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Abstract We describe an instance-based reasoning solution to a variety of spatial reason-
ing problems. The solution centers on identifying an isomorphic mapping between labelled
graphs that represent some problem data and a known solution instance. We describe a number
of spatial reasoning problems that are solved by generating non-deductive inferences, inte-
grating topology with area (and other) features. We report the accuracy of our algorithm on
different categories of spatial reasoning tasks from the domain of Geographical Information
Science. The generality of our approach is illustrated by also solving geometric proportional
(IQ-test type) analogy problems.

Keywords Analogical similarity · Spatial inference · Topographic maps

1 Introduction

We present a model that offers an instance-based approach to generating inferences on dis-
crete spatial information. Collections of geometric figures are compared to pre-stored solution
instances and an identical match means that the pre-stored solution can be applied to that
problem. In this paper we extend the range of problem instances that can be identified over
our previous work, increasing the types of problem that can be solved. We illustrate the gen-
erality of our approach by illustrating its operation on both geometric proportional analogy
(GPA) problems and by reporting results on problems related to topographic (land-cover)
maps.
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130 E.-C. Mullally, D. P. O’Donoghue

This paper explores a non-obvious similarity between GPA problems and some problems
related to topographic maps. We see both as typically involving small, local collections of
polygons where the solution relies on some simple manipulations to these polygon neighbour-
hoods. In the remainder of this paper we shall examine other approaches to these and other
qualitative spatial reasoning problems. We then look at a class of GPA problems that have
previously been overlooked. These involve GPA problems where the figures involved contain
colour or pattern information. We then describe the CSM (Contextual Structure Matching)
algorithm that solves these problems, highlight similarities and differences with other models
for interpreting analogical comparisons. We then discuss some problems with topographic
maps and compare the performance of our algorithm with expert human map-readers. Finally,
we discuss some opportunities for extending our work.

2 Qualitative spatial reasoning

Spatial reasoning involves reasoning about locations in the real world and in diagrams, maps,
and schematics. Qualitative spatial reasoning is the problem of reasoning about properties
and relations recorded on spatial data. Two basic approaches to qualitative spatial reasoning
(QSR) have emerged. First, the formal approach aims to support deductive reasoning about
spatial relations. The main spatial algebra are DE9IM (Egenhofer and Herring 1990) used by
the OGC (1999) and IBM’s DB2 Spatial Extender, and the RCC8 (Randell et al. 1992). These
aim to reason about non-quantitative spatial information, such as adjacency, containment and
disconnectedness.
The second approach to QSR explores non-deductive reasoning, typically exploring more
cognitively aware inference techniques (Evans 1967; Bohan and O’Donoghue 2000; Forbus
et al. 2003). Our approach is applied to problem of enriching the classification of existing
topographic maps and in particular OS MasterMap� which is a large scale digital map of
Great Britain. Whilst OS MasterMap provides classification for individual features such as
buildings it does not yet explicitly represent complex structures such as schools. Text exists
to identify the location of such features but there is no explicit association between the
individual simple features and the complex feature.

The remainder of this paper is organised as follows. First, we describe the specific prob-
lems within qualitative spatial reasoning. Secondly, we describe GPA problems and give a
brief explanation of how they are solved. Finally, we show how CSM, our model, can be used
both to resolve GPA problems and to solve problems identified in topographic maps.

3 Geometric proportional analogy (GPA) problems

The first qualitative spatial reasoning problem we examine concerns GPA problems. GPAs
are a comparison formed between two collections of geometric figures of the form A:B::C:D,
where A and B form the source domain, and C and D are the target domain. In a GPA prob-
lem, A, B and C are known while the solution D, is unknown. The objective is to use the
information contained in the source domain (A and B) as a basis for completing the partial
description C—thereby generating the missing solution D—see Fig. 1.

The first computational model to solve GPA problems was created by Evans (1967). This
model solved many of the “Miller Analogy Test” problems, which are a set of intelligence test
questions. Evans computational model used visual shape matching to process the problem
and select a solution from a list of five candidate solutions (D1–D5). Additionally, Evans
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Spatial inference with geometric proportional analogies 131

Fig. 1 A GPA

model only operated on plain GPAs that had no colour or pattern information. As we shall
see in Sect. 3.1 manipulating attributes will prove central to our solution.

The Structure Matching Engine (SME) (Gentner 1983, Falkenhainer et al. 1989) has also
been used to solve GPAs (Tomai et al. 2004). SME represents the source and target domains
using predicates, generating the A to C mapping by finding the largest isomorphic mapping
between the predicate structures of A and C. Tomai et al. (2004) also solved GPAs by pro-
cessing the images representing the source and target domains, selecting the best from a list
of five possible solutions. Tomai’s solution looks at the overall shape of the image as well
as using any of its rotation and reflection information. Like Evans model, Tomai’s model is
also limited to addressing plain GPA problems (without colours, patterns etc).

Three factors make these models unsuitable for our purposes. First, we need to solve GPAs
that involve attributes like colour and category information. Second, in solving GPA’s we
need to include rotation and orientation information, whereas this information is not relevant
when processing topographic maps and will thus be ignored. Therefore our model must be
capable of dealing with rotation invariant data. Finally, we need to generate the solution rather
then selecting it from a list of candidate solutions.

3.1 GPAs involving attributes

This paper focuses on GPA problems that include and manipulate geometric objects that
include attributes, such as colour or pattern information. Solving the GPA in Fig. 1 necessi-
tates applying the shaded attribute of the pentagon in part C to the rectangle in the solution
(D). Failure to include the attribute would result in an incorrect solution.

Two previous models have incorporated attribute information in GPA problems. Bohan
and O’Donoghue (2000) examine a variety of GPA problems involving attributes. However,
this model is specific to GPAs and does not deal with topographic maps or with the complex
polygon clusters we shall describe later. Mulhare et al. (2001) describe a model for classify-
ing objects in topographic maps, but this model does not address GPAs nor does it use point
information or deal with complex polygon structures. As we shall see, our general purpose
solution solves GPA problems as well as problems with topographic maps.

4 CSM: contextual structure matching algorithm

The first step in our solution to these GPA problems is to represent each image in symbolic
form using predicates. These predicates detail how the geometric objects in each image are
spatially related and also detail any attributes that an object may have. Each part (A–C) of the
problem is treated as a Voronoi diagram, from which a Delaunay diagram is created. Objects
are then joined if a spatial relationship exists between these objects. Examining the edges
allows the relationship between the objects in each part of the image to become clear.

Figure 2 shows the Delaunay diagram for parts A and B. Three relationships are used to
describe the local topology of parts A, B and C: line-adjacent represents objects that
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Fig. 2 Delaunay diagram

Table 1 Predicates describing
parts A and B of the GPA

Predicates describing A Predicates describing B

Line adjacent(circle, square) Line adjacent(square, circle)
Line adjacent(square, triangle) Line adjacent(circle, triangle)
Inside(point, square) Inside(point, triangle)
Shaded(triangle) Shaded(circle)
Plain(circle) Plain(triangle)
Plain(square) Plain(square)

share a common boundary, point-adjacent represents objects that share (only) a com-
mon vertex, while inside represents an object that exists completely within the boundaries
of another object. Colour attributes are represented by either plain or shaded. Examin-
ing the changes in the predicates describing A and B highlights the transformation that was
applied to A in order to produce B (see Table 1).

We do not use the relations of the RCC (Randell et al. 1992, Gerevini and Renz 2002)
or DE9IM (Egenhofer and Herring 1990) for the following reasons. First, our relations are
derived directly from the representation of topographic data. Second, our relations correspond
to several RCC or DE9IM relations, but using the more compact representation expedites
the expensive structure matching process. It is a relatively straight-forward matter to derive
the RCC or DE9IM representation equivalent to our relations. Finally, we do not represent
RCC’s disconnected relation (DC) as adding this would slow down the later graph isomor-
phism problem.

In this problem the colour attributes of the circle and the triangle are changed during
the transformation. Some previous methods for solving GPAs (Evans 1967; Gentner 1983;
Tomai et al. 2004) do not find the correct transformation in order to solve this problem as
they ignore the attributes.

Next we identify the largest consistent 1-to-1 mapping between the descriptions of the
corresponding parts of the GPA, parts A and C. Like Gentner (1983) this mapping is sub-
ject to the predicate identicality constraint, whereby only identically named relationships are
mapped together. The size, shape, colour and rotation of the objects are not taken into con-
sideration at this stage. Figure 3 shows how this process identified the object correspondence
between each object in A and C.

Finally, the transformation between A and B is applied to C, generating D. This method
allows D, shown in Fig. 4, to be generated.

4.1 The CSM algorithm

The description of each part of the problem forms a labelled graph. Each geometric area forms
a vertex and is assigned to one of 13 labels, corresponding to the 13 topographic categories.
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Fig. 3 Mapping A–C

Fig. 4 The solution to the GPA
in Fig. 1

Text points also correspond to a vertex forming an additional category. Relations between
geometric objects form edges and are assigned to one of 3 additional labels, corresponding
to relations line-adjacent, point-adjacent and has-point.

This labelling of the graph impacts on the central structure matching process, which
identifies the isomorphism between two labelled graphs. One graph represents a problem
situation while the other represents a solution template. The structure matching algorithm
ensures that only identically labelled vertices and nodes can be placed in correspondence.
Structure matching is a combination of Gentner’s (1983) structure mapping process and a
subsequent attribute-matching (O’Donoghue et al. 2006) processes. O’Donoghue et al. (2006)
describe a number of categories of structure matching, however the specific requirements our
of structure matching process are defined as follows:

1. Identify the maximal consistent isomorphic mapping of objects and relations between A
and C.

2. Implement the 1-to-1 constraint ensuring that each object corresponds to one and only
one object in the other domain.

3. Implement the relation identicality constraint, ensuring mapped relations are identical to
one another.

4. Implement the identical attribute constraint, ensuring the attributes or categories of mapped
objects are identical.

Steps 1–3 originate in Gentner’s structure mapping theory of analogical comparisons
(Gentner 1983). Although Gentner states that analogical comparisons involve few if any
attributes, we shall show the importance of step 4 above for many GPAs and for interpreting
topographic maps.
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Fig. 5 GPA showing point-in-polygon classification

5 Generalised spatial problems

Next we examine how the GPA solution above is also used to solve problems in topographic
maps. Like the GPA problems, topographic maps are also composed of collections of poly-
gons, each with attribute information in the form of a category, like road, rail, building,
inland water etc. Currently, the information that is contained in a map is generated manually
and so is expensive to process. Automatic processing of this spatial data is desirable to both
reduce costs and make the information available to computational processes. In the below
examples the OS MasterMap data for Port Talbot (containing around 5,000 polygons) has
been used in order to illustrate the solution to some spatial reasoning problems.

Both Bohan and O’Donoghue (2000) and Mulhare et al. (2001) have looked at problems
involving simple collections of coloured polygons, thus we shall not concern ourselves with
these problems in this paper. Our model’s solution to some of these simpler problems can be
found in Mullally and O’Donoghue (2005).

Instead, this paper looks at two different categories of problems that have not been pre-
viously solved by any model. The first category of novel problem that we look at concerns
the use of point information in conjunction with polygons. The second category relates to
complex “incremental” structures involving multiple polygons. We will now look at some
common problems in topographic maps and GPAs that have not been seen before.

5.1 Point-in-polygon classification

Point-in-polygon classification is a method of using point features to classify an object (see
Fig. 5).

Examples of point features in topographic maps are benchmarks, spot height, text identi-
fying roads, names of prominent buildings and addresses. Each point feature is anchored to
a point on the map and can be clearly read when looking at the map. However, text features
are not directly associated with specific objects and are only useful when being read by a
human.

5.1.1 Dwelling sub-categorisation using point-in-polygon

One problem associated with categorising polygons in topographic maps is finding all of
the dwellings in a map. Figure 6 shows semi-detached houses and garden sheds that are
all currently categorised simply as “building”. One method of categorising a semi-detached
house is to construct a template (Mulhare et al. 2001). Although this solution may identify
every semi-detached house, it will occasionally misclassify garden sheds as they too fit the
semi-detached house template.
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Fig. 6 Semi-detached houses

Table 2 Confusion matrix
showing the accuracy of
identification strategies for
Semi-D houses in Port Talbot

P N

Without address points
T 952 (17.8%) 4388 (82%)
F 190 (3.5%) 0

With address points
T 952 (17.8%) 4388 (82%)
F 8 (0.1%) 0

Another way of solving this problem is to look at the point features associated with
dwellings. OS MasterMap has an address layer that contains an address for every dwelling
(amongst some other buildings). Each address is represented as a point feature. If an address
point feature is added to the original template, it is possible to remove the misclassified garden
sheds from the results.

5.1.2 Results

In order to analyse our results we will look at them in terms of precision and recall (Jurafsky
and Martin 2000). Precision is the ratio of the number of dwellings identified by a human
to the number of dwellings correctly identified by CSM. Recall is the ratio of the number of
dwellings identified by a human to the total number of dwellings identified by CSM.

Table 2 details the identification of semi-detached (semi-D) and terraced houses in the
“Port Talbot” dataset from OS MasterMap. The Port Talbot data set includes 5,430 areas
of which 2155 were classified as buildings. It also includes 954 text features and the corre-
sponding address layer has 1194 address points.

The results above show that without using the point information, 182 buildings are incor-
rectly classified as semi-detached houses. These misclassifications are mainly garden sheds
that conform to the semi-detached house template. However, adding point information in the
form of address points removes these errors as garden sheds do not have addresses.

In this case eight buildings were incorrectly identified when using the address point. These
were “composite buildings” that appeared to be houses as they had addresses and appeared
to fit the semi-detached house template. However, even though they were misclassified as
houses, they will be correctly classified later using incremental structure matching, detailed
in Sect. 5.2 below.

In the case of terraced houses, 204 buildings were incorrectly identified when the address
information was not used. Similarly to the semi-detached houses, most of these misclassifi-
cations were garden sheds, with the addition of composite buildings. Some terraced houses
were made to look like semi-detached houses because of extensions, which are represented
as separate buildings but without an address.
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Table 3 Confusion matrix
showing the accuracy of
identification strategies for
terraced houses in Port Talbot

P N

Without address points
T 39 (0.7%) 5301 (99%)
F 204 (3.8%) 0

With address points
T 39 (0.7%) 5301 (99%)
F 0 0

Fig. 7 GPA showing incremental structure matching

Next we examine the performance of CSM on the Basingstoke dataset, also selected from
OS MasterMap. This contained just over 6,000 polygon of which 2357 were classified as
buildings. It also includes almost 800 text features and 1,400 address points. As can be seen
in Table 3 these results are broadly in line with the Port Talbot results.

Fifty-seven false positives were found while categorising semi-detached houses. Most of
these were buildings, such as apartments, which were not specifically required to be cate-
gorised by CSM. Fifteen of the misclassified buildings had no address, and so could not be
categorised correctly. It also means that the surrounding buildings would also be misclassi-
fied. This problem originates with the dataset and is out of our control. This problem was not
evident in the “Port Talbot” dataset.

Fifty-one false positives were found when categorising the terraced houses. Twenty-nine
of these false positives were caused by buildings that had no address. Similarly to the semi-D
categorisations, the other false positives were caused by buildings which CSM was not asked
to categorise.

Other possible applications of “point-in-polygon” classification include road junction
identification and house number to polygon assignment. Point-in-polygon classification can
also be used in order to ascertain if a road is a hill or not. By examining the height information
it is possible to tell if the road has a slope and in which direction the slope is going. Similarly,
this method can be used to tell the direction of flow of a river.

5.2 Incremental structure matching

Incremental structure matching is a means of assigning a better classification to a polygon
once additional information is known about its surrounding area. Figure 7 shows how incre-
mental structure matching can be used to solve a GPA problem. It consists of two parts: root
identification and root elaboration (Keane et al. 1994).

An example of a problem that can be solved using incremental structure matching is iden-
tifying all of the polygons that are part of the same cluster. In Fig. 8 a cluster of buildings
that form a college is described.
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Table 4 Precision and recall
results for Port Talbot

# Correct # Total Accuracy

Precision (Semi-d) 952 960 99%
Recall (Semi-d) 952 952 100%
Precision (Terraced) 39 39 100%
Recall (Terraced) 39 39 100%

Table 5 Confusion matrix
showing the accuracy of
identification strategies for
semi-D houses in Basingstoke

P N

Without address points
T 566 (9.4%) 5438 (90%)
F 496 (8.2%) 0

With address points
T 566 (9.4%) 5438 (90%)
F 57 (0.9%) 29 (0.4%)

Fig. 8 An irregular cluster of polygons forming a college

5.2.1 Incremental structure matching in topographic maps

Incremental structure matching in topographic maps allows objects such as schools, universi-
ties, hospitals and depots to be identified. These objects are irregular structures that are made
up of many varied clusters of polygons. They do not have set sizes or shapes and therefore a
normal template cannot be used in their identification.

5.2.2 Root identification

The first part of solving the problem is finding a polygon that is part of the cluster, known as
the root polygon. Identifying the root means taking a closer look at point features, or more
specifically, text point features. For example, the text feature may contain the word school,
hospital, university, depot, church or, in this example, college. However, the text point is
not always positioned inside the correct polygon, but is located in a neighbouring polygon.
For example, a text point associated with a college may appear somewhere on the college
grounds rather than on one of the college buildings. In this case it is necessary to assign the
text to the nearest building and to ensure that the text is sufficiently close to the building, i.e.
the text should be within 500 m of the building.
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Table 6 Confusion matrix
showing the accuracy of
identification strategies for
terraced houses in Basingstoke

P N

Without address points
T 597 (9.9%) 5408 (90%)
F 594 (9.8%) 0

With address points
T 597 (9.9%) 5408 (90%)
F 51 (0.8%) 15 (0.2%)

Table 7 Precision and recall
results for Basingstoke

# Correct # Total Accuracy

Precision (Semi-d) 566 623 91%
Recall (Semi-d) 566 595 95%
Precision (Terraced) 597 648 92%
Recall (Terraced) 597 612 97%

5.2.3 Root elaboration

Once the root polygon has been identified, all other building polygons belonging to that struc-
ture must be identified. However, some constraints must be satisfied during root elaboration.
The first constraint is that no building being considered for inclusion in the cluster should
be more than 2 km away from the root. The second constraint is that all buildings should be
contiguously linked topologically with each other. If both of these constraints are satisfied
then we infer that the building is part of the same composite structure as the root, and should
be classified as such.

In Fig. 8 there are a total of eight buildings in that structure. Both of the above constraints
are satisfied. CSM initially identifies all buildings that are directly adjacent to the root and
assigns them to the composite structure. Then CSM reconsiders other buildings in the area for
addition to the structure. Buildings that are adjacent to the newly classified buildings can also
be re-classified. This continues until all of the buildings in the cluster have been identified.

When the address layer of a topographic map is available, this provides additional infor-
mation to identify composite structures. If the text point has been assigned to the correct
group of buildings, then at least one of the buildings should have the relevant text in its
address.

5.2.4 Results

In the “Port Talbot” dataset, there are a total of five composite objects to be considered, made
up of three schools and two depots, which were identified by a human. CSM successfully
identifies all five of the building clusters roots. The number of buildings in each cluster ranges
from 1 to 8. For every root, all of the additional buildings belonging to the cluster were found.

In the “Basingstoke” dataset there was also a total of five composite objects identified by
a human. In this case, all of the composite objects were schools. The number of buildings
in each cluster ranged from 1 to 15. Each of the roots was correctly identified by CSM. In
addition to this, all of the buildings in each cluster were also identified successfully.
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For the datasets above both the precision and recall are 100%. We are currently testing
CSM on larger datasets. Preliminary results suggest that this method is effective in identifying
over 90% of building clusters.

There are a number of other uses of the incremental structure matching process. Iden-
tifying all polygons that form a river can make use of incremental matching and support
activities like propagating a rivers name to each individual polygon. It may also be useful
in processing other extensive features like segments of road and rail networks. Incremental
structure matching could also be applied to some of the categories identified above. A series
of semi-detached houses (possibly with accompanying gardens and garden sheds) might be
coalesced together to form a “suburbia” structure for use in generalised large-scale maps.

6 Conclusion

In the beginning of this paper it was stated that qualitative spatial reasoning could be used
to solve GPAs. This was achieved by examining the spatial relationships between objects
in GPAs, along with the attributes that each object has. CSM allows the solution to each
analogy to be inferred, independent of any set of possible solutions. The solution generated
is independent of size, shape and orientation.

Although CSM can be used to solve regular GPA problems, topographic maps were focused
on in order to show how this technique could work successfully with real-world applications.
Point in polygon classification and incremental structure matching were looked at in detail.
Classifying houses using point in polygon classification yields results that are more accurate
than template matching alone.

Incremental structure matching allows composite structures, such as schools and hospi-
tals, to be identified. These structures could not be identified using previous methods as they
are irregular and thus do not conform to a fixed template.

The use of point information in both examples is essential in order to obtain accurate
results. Ignoring point information reduces the ability to successfully categorise objects in
topographic maps. Thus, it appears that CSM provides a successful method for solving both
regular GPAs and GPAs in topographic maps.
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