
Identifying and evaluating
a generic set of superinstructions

for Java programs

Diarmuid O’Donoghue1 and James F. Power1

Department of Computer Science, National University of Ireland,
Maynooth, Co. Kildare, Ireland.

{dod,jpower}@cs.may.ie

Abstract. In this paper we present an approach to the optimisation of
interpreted Java programs using superinstructions. Unlike existing tech-
niques, we examine the feasibility of identifying a generic set of superin-
structions across a suite of programs, and implementing them statically
on a JVM. We formally present the sequence analysis algorithm and we
describe the resulting sets of superinstructions for programs from the
SPEC benchmark suite. We have implemented the approach on the Jam
VM, a lightweight JVM, and we present results showing the level of
speedup possible from this approach.

1 Introduction

The Java programming language, and its associated Java Virtual Machine (JVM)
has led to a renaissance in the study of stack-based machines. Much of the re-
search dealing with the JVM has concentrated on heavyweight high-end optimi-
sations such as advanced garbage collection techniques, just-in-time compilation,
hotspot analysis and adaptive compilation techniques. However, as highlighted
in a number of recent studies [18, 4, 3], Java programs running in low-end or
embedded systems often cannot afford the overhead associated with these opti-
misations. Designers of JVMs for such systems must concentrate their efforts on
directly improving interpreted Java code.

One optimisation technique is the use of superinstructions, where a commonly
occurring sequence of instructions is converted into a single instruction, thus sav-
ing fetch and/or dispatch operations for the second and subsequent instructions.
This technique was originally applied to C [17, 16] and Forth programs [5], but
has lately been extended to cover Java programs as well [8, 3]. Both of these pub-
lished approaches to implementing superinstructions in Java give some details
of the technique used and the speedup achieved. However, they do not present
any details of the actual superinstructions used, nor do they investigate fully all
of the choices involved in their selection, at least for shorter bytecode sequences.

For example, a straightforward dynamic analysis of interpreted Java pro-
grams shows that load instructions can account for about 40% of bytecodes
executed, with field accesses accounting for between 10% and 20% [9]. Similarly,

dod
Text Box
2004 International Conference on Embedded Systems and Applications (ESA/VLSI-04),pp 192-198, Las Vegas, Nevada, USA, June 21-24, 2004.

2

our studies have shown that the instruction pair aload 0 getfield occurs quite
frequently in Java programs - averaging to 9% of the instructions executed in
one study of the SPEC and Grande benchmark suites [15]. Most approaches to
implementing superinstructions specialise the virtual machine for the program
under consideration. However, given the clustering in the distribution of byte-
codes used, it seems reasonable to ask if it is possible to engineer a generic set of
superinstructions usable across different programs. Such an approach would have
the advantage of eliminating the run-time profiling overhead, as well as expos-
ing the selected superinstructions to compile-time optimisation. The trade-off,
however, is that a generic set of instructions will naturally not produce the same
level of speedup as superinstructions that are tailored for a given application, or
even for a particular phase in the execution of a given application.

In this paper we examine the possible gains from attempting to select a
generic set of superinstructions to be used across different programs. We study
the selection strategy for choosing these instructions and we present some pos-
sible selections of superinstructions. We examine their implementation on a
lightweight JVM, the JAM Virtual Machine, and present results showing the
level of speedup possible from this approach.

2 Background and Related Work

The concept of superoperators was introduced by Proebsting for C programs [17],
noting that superoperators consistently increase the speed of interpreted code
by a factor of 2 or 3. Proebsting suggests that a maximum of 20 superoperators
to get full benefit from the technique, and notes that the choice of superopera-
tors is likely to vary between applications. Both these themes are investigated
further for Java programs below. Piumarta and Riccardi develop this work by
presenting a technique for selecting and implementing superoperators for C and
Caml programs dynamically, and approach they term direct threaded code [16].
They note the drawbacks from attempting to base this on a static analysis, and
present results indicating a speedup factor of between 2 and 3.

Ertl et al. present an interpreter-generator that supports superinstructions
which correspond to sequences of simpler instructions [7]. Examples are pre-
sented using both a Forth and a Java interpreter. Ertl et al. selected superinstruc-
tions for Java by profiling the javac and db programs from the SPEC suite, up to
a maximum length of 4 instructions. The results presented show a speedup factor
of less than 2, and even a slow-down on some architectures due to cache misses.
They report that the most frequent sequence of instructions in their JVM was
iload iload. However, the bytecode used in their study was significantly rewrit-
ten from the original, and thus our analysis below presents a different picture.
In further work, Ertl and Gregg have examined the effect of superinstructions
on branch (mis)prediction [6].

More recently, Gagnon and Hendren have examined the speedup possible
from using dynamically-calculated superinstructions in Java [8]. As well as noting
a speedup factor of between 1.20 to 2.41 over a switch-based interpreter for such

3

a technique, the paper also examines some of the issues resulting from lazy
class loading, where an instruction such as getstatic may have the side-effect
of triggering class initialisation. Their approach parallels that of Piumarta and
Riccardi since the instruction sequences are selected and rewritten dynamically,
based on eliminating dispatches within basic blocks. As such, they do not need
to consider selection strategies, or comment on the type of instruction sequences
found in the programs.

Recent work by Casey et al. [3] also examines the use of superinstructions
in Java programs. They use between 8 and 1024 superinstructions, and com-
pare selection strategies based on static and dynamic analyses. They note the
contrast between the simpler approach of selecting sequences based on static
frequencies against the more effective dynamic approach, which they tailor on a
per-program basis. Indeed, our approach of selecting sequences based on a dy-
namic analysis, but averaged across programs, might be seen as a compromise
between the strategies presented by Casey et al. One current drawback to their
approach is that it does not currently allow “quickable” instructions (such as
getfield), which would eliminate many of the instruction sequences we have
selected below.

Repetition among sequences of bytecodes occurring statically in the program
source has been studied for the purposes of code or class file compression [18].
Antonioli and Pilz note that the range of instructions used varies between 25
and 113 different instructions, with considerable variance in frequency of usage
[1].

An extensive study of the possibilities from Java bytecode compression for
embedded systems is presented by Clausen et al. [4]. Here, a static analysis
identifies basic blocks that are repeated in the source code, and these are replaced
by macro instructions. Apart from its basis on static analysis, and it motivation
for compression rather than speed, the approach of Clausen et al. is similar to
the approach presented here.

Surveys of dynamic instruction usage in Java programs have been conducted
for both the SPEC and JavaGrande benchmark suites [9, 11]. A comparison
of these suites noted a wide discrepancy in class library utilisation by these
programs [2]. Preliminary work on the frequencies of instruction pairs has also
been carried out [15], and the present work is a natural extension of that paper.
A related issue is instruction reuse [19, 20], where a given instruction is executed
dynamically many times with the same set of operands. While this does have
implications for superoperators, it has not yet been studied in the context of
Java bytecodes, and is beyond the scope of this paper.

3 Selecting the most frequently occurring sequences

Our approach involves forming a set of generic superinstructions based on study-
ing instruction sequence usage in a suite of Java programs. We run each program
in the suite, collect a trace of the bytecode instructions executed, and this then
forms the input data for our analysis. Thus, in this section we examine some of

4

the issues involved in selecting the most frequently occurring bytecode sequences,
since these will be replaced by superinstructions in our implementation.

The strategy used in selecting these sequences naturally has an important
bearing on our results, and we present this section formally in order to unam-
biguously describe the selection strategy.

3.1 Notation

Let us denote a sequence of bytecode instructions as b̂ = [b1, . . . , bn] where each bi

is a single bytecode instruction. Let us denote the length of a bytecode sequence
as |b̂|; clearly |b1, . . . , bn| = n.

For any program run P , assume that we have collected a dynamic trace of
all the instructions executed when P is run, and let us denote the sequence of
bytecode instructions in this trace as TP . Then the maximum number of (non-
unique) sequence occurrences of length n in TP is always |TP | − (n− 1).

Let us denote the number of actual occurrences of b̂ in the trace of program
P as ΣP (b̂); then we define the occurrence frequency for an sequence, expressed
as a percentage, by:

fP (b̂) =
ΣP (b̂)

|TP | − (n− 1)
∗ 100

1

Relativising sequence occurrences by the length of the program trace allows
us to compare sequences from different traces, since program size is no longer
a factor. Since in practice the size of the program trace (typically |TP | is 109

instructions for the programs in the SPEC suite) is much longer than the size of
the sequences under consideration, we can approximate |TP | − (n − 1) as |TP |,
thus allowing us to compare sequences of different lengths.

We note two straightforward properties of such bytecode sequences that will
be useful in our calculations later:

– Sequence Inclusion Property
A sequence ŝ is included in some sequence t̂ precisely when there exist
integers i, j and n such that 1 ≤ i < j ≤ n, and t̂ = [b1, . . . , bn] and
ŝ = [bi, . . . , bj].
We note that for any program P we have:

fP [b1, . . . , bn] ≤ fP [bi, . . . , bj]

That is, the sequence [bi, . . . , bj] may occur in contexts other than [b1, . . . , bn];
we note that it may also occur multiple times in [b1, . . . , bn], and that these
occurrences may overlap.

– Sequence Overlap Property
A sequence ŝ overlaps some sequence t̂ on the left precisely when there
integers i, j and n such that 1 ≤ i < j ≤ n, with ŝ = [b1, . . . , bj] and t̂ =
[bi, . . . , bn]. The definition of overlapping on the right is defined analogously.
We note that the frequency with which this overlapping occurs is given by the
frequency of composite sequence fP [b1, . . . , bn]. From the sequence inclusion

5

property above we note that this is less than either fP (ŝ) or fP (t̂), and the
frequency of occurrence of the sequence ŝ that do not involve an overlap with
t̂ is fP (ŝ)− fP [b1, . . . , bn]

These properties have the side-effect of providing a consistency check on the
frequency results.

A superinstruction is a new instruction that will denote some sequence of
bytecode instructions. We will use lower case Greek letters to denote superin-
structions and we write β ≡ [b1, . . . , bn] to mean that the superinstruction β
corresponds to the sequence of bytecodes [b1, . . . , bn]. Once a superinstruction
has been defined it effectively becomes a new bytecode, and thus may occur in
bytecode sequences and (non-recursively) in other superinstruction definitions.

3.2 Choosing the superinstructions

Suppose we have calculated the function fP , giving the frequency of all bytecodes
sequences for some program P . Let us assume that this function is total, so that
fP (ŝ) = 0 whenever ŝ does not occur in TP , the trace of P .

For our approach we wish to calculate the top k superinstructions, but we
cannot simply choose the k sequences with the highest frequency, since we must
allow for overlaps between sequences. Choosing some sequence ŝ as a superin-
struction has an impact on the frequencies of any remaining sequences whose
bytecodes overlap with ŝ.

Thus we apply an iterative algorithm, where we choose the most frequently
occurring sequence, and then propagate this choice through the remaining se-
quence, reducing the frequency of any sequence that it overlaps with. Each itera-
tion produces a new set of frequencies, and we can then choose the next topmost
superinstruction from these, and propagate this choice.

We note that this consideration of possible overlaps between sequences im-
posed an extra overhead on the information collected. If the maximum length of
any instruction sequence under consideration is l, then we must gather data for
all instruction sequences up to length 2l− 1 in order to allow for the case of two
sequences of length l overlapping by just a single instruction.

Propagation algorithm Suppose we have chosen some superinstruction β.
Then, for each other bytecode sequence ŝ, either β and ŝ do not overlap (in

which case do nothing), or there are two cases, as illustrated in Figure 1

– Case 1: β is contained entirely within ŝ
In this case the sequence is of the form ŝ = [b1, . . . , bn], and β ≡ [bi, . . . , bj]
for 1 ≤ i < j ≤ n
Then replace this sequence with the sequence [b1, . . . , bi−1, β, bj+1, . . . , bn],
with the same frequency.

fP ([b1, . . . , bi−1, β, bj+1, . . . , bn]) = fP (ŝ);
fP (ŝ) = 0;

6

Case 1: [b1, . . . ,

s.inst. β︷ ︸︸ ︷
bi, . . . , bj , . . . , bn]︸ ︷︷ ︸
sequence ŝ

Case 2: [

s.inst. β︷ ︸︸ ︷
b1, . . . , bi, . . . , bj , . . . , bn][b1, . . . , bi, . . . , bj , . . . , bn︸ ︷︷ ︸

sequence ŝ

]

Fig. 1. The two cases where a chosen superinstruction β is either included in, or over-
laps with some existing bytecode sequence ŝ

– Case 2: β overlaps partially with ŝ
Say, for the sake of definiteness, β overlaps bytecodes on the left of the
sequence ŝ.
In this case, let β ≡ [b1, . . . , bj], then the sequence has the form [bi, . . . , bn],
where 1 ≤ i < j ≤ n. The overlap is the sequence [bi, . . . , bj].
The frequency of [β, bj+1, . . . , bn] must now be increased by the frequency
of [b1, . . . , bi, . . . , bj , . . . , bn], and the frequency of the sequence [bi, . . . , bn]
should be decreased by this amount.

fP ([β, bj+1, . . . , bn]) += fP ([b1, . . . , bn]);
fP ([bi, . . . , bn]) -= fP ([b1, . . . , bn]);

The above process creates new sequences of bytecodes and superinstructions,
and assigns them frequencies. Note that the same sequence of bytecodes and
superinstructions may be created at different parts of the algorithm, and thus
its corresponding newly-created frequency should be added to its existing total.

This process also deals with the case where a superinstruction may overlap
some bytecode sequences multiple times. However, in the case where an superin-
struction may overlap a sequence in two non-disjoint sections, a choice must be
made between the superinstruction occurrences. We always choose to compress
the leftmost occurrence to a superinstruction, since the bytecodes are being ex-
ecuted from left-to-right in the sequence.

3.3 Weighted Case

In this case we have a weighted frequency wf , where the frequency as calculated
above is adjusted by some weighting factor w.

wfP (b̂) = fP (b̂) ∗ w(b̂)

The weighting factor is meant to represent the potential gain from replacing
this sequence of bytecodes with a superinstruction. In the simplest case the gain
is equal to the number of fetch-cycles saved; that is:

w(b̂) = |b̂| − 1

7

Since the weighting factor is a function only of the bytecode sequence, it is
easily woven into the algorithm from the last section. Each time a frequency is
adjusted (corresponding to case 1 or 2 above), the weighted frequency is recal-
culated, counting each superinstruction as a single bytecode instruction.

4 Experimental Setting

The experiments in this section were conducted using Robert Lougher’s Jam
Virtual Machine [14]. The JamVM was specifically designed to have a very small
footprint, but yet to support the full JVM specification [13]. The JamVM runs
in interpreted mode only, but can be built to implement either switch-based
or token threaded approaches (given support for first-class labels). It should be
noted that JamVM uses the GNU classpath Java class library which is not 100%
compliant with SUN’s JDK, and may, of course, differ from other Java class
libraries.

The platform used was a Dell Dimension 2350 PC, containing a 2.4 GHz Intel
Pentium IV processor with a 512K level-1 cache, 1 GB of 266MHz DDR RAM,
running the RedHat 9.0 distribution of GNU/Linux. The JamVM interpreter,
version 1.0, was compiled using the GNU C compiler from gcc version 3.3. In what
follows we use the programs from the SPEC JVM Client98 Suite [21], release
1.03 of November, 1998. The SPEC programs were run as individual applications,
and, in accordance with the SPEC licence, we note that these results are thus
not comparable with a standard SPEC JVM98 metric. All the SPEC programs
were run at benchmark size 100.

4.1 Selecting the Superinstructions

In order to select the instruction sequences that will correspond to the new su-
perinstructions, the SPEC applications were run using a version of the JamVM
that had been instrumented to record the instructions executed. Since our su-
perinstructions are selected from within a basic block, the traces were reduced
to frequency counts for basic blocks, and a sequence of Perl scripts was then
used to collect frequency data on instruction sequences.

4.2 Distribution of Dynamic Basic Block Lengths

In theory the superinstruction length is bounded above by the length of the
longest basic block, but in practice the frequency of occurrence diminishes rapidly
as the length increases. Longer superinstructions maximise the gain in terms of
eliminated dispatch instructions, but are typically less frequent, and carry the
overhead of taking longer to recognise in the instruction stream.

In order to choose a suitable superinstruction length, we calculated the dis-
tribution of dynamic basic block sizes for the SPEC programs. Table 1 presents
a summary of the basic block lengths for the programs in the SPEC suite calcu-
lated dynamically. The first row of Table 1 lists the basic block sizes in number

8

1 2 3 4 5 6 7 8 16 32 48 64

201 compress 0.8 14.4 26.9 37.5 41.3 53.8 56.0 57.5 81.5 97.7 99.9 100.0
202 jess 16.4 31.0 54.6 68.4 81.8 87.2 91.0 94.6 99.3 100.0 100.0 100.0
209 db 14.1 23.5 46.4 56.9 73.0 76.4 80.7 84.2 98.4 100.0 100.0 100.0

213 javac 14.2 35.6 58.2 70.6 76.6 79.9 84.3 88.0 99.4 100.0 100.0 100.0
222 mpegaudio 7.8 15.4 31.0 51.5 56.7 66.6 68.9 73.4 86.0 92.8 94.0 94.0

227 mtrt 22.4 37.3 73.7 81.4 90.0 95.4 97.8 97.8 99.8 100.0 100.0 100.0
228 jack 21.3 36.8 54.6 67.6 77.2 83.0 86.4 89.1 97.8 100.0 100.0 100.0

Table 1. Dynamic basic block lengths for programs in the SPEC suite. The top row
gives the basic block size in number of instructions while the other rows represent the
cumulative percentages for each program.

of instructions. The other rows list, for each program, the cumulative percentage
of basic blocks of this size or less. For example, from the first row of data we can
tell that 57.5% of the basic blocks in the 201 compress program have a size of 8
instructions or less.

As we can see from Table 1 the frequency decreases rapidly as the basic block
length increases, with both 201 compress and 222 mpegaudio showing a slightly
slower rate of decline. Indeed, this data is quite similar to that gathered by
Gregg et. al for the frequency of basic blocks in Forth programs [10]. We note
here that all SPEC programs other than these two have no basic blocks of length
greater than 32 instructions. Based on this data, we selected 32 instructions as
the maximum length of the superinstructions implemented.

4.3 Superinstruction Length

While Table 1 gives an idea of the upper bounds of the problem, it does not
provide a full picture. Since at least 10 unused instructions are available for
implementing new superinstructions, the potential effectiveness of this strategy
can be estimated by measuring the frequency of the top 10 sequences of each
length.

Tables 2 through 5 give the frequencies for the top 10 sequences, where the
sequence length was bounded by 2, 4 8 and 16 instructions respectively. The top
10 sequences of size up to 16 instructions, shown in Table 5, were exactly the
same as those of length up to 32. Hence, in what follows, we have limited our
study to sequences of up to 16 instructions.

In each of Tables 2 through 5 we list the top 10 instruction sequences. For
each table, the first column lists the bytecode instructions in the sequence. The
remaining three columns list the frequency for each sequence. First we list the
original frequency, as recorded by a direct count from the dynamic trace of
the program’s execution. Then we list the adjusted frequency, which allows for
overlaps between the selected sequences. For example, the eighth data row of
Table 2 shows that the sequence putfield aload 0 has been reduced from an

9

Frequency
Sequence Original Adjusted Weighted

aload 0 getfield 9.49 9.49 9.49
dup getfield 0.94 0.94 0.94
aload 1 invokevirtual 0.84 0.84 0.84
aload 1 getfield 0.84 0.84 0.84
iconst 1 iadd 0.77 0.77 0.77
aaload areturn 0.69 0.69 0.69
aload getfield 0.68 0.68 0.68
putfield aload 0 0.92 0.64 0.64
iinc caload 0.60 0.60 0.60
fmul fadd 0.58 0.58 0.58

Table 2. Top 10 most frequent sequences of size upto 02, based on weighted, adjusted
frequency.

Frequency
Sequence Original Adjusted Weighted

aload 0 getfield 9.49 9.49 9.49
aload 0 dup getfield 0.82 0.82 1.64
aload 0 getfield iload 1 aaload 0.65 0.65 1.30
dup x1 iconst 1 iadd putfield 0.43 0.43 1.29
aload 0 getfield freturn 1.00 1.00 1.00
aload 0 getfield iload 3 0.94 0.94 0.94
getfield iload iinc caload 0.35 0.30 0.90
aload 1 invokevirtual 0.84 0.84 0.84
aload 0 getfield iload aaload 0.41 0.41 0.82
faload fmul fadd 0.40 0.40 0.80

Table 3. Top 10 most frequent sequences of size upto 04, based on weighted, adjusted
frequency.

Frequency
Sequence Original Adjusted Weighted

aload 0 getfield 9.49 9.49 9.49
aload 0 dup getfield dup x1 iconst 1 iadd putfield 0.37 0.37 2.22
aload 0 getfield iload 1 aaload areturn 0.65 0.65 1.95
caload aload 1 getfield iload iinc caload isub istore 0.25 0.25 1.75
astore aload getfield iload 2 iaload istore iload
iload 1

0.15 0.15 1.05

aload 0 dup getfield iconst 1 0.35 0.35 1.05
fadd fstore fload aload 0 getfield iload aaload iload 0.17 0.17 1.02
aload 0 getfield freturn 1.00 1.00 1.00
aload 0 getfield iload 3 0.94 0.94 0.94
aload 1 invokevirtual 0.84 0.84 0.84

Table 4. Top 10 most frequent sequences of size upto 08, based on weighted, adjusted
frequency.

10

Frequency
Sequence Original Adjusted Weighted

aload 0 getfield 9.49 9.49 9.49
aload 0 getfield iload 3 iinc caload aload 1 getfield
iload iinc caload isub istore iload ifeq

0.25 0.25 3.00

aload 0 getfield aload 0 dup getfield dup x1 iconst 1
iadd putfield

0.33 0.33 2.31

aload 0 getfield iload 1 aaload areturn 0.65 0.65 1.95
faload fmul fadd fstore fload aload 0 getfield iload
aaload iload

0.17 0.17 1.36

aload 0 getfield astore aload getfield iload 2 iaload
istore iload iload 1 if icmpne

0.15 0.15 1.35

aload 0 dup getfield iconst 1 0.35 0.35 1.05
aload 0 getfield freturn 1.00 1.00 1.00
aload 1 invokevirtual 0.84 0.84 0.84
aload 0 getfield iload 3 aaload 0.37 0.37 0.74

Table 5. Top 10 most frequent sequences of size upto 16, based on weighted, adjusted
frequency.

original frequency of 0.92% to an adjusted frequency of 0.64% as a result of
overlaps with earlier sequences containing aload 0.

The rows are sorted in decreasing order of the last column, which shows the
weighted frequency. The weighting factor used is ones less than the number of
instructions in the sequence, since this is the number of instruction dispatch
operations saved by implementing this sequence as a superinstruction. It should
be noted, however, that there will be a higher overhead in recognising such se-
quences dynamically in the instruction stream, and that the actual (unweighted)
frequency of longer sequences tends to be less than the frequency of shorter se-
quences. Both of these factors will tend to offset the possible benefits to be
gained from using longer sequences.

From Tables 2 through 5 it is notable that the topmost sequence in each
case, aload 0 getfield has a considerably higher frequency than any of the other
sequences, and is indeed higher in each case then the other nine sequences taken
together. The sum of the adjusted frequency of the nine sequences other than
aload 0 getfield is 6.6% in Table 2, 5.8% in Table 3, 4.7% in Table 4 and 4.1%
in Table 5. It is also notable that the adjusted frequencies decrease rapidly as we
move down the table, indicating diminishing possible returns for greater numbers
of superinstructions, as predicted by Proebsting [17].

4.4 Implementing the Superinstructions

Once the sequences corresponding to superinstructions have been selected, it is
then necessary to change the virtual machine to provide an implementation. This
involves augmenting the main interpreter loop with cases for the extra instruc-
tions, and concatenating in the code corresponding to each original instruction

11

as appropriate for each new superinstruction. Since little new code is involved,
it is possible to make such modifications at run-time (as described by Piumarta
and Riccardi [16]). However, since our goal was to measure the possible savings
from superinstruction implementation, we generated the new code off-line, and
recompiled versions of the JamVM for each of the four possible selections of
superinstructions described in the previous subsection. One side-effect of imple-
menting the superinstructions statically is that the new instruction sequences
can be subjected to optimisations by gcc, a feature not available to dynamically-
generated code.

It is also necessary to change the instruction stream for each application to
include these new superinstructions. While this could be done statically, such
an approach is cumbersome as it would also involve changing the code in the
Java class libraries. Instead we implemented a “just-in-time” style of translation,
where the instruction stream was modified dynamically the first time a sequence
corresponding to a superinstruction was encountered at run-time.

When an instruction that could correspond to the first instruction of one
of the superinstruction sequences was encountered at run-time, the instruction
stream was checked to see if the following instructions matched the sequence.
If so, the first instruction (only) was modified to become the corresponding
superinstruction. If not, the instruction was modified to a “tagged” version of
itself. This “tagged” version is coded to execute with the same semantics as
the original, without the check for superinstruction sequence occurrence. Thus,
the overhead of checking for a matching sequence only occurs the first time the
initial bytecode of the sequence is encountered; if the instruction stream does
not match a sequence, no overhead is incurred on subsequent iterations.

There are a number of other issues that need to be addressed when mod-
ifying the instruction stream in this way. First, with multi-threaded programs
the possibility exists that two threads would attempt to modify the same in-
struction stream simultaneously; this issue is not addressed in this paper, but
has been dealt with extensively by Gagnon and Hendren [8]. Second, most vir-
tual machines implement “quick” versions of instructions, where, for example,
indirect references to field names are replaced by direct references after the first
execution. The JamVM implements 17 such instructions, and some of these are
present in our instruction sequences (e.g. getfield). This does not present a
problem for our approach; on the first pass through a sequence the instructions
are changed to their “quick” versions, as usual. The second time through, those
sequences of instructions corresponding to superinstructions are picked up by
our modifications.

A final issue that must be considered is that of basic blocks, since, in general,
control may be transferred in to or out of an instruction sequence. As noted ear-
lier, we did not include instructions that could terminate a basic block internally
in our sequences, so control cannot be transferred out of them. Since we have
modified only the first instruction in the sequence, control transfers in to the
sequence are not a problem, since the original bytecodes, other than the first, re-

12

main there unchanged. We note that one disadvantage of this approach is that we
do not achieve any code size compression from implementing superinstructions.

5 Results

In order to measure the effect of superinstruction implementation, three new
versions of the JamVM were prepared, implementing the instructions sequences
in Tables 2 through 5. The JamVM as shipped actually implements the aload 0

getfield superinstruction, so a further version was prepared without this, in
order to fully judge the effect of superinstruction implementation.

Thus, five different versions of the JamVM were used:

no-super This is the basic JamVM with no superinstructions implemented
original This is a version of the JamVM as it is distributed, where the aload 0

getfield superinstruction has been implemented
upton A version of the JamVM with 10 superinstructions implemented; these

are the superinstruction sequences of length upto n, as listed in Tables 2
through 5.

In addition, each of these six versions of JamVM was built in both threaded
and switch-based mode to give an estimation of the possible savings under each
system. The data in Table 6 records the results for running the six JamVMs over
the SPEC suite in a switch-based mode, whereas the data in Table 7 shows the
same information when the JamVMs are built using threaded dispatch.

We use the time taken to run each SPEC program on the no-super JamVM
as our reference point, and give the percentage increase or decrease in time taken
for each of the other versions of JamVM. All measurements are based on at least
10 runs of each SPEC program for each JamVM.

no-super original upto02 upto04 upto08 upto16

201 compress 180.53 170.5 (-5.5) 167.7 (-7.1) 166.1 (-8.0) 165.4 (-8.4) 161.3 (-10.7)
202 jess 58.46 59.3 (+1.4) 55.8 (-4.5) 56.0 (-4.2) 56.1 (-4.0) 55.7 (-4.8)
209 db 89.16 83.8 (-6.0) 83.7 (-6.1) 81.8 (-8.3) 83.5 (-6.4) 77.1 (-13.5)

213 javac 62.78 62.1 (-1.1) 61.0 (-2.8) 59.8 (-4.8) 59.4 (-5.4) 58.9 (-6.1)
222 mpegaudio 156.29 151.9 (-2.8) 150.3 (-3.8) 148.2 (-5.2) 152.0 (-2.7) 152.8 (-2.2)

227 mtrt 62.14 57.4 (-7.6) 58.7 (-5.6) 56.6 (-9.0) 57.1 (-8.0) 56.3 (-9.3)
228 jack 41.87 41.8 (-0.2) 40.2 (-4.1) 40.5 (-3.2) 40.6 (-3.1) 39.7 (-5.1)

Table 6. Results of running each version of JamVM, each based on a switched inter-
preter, over the programs from the SPEC suite. The times are given in seconds, and
the parenthesised figures in column 2 onward represent the percentage variance from
column 1.

13

no-super original upto02 upto04 upto08 upto16

201 compress 137.06 127.0 (-7.3) 129.3 (-5.6) 130.0 (-5.2) 127.1 (-7.3) 125.0 (-8.8)
202 jess 51.07 50.5 (-1.2) 51.3 (+0.5) 52.5 (+2.8) 52.5 (+2.9) 51.7 (+1.2)
209 db 75.19 73.5 (-2.3) 74.3 (-1.2) 73.4 (-2.4) 77.5 (+3.0) 69.4 (-7.7)

213 javac 56.04 55.1 (-1.7) 56.6 (+1.0) 55.5 (-1.0) 55.4 (-1.1) 55.2 (-1.6)
222 mpegaudio 118.12 115.9 (-1.9) 132.6 (+12.2) 121.7 (+3.0) 126.0 (+6.7) 128.8 (+9.0)

227 mtrt 51.30 49.3 (-3.9) 50.6 (-1.4) 52.4 (+2.2) 51.2 (-0.1) 51.3 (+0.1)
228 jack 38.21 38.5 (+0.9) 38.6 (+1.2) 40.6 (+6.4) 38.8 (+1.4) 38.6 (+0.9)

Table 7. Results of running each version of JamVM, each based on a threaded inter-
preter, over the programs from the SPEC suite. The times are given in seconds, and
the parenthesised figures in column 2 onward represent the percentage variance from
column 1.

As expected, the threaded interpreter outperforms the switch-based inter-
preter over all the programs1 Conversely, the speedup resulting from using su-
perinstructions in the switch-based interpreter are greater than those for the
threaded interpreter. This is to be expected, since the threaded interpreter has a
reduced overhead for instruction dispatch, and so there is less to be gained from
implementing superinstructions.

In order to explain some of the differences in the speedup, we present an
analysis of superinstruction frequencies on a per-program basis in Table 8. Here
we show the frequency of occurrence of the superinstructions for each of the five
machines. For the original machine, this figure is the frequency of the aload 0

getfield instruction pair, and for the other machines the figure shown is the total
(unadjusted, unweighted) frequency of the top 10 superinstruction sequences
that were listed in Tables 2 through 5. For example, taking the 201 compress

program, we see that the instruction sequences of length up to 2 account for
18.08% of the instructions, but those of length up to 16 account for 12.52% of
the instructions.

It can be seen from Table 8, that all of the possible sequences have a lower
frequency of occurrence in 222 mpegaudio than in the other programs, thus re-
ducing the effectiveness of the implementation on this program. Since the se-
quence aload 0 getfield is contained in all the other superinstruction sets, we
note further that the remaining superinstructions in 222 mpegaudio account for
a very small proportion - just 1.63% in the case of the upto16 machine for
222 mpegaudio.

It might be argued that a superinstruction selection strategy based on tai-
loring sets for each program individually would produce much better results.
To gauge this, we applied the selection algorithm described in section 3 to each
SPEC program individually, thus generating bespoke superinstruction sets for
each program.

1 Interestingly, this was not the case when JamVM was compiled using gcc 3.2.2, where
a compiler bug prevented the disabling of global common subexpression elimination
(gcse), and the instruction dispatch sequence was hoisted.

14

Program original upto 02 upto 04 upto 08 upto 16

201 compress 9.43 18.08 13.21 12.60 12.52
202 jess 8.32 14.02 12.04 11.58 11.47
209 db 9.59 18.32 17.32 17.07 13.58

213 javac 10.61 16.88 14.56 13.04 12.58
222 mpegaudio 5.65 11.05 11.67 7.28 7.28

227 mtrt 13.42 22.23 26.52 26.25 26.23
228 jack 9.41 13.97 12.01 11.75 11.58

Table 8. Frequency of occurrence of the generic superinstruction sequences for each
of the programs in the SPEC suite.

Table 9 presents the occurrence frequencies for these bespoke instruction sets
on a per program basis, and it should be noted that, unlike Table 8, these sets
thus differ from one row to the next. For example, the figure of 24.36% for the
upto02 machine running 201 compress reflects the occurrence frequency for the
top 10 instruction pairs selected solely from the 201 compress trace.

As might be expected these figures are consistently higher2 than those in
Table 8, but we note that the difference is not large, with the generic instruction
set frequencies typically accounting for upward of two-thirds of the frequency
of bespoke sets. Given the additional complexity of tailoring the JVM for each
program, these figures suggest that our more generic approach is at least as
viable.

Program original upto 02 upto 04 upto 08 upto 16

201 compress 9.43 24.36 21.79 18.02 16.53
202 jess 8.32 21.50 19.17 15.46 14.34
209 db 9.59 26.95 25.97 24.19 18.51

213 javac 10.61 18.36 17.43 15.50 14.93
222 mpegaudio 5.65 22.14 12.74 10.75 10.08

227 mtrt 13.42 27.42 19.82 18.45 18.45
228 jack 9.41 16.17 14.62 13.00 12.25

Table 9. Frequency of occurrence of the bespoke superinstruction sequences for each
of the programs in the SPEC suite. Here, the instruction sets have been tailored to
each individual program.

2 The frequencies for original are identical, since in both cases this represents the
implementation of the same single instruction pair

15

6 Conclusions

In this paper we have presented an approach to selecting and implementing
superinstructions for Java programs based on an off-line analysis of a suite of
programs. While not providing the same performance improvement as a per-
program analysis, this approach has the advantage of eliminating the need for
run-time profiling, as well as exposing superinstruction implementations to com-
piler optimisations.

As well as dealing explicitly with the possibilities of constructing a generic
superinstruction set, this paper makes three other contributions not found in
existing work:

– We formally present the instruction sequence selection procedure, based on
a static analysis of dynamic program traces

– We list four possible selections of superinstruction sets, along with the corre-
sponding distributions based on profiling programs in the SPEC benchmark
suite

– We have implemented the approach, and present results for small, generic
superinstruction sets (as opposed to large basic-block results presented in
previous work)

A number of further enhancements of this work are possible. At the moment
we use a weighting factor based on the number of dispatch instructions saved.
However, a weighting factor based on the possible optimisation of the resulting
sequences might give better results. Also, it is possible that sets of superinstruc-
tions might be tailored for different types of applications (e.g. batch applications,
GUI-based applications, scientific applications). For example, it is notable that
222 mpegaudio and 227 mtrt use a higher proportion of floating-point operations,
and 222 mpegaudio uses a higher proportion of array operations in general [12].

Our present analysis is based on individual instructions. However, merging
similar instructions might lead to higher frequencies and thus better results. This
might include equating specialised instructions with their generic counterparts,
such as iload 1 and iload, or even merging functionally similar bytecodes (e.g.
iload, aload and fload all load a 32-bit value onto the stack).

References

1. D. Antonioli and M. Pilz. Analysis of the Java class file format. Technical Report
98.4, Dept. of Computer Science, University of Zurich, Switzerland, April 1988.

2. S. Byrne, J. Power, and J. Waldron. A dynamic comparison of the SPEC98 and
Java Grande benchmark suites. In First Workshop on Intermediate Representation
Engineering for the Java Virtual Machine, pages 95–98, Orlando, Florida, July 22-
25 2001.

3. Kevin Casey, David Gregg, and Anton Ertl. Towards superinstructions for Java
interpreters. In 7th International Workshop on Software and Compilers for Em-
bedded Systems, Vienna , Austria, September 24-26 2003.

16

4. Lars Rder Clausen, Ulrik Pagh Schultz, Charles Consel, and Gilles Muller. Java
bytecode compression for low-end embedded systems. ACM Transactions on Pro-
gramming Languages and Systems, 22(3):471–489, May 2000.

5. M. Anton Ertl. Threaded code variations and optimizations. In EuroForth, pages
49–55, Saarland, Germany, November 23-26 2001.

6. M. Anton Ertl and David Gregg. Optimizing indirect branch prediction accuracy
in virtual machine interpreters. In Conference on Programming Language Design
and Implementation, pages 278–288, San Diego, California, June 9-11 2003.

7. M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. vmgen – a gen-
erator of efficient virtual machine interpreters. Software–Practice and Experience,
32(3):265–294, 2002.

8. Etienne Gagnon and Laurie Hendren. Effective inline-threaded interpretation of
Java bytecode using preparation sequences. In Compiler Construction, pages 170–
184, Warsaw, Poland, April 5-13 2003.

9. D. Gregg, J. Power, and J. Waldron. Benchmarking the Java virtual architecture -
the SPEC JVM98 benchmark suite. In N. Vijaykrishnan and M. Wolczko, editors,
Java Microarchitectures, chapter 1, pages 1–18. Kluwer Academic, 2002.

10. David Gregg, M. Anton Ertl, and John Waldron. The common case in Forth
programs. In EuroForth 2001 Conference Proceedings, pages 63–70, 2001.

11. David Gregg, James Power, and John Waldron. Platform independent dynamic
Java virtual machine analysis: the Java Grande Forum benchmark suite. Concur-
rency and Computation: Practice and Experience, 15(3-5):459–484, March 2003.

12. C. Herder and J.J. Dujmović. Frequency analysis and timing of Java bytecodes.
Technical Report SFSU-CS-TR-00.02, San Francisco State University, Department
of Computer Science, January 15 2000.

13. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison
Wesley, 1996.

14. Robert Lougher. JamVM v. 1.0.0. Available at the URL:
http://jamvm.sourceforge.net/, March 10 2003.

15. D. O’Donoghue, A. Leddy, J.F. Power, and J.T. Waldron. Bi-gram analysis of
Java bytecode sequences. In Second Workshop on Intermediate Representation
Engineering for the Java Virtual Machine, pages 187–192, Dublin, Ireland, June
13-14 2002.

16. Ian Piumarta and Fabio Riccardi. Optimizing direct-threaded code by selective
inlining. In Conference on Programming Language Design and Implementation,
pages 291–300, Montreal, Canada, June 17-19 1998.

17. Todd A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In
Symposium on Principles of Programming Languages, pages 322–332, San Fran-
cisco, California, January 23-25 1995.

18. Derek Rayside, Evan Mamas, and Erik Hons. Compact Java binaries for embedded
systems. In 9th NRC/IBM Centre for Advanced Studies Conference, pages 1–14,
Toronto, Canada, November 8-11 1999.

19. Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. In 24th Inter-
national Symposium on Computer Architecture, pages 194–205, Denver, Colorado,
June 2-4 1997.

20. Avinash Sodani and Gurindar S. Sohi. An empirical analysis of instruction repe-
tition. In 8th International Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 35–45, San Jose, California, Oct 3-7 1998.

21. SPEC. SPEC releases SPEC JVM98, first industry-standard benchmark for
measuring Java virtual machine performance. Press Release, August 19 1998.
http://www.specbench.org/osg/jvm98/press.html.

