains, incorporating 

predicate, object and attribute information.  
A: striped(1) plain(2) -> B: striped(1) gray(2) 

To generate the inferences for this problem, we again use the CWSG algorithm. (First, 
CWSG is performed yielding the same results as in the last section). Now we include 
attribute information in each of the parts A, B and C. The attributes of B are copied to D, 
being appropriately substituted by their mapped equivalents (1-i, 2-ii). This adds the 
following attributes to the description of part D. 

D: striped(i), gray(ii) 

 

D 
 

Fig. 5 Solution to the Geometric Analogy in Fig. 1 

The identical attribute constraint will prove crucial in our efforts to automatically 
interpret topographic maps. This is also the type of attribute matching that is required by 
many geometric proportional analogy problems that involve attributes.  

2.4 Non-Identical Attribute Matches 
The Ludi model can also solve GPA problems where non-identical attributes are 

matched between the source and target domains. Fig. 6 depicts a GPA problem where the 
attributes of the mapped objects are not identical.  

 :::: 
A B C

?
D  

Fig. 6 A Geometric Analogy with Non-Identical Matched Attributes 

Again we use the inter-domain mapping to identify the object correspondence. Then we 
align the compatible attributes of mapped objects.  

So, the striped attribute of part A is matched with the hashed attribute in part C.  
Attribute Match: striped-hashed, plain-plain  

Again we perform inference using the CWSG algorithm. We create a copy of B to form 
D and then substitute all mapped and matched items as appropriate. This substitution process 
replaces the striped attribute in B with the hashed attribute in D. Thus our GPA can 
create a solution D that contains attribute information which is not found in the source.  
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Fig. 7 Solution of Fig. 6 

Analogies, including creative analogies, rely on this same combination of mapping with 
inference to create new information. Our extension to the “pattern completion” inference 
process allows inferences to include attribute information that describes objects in the 
analogy. In the next section we will see how inferred attributes can transform our 
understanding of spatial data from a topographic map. 

3 Topographic Analogies 
In this section we examine another domain that also contains spatially related 

information. This domain concerns topographic maps that describe land-cover across a 
country. Topographic maps are formed from large numbers of polygons that each represents 
features like roads, gardens and buildings. While there is no obvious connection between 
Geometric Proportional Analogies and topographic maps, Fig. 8 depicts a GPA where the 
target domain is a collection of polygons selected from a topographic map 14, 15). We refer to 
analogies involving geometric figures and a topographic map as topographic analogies. The 
transformation defined in the source domain of Fig. 8 adds a polygon to the collection of 
polygons in part A. This polygon-adding transformation is then applied to the topographic 
map (C) enhancing and updating that map (D). In this case the transformation adds a segment 
of the river that was hidden by an overlying foot-bridge, thereby repairing the occlusion.  

  
C

:: : ? : 

A B D  
Fig. 8 A Topographic Analogy - a Geometric Proportional Analogy in a Topographic Map 

3.1 Reading Topographic Maps 
Before we show how the structure matching process was adapted for topographic 

analogies, we must first describe how information is recorded in topographic maps. At 
present, most maps of the world have been transformed into digital media opening up new 
vistas for the flexible use of their contents by business, government and private individuals. 
Maintaining and enhancing such topographic data presents us with a new set of challenges 
that could benefit from automated solutions.  



The topographic map used in this paper is the Topological Map of Great Britain, called 
OS MasterMap1. OS MasterMap contains over 450 million (mostly) non-overlapping 
polygons, describing land-cover across the country (Fig. 9). Each polygon is composed of a 
number of lines that define the boundary between polygons. Each recorded feature (line, 
polygon etc) is uniquely identified by a 16 digit Topographic-ID (ToID) number and the 
entire map contains over 2.5 billion ToIDs. Polygons are categorized into one of thirteen 
main themes, including; road, rail, building, inland waterway, made land, unmade land, 
roadside etc.  

 
Fig. 9 A Small Segment of the Topographic Map of Port Talbot (UK) 

Topographic maps are primarily devoted to recording location information, with little 
semantic information being added. Of course much semantic information is difficult to 
discern from the aerial photographs used to create maps. Topographic maps typically do not 
distinguish between say, a hospital and a garden shed. This lack of semantic information can 
result in a number of problems with these maps. We now look at some enhancements that 
might serve to improve the usefulness of this spatially based data.  

3.1 Interpreting Topographic Maps  
We make a number of observations about how people interpret topographic maps, 

applying a modicum of creativity to “see” more information than can be explained by a strict 
reading of the map’s data. For example, map users regularly encounter the occluded-polygon 
problem (Fig. 8) wherever, say a river passes beneath a bridge. This is because the bridge 
ensures that part of the river cannot be detected from the aerial photographs that are used to 

                                                 
1 Crown Copyright, Ordnance Survey, Southampton UK, 2005.  



9 

 

make maps. Therefore the river appears to be obstructed by the bridge. But even novice map 
users have no difficulty in imagining that the river continues beneath the bridge. We theorize 
that in the mind of a map user, the map is not segmented into collections of isolated polygons 
but is more likely to be composed of continuous roads and rivers that occasionally traverse 
one another. However, current geocomputation applications do not support such simple 
inferences (route-planning and GPS navigation applications typically use a separate 
“Transportation Network” layer which is created using human intervention).  

 Similarly, when examining a map that depicts polygons of the building category, many 
of these structures are easily identified as (semi-detached) houses – regularly structured with 
a garden and access to a road (see Fig. 9). So, while the exact type of building is not recorded 
on the map, the users understanding of the map is often much richer than the recorded data. 
Our CSM model aims to enrich the map’s recorded data, so that it more closely resembles the 
richer information that people perceive. 

One can view this as a relatively simple form of inventive analogy, where users apply 
their understanding of the real world to the data presented on the map. In this scenario the 
real world acts as the source domain, which is used to transfer additional information to the 
targeted items in the topographic map. This creates an interpretation of the map that is much 
more useful than a strict reading of the recorded data.  

Users also apply their understanding of the map to enhance their understanding of the 
real world, when using the map for activities like route planning. That is, a route might be 
planned on the map, but that plan is then executed in the real world. So, we also use the map 
as the source domain to supply additional information to some real-world problem. However 
in this paper, the source domain of the real world is used to identify a number of 
transformations, which enhance and enrich the topographic map.  

3.2 Semantic Enrichment for Virtual Reality Maps 
Generating a virtual reality representation of topographic maps has long been a goal of 

many researchers. Virtual reality maps may be useful in desktop virtual environments, as 
realistic environments for the software gaming industry or as aids to mobile navigation. 
However, generating virtual reality maps involves using far more information than is 
currently available in topographic maps. While maps contain adequate location information, 
it is their lack of semantic information that presents a serious challenge.  

We highlight a number of requirements for inventive interpretation of topographic maps 
using the image in Fig. 10. This depicts a virtual reality environment containing a small 
portion of a typical topographic map. This image focuses on the intersection of two roads and 
a number of buildings and multiple-surface polygons. On the left we have a direct 
representation of the topographic map that represents a building – one flat building polygon 
surrounded by a multiple-surface land polygon. While this is a true depiction of the map’s 
data, it does not depict the semantic and visual richness contained in the real world.  

A slightly more inventive interpretation of the map might allow us infer that the 
building is a single-story detached-house. We can then use this inference to estimate the 
house’s height and to infer that the surrounding polygon is a garden. This situation is depicted 



on the left of Fig. 10 where the building is repressed as a plain 3D box. However this is only 
a minor advance but it does represent an improved depiction of these objects.  

 
Fig. 10 A possible virtual reality map. The left foreground shows an unadorned building, while the 

right shows a more creative interpretation of a map. 

The building on the right of Fig. 10 represents a more inventive interpretation of a 
building enclosed by multiple-surface land. Some steps in producing this interpretation are: 

• Decide the number of stories and height of the building 
• Determine the type of roof for the dwelling 
• Decide the orientation of the dwelling and the location of the front door 
• Decide the type of garden to depict 
• Identify the building located in the garden as a garden shed. 
• Select the type of garden shed to depict 
• Decide the types of boundary to place on each side of the garden 
• Decide the location of any gaps in these boundaries 

If a person were presented with this challenge and produced a suitably pleasing result, it 
could be argued that they had displayed a measure of creativity in reaching that goal. It might 
be argued (by analogy) that if a program produced a similar result, it may display some traces 
of creative reasoning. We point out that this interpretation is useful, novel and was created in 
a directed manner – we shall return to these facets of creativity in section 6.  

Our CSM algorithm is still not at the stage of generating such a cohesive interpretation 
of the world. However, we shall look at a number of specific problems that are being 
addressed with CSM and which assist in generating a virtual reality map. The first problem 
we examine concerns occluded polygons, like that depicted in part C of Fig. 8. We will also 
look at the problem of sub-classifying polygons into more specific sub-categories and at 
identifying classification errors from within topographic maps.  
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4 Contextual Structure Matching (CSM) 
In this section we describe the Contextual Structure Matching 14, 15) (CSM) algorithm 

for processing topographic maps. CSM is an adaptation of the structure matching algorithm 
described in Section 2, specifically tailored to manipulate topographic maps. CSM uses 
geometric analogies as a basis for identifying specific problem situations within topographic 
maps.  

4.1 Describing the Problem Context 
The key to using topographic analogies like that in Fig. 8, is to describe the local 

context of the polygons involved in this bridge occlusion problem. GPA’s are typically 
composed of parts A, B and C that consist of small collections of polygons. To apply these 
analogies within an extensive map, we must therefore identify a small collection of 
topographic polygons on which to apply our GPA algorithm. We introduce a new level of 
resolution for dealing with topographic maps, which we call a locality. A locality is a 
collection of polygons consisting of one central polygon, plus all polygons that are 
immediately adjacent to that central polygon. Thus, the entire map is covered by numerous 
over-lapping localities.  

Each locality is described by three types of information. Firstly, localities contain a 
unique identifier (ToID) for each polygon in that locality. Secondly, each locality records the 
category of all polygons that it contains. Finally each locality records the topology of the 
polygons in that locality, using the line-adjacent and point-adjacent predicates. 
The line-adjacent and point-adjacent relations can be seen as specializations of 
the externally-connected-to relation that is used by the Region Connection 
Calculus 4) RCC-8. These two relations are used because they allow CSM to explicitly 
identify 2-dimensional situations where polygons share only one vertex, which are crucial to 
identifying many structures. Such relations are easily identified from the topographic map 
and allow CSM to easily identify specific problem structures. CSM also assumes that the 
description of each part of the problem is complete - that there are not missing relations. 
Thus, the RCC-8 relation disconnected-from is represented implicitly in CSM by the 
absence of a relation between two objects within the locality. 

The representation of each locality creates a collection of predicates and attributes 
similar to that used by Ludi, described in section 2. The main difference between CSM and 
Ludi concerns the relations they use to represent problems. CSM uses the line-adjacent 
and point-adjacent relations, which are insensitive to the rotation (or orientation) of the 
polygons and allow it to identify structures in a rotation independent manner. In contrast, 
Ludi relations are sensitive to orientation (eg above) because orientation is often crucial in 
these problems.  

4.2 System Architecture 
A specific problem, such as the occluded bridge structure, is given to CSM as part A of 

a GPA. CSM must then find a matching C locality within the map. The topographic map is 
loaded into CSM which generates all required locality descriptions for the given map. These 
localities are then passed to the structure matching component of CSM, which compares each 



locality description against targeted locality descriptions. When a structure match is detected 
and when some simple spatial constrains are met, then a problematic locality has been 
identified and is dispatched to the appropriate elaboration process.  

 Locality  
Generator 

locality Topographic 
database 

Structure 
Matching 

Spatial 
Constraints

Map 
Elaboratrion  

Fig. 11 System Architecture 

CSM’s spatial constraints help eliminate many “false positives” that do not properly fit 
the locality description. These constraints augment the topological structure matching process 
with some geometric conditions. For example when detecting the occlusion problems, CSM 
uses a distance metric to ensure the occluding bridge is not wider than some threshold.  

4.3 Some Occlusion Problems  
We now describe how CSM repairs seven specific occlusions, like that described in Fig. 

8. These problems originate in occlusions of three categories of topographic object - roads, 
rivers and railways. We create a locality description for each of the following structures and 
these seven localities correspond to seven distinct GPA problems. These localities form a 
simple case-base that identifies these specific problem structures within the topographic map.  

1) Road over River 
2) Structure over River 
3) Rail over River 
4) Road over Road 
5) Rail over Road 
6) Path+road+path over River 
7) Path+road+path over Rail 

4.4 Problem Correction 
Having identified the structures of interest, we can then begin elaborating the map. 

Elaboration corresponds to the A-to-B transformation of the earlier GPA’s. However, the 
corresponding part B for each of the targeted localities is formed by an inference process, 
rather than a predefined collection of predicates (as used by Ludi).  

The elaboration needed to repair each occlusion, consist of generating and re-inserting 
polygons of the appropriate categories corresponding to the occluded portion of the 
underlying object. In this case the elaboration processes is quite straightforward, partly 
because CSM also identifies both the occluding and occluded polygons. Elaboration uses this 
information to identify the intersection between the occluding and occluded objects. By 
adding two additional edges we can reform the obscured polygon. Of course this process 
makes assumptions about the nature of the obscured polygon, using straight lines to represent 
the hidden edges of the occlusion. This has proven adequate for most purposes, rejoining the 
previously partitioned object (Fig. 12).  
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Fig. 12 Before and After Re-Inserting one Occluded Polygon 

4.5 Empirical Results from CSM 
We tested CSM’s occlusion repair process on three different subsets of OS MasterMap, 

from the regions of Moffat, Port Talbot and Birmingham. Each map represents a region of a 
few square kilometers, containing a total of over 43,000 polygons. The represented regions 
are characterized as: urban, suburban, industrial, parkland rural, and mountainous (see Table 
1), presenting different challenges to the CSM application.  

Table 1 Results summary for the different map regions 
Region  Description Number of 

polygons 
Identified 
Obscurities 

Moffat Mountain, rural, town 11,293 47 
Port Talbot Rural, suburban, industrial 5,198 10 
Birmingham Urban, suburban, parkland 26,632 14 

These maps were also presented to two human reviewers who were asked to interpret 
the map and manually identify all occluding bridge structures. The reviewers were given a 
printout of the map on which to locate the bridges, as well as having access to a map viewing 
application program. This allowed reviewers, for example, to view only the road polygons so 
that it might simplify the task of identifying bridges. Additionally, the reviewers were given 
as much time as required to identify all occluding bridges.  

As can be seen from Table 2 CSM was very accurate, identifying and repairing 100% of 
the occluded polygons in many situations. Additionally, in each case the newly inserted 
polygon had the correct location, dimensions and was assigned to the correct category. 

These results demonstrate the potential for qualitative spatial reasoning within 
topographic maps. While these seven cases generate straight-forward inferences, we now 
describe a number of other uses of CSM to enrich the semantics of topographic maps.  

Table 2 Accuracy of Occluded-polygon Insertion 



 Topographic Database 
Problem Moffat Port Talbot Birmingham 
 Accuracy% Accuracy% Accuracy% 
Road over River 85 66 0 
Structure over River 100 100 100 
Rail over River 100 100 100 
Road over River 66 100 100 
Rail over Road 50 100 100 
Path+road+path over River 58 22 25 
Path+road+path over Rail 100 70 100 

4.6 Emerging Applications  
Our geometric analogy solution is also being used to address several other topographic 

problems, which we will now outline.  
4.6.1 Identifying and Correcting Mis-Classification 

Correctly classifying all polygons in a topographic database is a major concern as it 
directly impacts on the usefulness of maps to the end user. Automated classifiers focus on the 
description of individual objects, focusing on their size, border length, geometry etc. But 
some polygons are ambiguously shaped and can be prone to mis-classification – road 
junctions and semi-detached-houses are very similar in shape (see Fig. 13). Correcting 
classification errors can use CSM’s contextual sensitivity to examine the class of surrounding 
polygons. Appropriate locality descriptions can detect many misclassifications errors. 

 
Fig. 13 A variety of polygons representing buildings, roads and road intersections  

4.6.2 Sub-Categorization 
Currently OS MasterMap categorizes polygons into one of 13 different classes. We are 

using CSM to sub-categorize polygons into a greater number of sub-classes.  
1) building -> dwelling  -> {detached-residence, semidetached-residence, terraced-

residence}  
2) building -> garden-shed  
3) road -> {motorway, road-segment, cul-de-sac, T-junction, X-junction} 

Multiple hierarchical levels are being explored for these and other categories.  
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4.6.3 Composite Objects  
Composite objects consist of collections of individual polygons. For example a 

homestead may consist of a dwelling with its surrounding garden and out-houses. Extensive 
features like rivers and roads consist of many individual polygons and propagating (say) the 
name of a river to all its segments can improve the maps usefulness.  

4.7 Cascade of Inferences 
The above manipulations raise a number of important issues, particularly when these 

tasks are taken together as a collection. Identifying a building polygon as a detached-house 
can itself be used as a basis for identifying its surrounding multiple-surface polygon as a 
garden. Thus, one inference is used as a basis for generating a subsequent inference. This 
second inference in turn helps identify that the building located in the garden is a garden-
shed. Thus, rather than infer all our conclusions from known facts, we use some inferences as 
a basis for subsequent inferences. We call this a cascade of inferences and see it as crucial in 
our efforts to go from the current dearth of semantics, to the full richness required to generate 
a virtual reality map. Of course there is potential for early mistakes to be compounded by 
subsequent inferences. This places the greatest need for accuracy on the first inferences that 
are derived directly from the maps original data.  

5 Ludi: Flexible Structure Matching 
We now return to the topic of geometric proportional analogies to highlight some 

crucial differences between our CSM and Ludi models. The structure matching algorithm that 
underlies both Ludi and CSM solves “normal” GPA problems. Both Ludi and CSM generate 
the same solutions as required by most IQ test problems, and as also solved by models like 
those of Evans 7) and Tomai et al 17). We now describe some other classes of GPA problems 
involving attributes that can also be solved by Ludi. The two classes of problem described in 
this section require greater flexibility and inventiveness than we have seen so far. (Neither 
Evans nor Tomai et al address these types of problem). 

Let us begin by briefly re-considering the original GPA problem depicted in Fig. 1. A 
more creative reading of this problem might suggest that the source domain merely replaces 
A by the description contained in part B – thereby foregoing any notion of an inter-domain 
mapping. Applying this (trivial) transformation to C would generate a D that is merely a 
duplicate of part B. Another (non-)solution to GPA problems might suggest that the source 
domain transformation can only be applied to figures that exactly match part A, and thus no 
solution should be given to the GPA in Fig. 1. We pass over these trivial interpretations, as do 
7, 17), to look at some more serious and challenging problems.  

5.1 Object Dependent Attribute Matching 
Moving on from these trivial cases, we present a category of GPA problem that cannot 

be solved by the structure matching process described earlier. This process identified a single 
transformation for each attribute in A. The analogy depicted in Fig. 14 requires additional 
flexibility in the attribute matching process, and can not be solved by the mechanisms we 
have described so far. The source domain (A and B) identifies two possible transformations 



for the striped attribute – transforming to both striped and dotted for different 
objects.  

:::: 
A B C

?
D  

Fig. 14 Local attribute matches 

To generate the correct solution to this problem, Ludi must deal with the attribute 
transformations for each object independently from the others. So for one object in the target 
the striped -> striped transformation must be applied, while for the other object, the 
striped -> dotted transformation is applied (see Table 3).  

Table 3 Different Attribute Matching Strategies 

  
 

Object Independent Matching 
(Figure 4) 

striped –> striped  

Object Dependent Matching 
(Figure 14) 

striped(1) –> striped(i) 
striped(3) –> dotted(iii) 

 

Some of the attributes in Fig. 14 could be addressed using the object independent 
attribute matching algorithm. But Ludi’s object-dependent attribute matching process can 
also solve GPA problems where the attributes can not be matched using the simpler 
technique.  

 
D  

Fig. 15 The solution to Fig. 14 

5.2 Object Independent Attribute Matching 
Fig. 16 depicts a GPA problem that requires a far greater degree of lateral thinking to 

identify a possible solution. In solving this problem, Ludi interprets the problem in a radically 
different manner from any of the previously described problems. The feature that 
distinguishes Fig. 16 emerges when we examine the square in parts A and B which is mapped 
to the hexagon in part C. All three of these figures have different attributes, and thus Ludi 
recognizes that it can not solve this problem in the usual manner. This is because the analogy 
does not appear to have the necessary similarity between the source and target domains that is 
necessary for applying its usual approach. However, Ludi does not abandon its efforts but 
explores another possible interpretation of the GPA problem.  

In all previous analogical comparisons, the attribute matching was derived from the 
object mapping. However for this problem, the attribute matching is performed independently 
from the object mapping generated according to Gentner’s structure mapping theory 9). The 
attribute transformation defined by an object pair in the source domain, can therefore be 
applied to objects other than the mapped equivalents of these objects in the target domain.  
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A B C 

:             ::              : ?

 
Fig. 16 The attribute transformation (A->B) is not applied to the mapped objects in C.  

In Fig. 16, all of the attributes are treated independently from the objects to which they 
are attached. The source domain includes the following transformation striped(1) -> 
plain(1). Additionally, the structure mapping process places the following objects in 
correspondence (1-i). But because this transformation can not be applied to its mapped 
equivalents (object i), Ludi finds an alternate use for this transformation by applying it to 
another target object. Ludi applies this transformation to object ii, because this has the same 
striped attribute as used by the transformation. Thus Ludi applies this transformation 
(striped(1) -> plain(1)) to object ii, creating a D with the attribute plain(ii). 
The full solution generate by Ludi is depicted in Fig. 17.  

D  
Fig. 17 Solution to Fig. 16 

This represents a significant extension to the structure matching capabilities introduced 
at the beginning, as used in the CSM algorithm.  

6 Implications for Computational Creativity 
Reasoning with analogies plays a well-known role in creativity 1). Typically, a novel 

source domain offers a new interpretation of some target problem, offering novel inferences 
and explanation to expand our understanding of that problem. For example, Kekule used the 
source domain of a snake biting its own tail to some problematic carbon based molecules. 
The formation of a circular structure in the source domain prompted the identification of 
circular structures in many carbon compounds. This creative analogy helped explain the 
structure of benzene, whose structure and behavior was not explained by previous theories.  

This paper presented two models based on analogical inference and we shall examine 
each from the perspectives of inventiveness and creativity. First we look at the Contextual 
Structure Matching (CSM) model for reasoning about topographic maps. Maps may not 
appear to be a domain open to inventiveness or creativity, but Kent Becks’s famous 1933 map 
is often cited as a creative and artistic representation of London’s underground system. 
Interestingly, Beck achieved this by reducing the quantity of information presented to the 



map reader. In contrast, the CSM model aims to enhance the information stored in the map, 
inventing a semantically rich interpretation of the raw map. 

While this model is still in its relatively early stages, CSM offers a perspective on how 
a rich full-featured interpretation of the world might be invented that corresponds to a 
relatively simple topographic map. CSM uses the real world as a source domain to expand the 
information contained in the topographic map. The approach fits closely with an experienced 
map user imagining some virtual world, which corresponds to a given map. Results on the 
occlusion problem favorably compared the performance of CSM with users who were asked 
to interpret a given map.  

CSM goes beyond traditional inference mechanisms, allowing new information to be 
“invented” for which there may be limited support. CSM’s inventiveness is based on the 
cascade of inferences technique, where the results produced by one inference process are 
used as input to subsequent inference activities. So categorizing one building as a house 
allows another building to be categorized as a shed. These inferences might then allow the 
front of the house to be identified, helping to identifying any graphic images to be applied 
within a virtual reality depiction of the world. Thus, CSM gradually constructs an inventive 
interpretation of a topographic map.  

CSM displays some characteristics that are often associated with creativity, such as 
being directed, novel and useful 16). CSM is directed, being driven by specific goals such as 
repairing occlusions. It is novel in that its inferences add new information to the sparse 
information previously recorded on the map. Finally, it is useful because it enables 
information on a map to be elaborated, adding inferences to the recorded data. Colton and 
Steel 5) identify “justification of findings” as a key requirement for computational creativity.  

However, CSM is limited in the types of pattern that it can detect. Ludi displays far 
greater flexibility in the types of patterns that can be identified between the source and target 
of the GPA. A complex category of GPA problem appears to rely on more lateral thinking, 
where the attribute transformation does not “conform” to the object correspondence identified 
by the inter-domain mapping. It is often argued that this facet is an important quality of 
creativity 3). Thus, any inventiveness attributed to Ludi must relate to its ability to identify an 
entirely different range of patterns, which the CSM model does not detect (or require). Thus, 
Ludi may offer greater potential for exploring computational creativity.  

7 Conclusions 
Analogy plays a central role in many computational models of creative reasoning. We 

explore the use of geometric proportional analogies (GPA) – like those found in IQ-tests. One 
category of such problems can be solved using Gentner’s standard structure mapping model 
of analogical reasoning, which identifies a mapping between the objects in the source and 
target domains. However, structure mapping alone does not solve “painted” GPA’s, whose 
objects have attributes like colors and patterns. We solve these problems by extending the 
structure mapping model with a subsequent attribute matching process. One class of painted 
GPA’s relies on matching identical attributes between mapped objects.  
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We use this painted GPA approach to interpret 2D topographic land-cover maps, 
creatively envisioning possible 3D worlds that correspond to some given map. Our analogy-
based solution (called CSM) relies heavily on its attribute matching process, which is central 
in solving these problems. CSM also allows attributes to be manipulated within these 
geometric analogies, as required to solve many geometric proportional analogy problems. 
Several specific limitations in land-cover maps that require such creative interpretation are 
discussed. One such problem relates to the identification and restoration of bridge-related 
occlusions. Results for this bridge identification problem are presented.  

CSM uses a cascade of inferences technique to gradually create a possible world 
corresponding to the given map. But this still relies on matching objects with identical 
attributes. Not all painted GPA problems can be solved with identical attribute matching –
requiring non-identical attribute matching. These more complex problems require a greater 
degree of insight and creative interpretation than the identical attribute problems. The Ludi 
model solves both simple and complex geometric proportional analogies, by also aligning 
non-identical attributes between the source and target domains. While identical attribute 
matching supports some forms of creative reasoning, non-identical attribute matching seems 
to open up new vistas for creative analogizing. Even more creative modes of analogical 
reasoning may become possible, using this more flexible approach to using analogies that 
involve attribute information. 
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