
Bigram Analysis of Java Bytecode Sequences

Diarmuid O’Donoghue1 Aine Leddy1 James Power1

John Waldron2

1 Dept. of Computer Science, National University of Ireland, Maynooth, Ireland.
2 Dept. of Computer Science, Trinity College Dublin, Ireland.

1 Introduction

Much research has been conducted in the analysis of Java bytecodes in order to gain a bet-
ter understanding of how Java programs behave. One branch of this research has focused
on analysing bytecode usage within the Java Virtual Machine (JVM), with particular
emphasis on analysing bytecodes associated with various benchmark programs.

Previous research has focused on the frequencies of the individual bytecodes at the
static class-file level [2]. Another branch examines dynamic bytecodes, as executed by the
JVM itself at run-time [4, 6]. This project follows on from previous dynamic bytecode
analysis, analysing streams of Java bytecodes produced at the platform independent level.
It differs from previous projects, in that it is not concentrating on the occurrences of the
individual bytecodes, but in the occurrences of bigrams, or bytecode pairs.

We report on a project that performed a bigram analysis of dynamic bytecode se-
quences. The objective was to identify the most commonly used bytecode pairs, and to
examine the relative frequency of occurrence of these bytecodes. In all, 12 large Java
programs were analysed, taken from the Java Grande and SPEC benchmark suites. Our
findings are of relevance to research into instruction set design and implementation, as
well as JVM optimisation.

2 Bigrams

Bigrams [7] are widely used in statistical “natural language” processing, and most sig-
nificantly play a vital role in Hidden Markov models. Applications abound, but include
context sensitive spell checking, voice-to-text systems and grammar checking. Bigram
analysis typically uses a corpus of text to learn the probability of various word pairs, and
these probabilities are later used in recognition. However, in this project we are only
interested in the data collection phase of bigram usage.

The joint probability of a word (bytecode) sequence can be expressed as the prod-
uct of individual word (bytecode) probabilities, each conditioned on the preceding word
(bytecode). If we assume that a word sequence is valid (i.e. a sentence), then intuitively
we say that the word sequence “the black cat” is more likely to be followed by the word
“purred” than by the word “crystalography”.

Assume that P (b2|b1) is the probability of bytecode b2 given bytecode b1. Then we wish
to record the observed sequence frequencies for all bytecode pairs P (b2|b1). Note that this

dod
Text Box
Recent Advances in Java Technology Theory, Application, Implementation, Edited by J. F. Power and J. T. Waldron, Computer Science Press, Trinity College Dublin, pp 243- 248, 0-9544145-0-0, 2002. 



Java Grande
Program bytecodes executed

total unique
euler 1.46e+10 143

moldyn 7.60e+09 141
monte 2.63e+09 152
raytr 1.18e+10 149
search 7.10e+09 140

SPEC JVM98
Program bytecodes executed

total unique
cmprs 1.25e+10 122
jess 1.91e+09 143
db 3.77e+09 119

javac 2.43e+09 144
mpeg 1.15e+10 153
mtrt 2.20e+09 141
jack 1.50e+09 131

Figure 1: The 12 programs used in our analysis were taken from the Java Grande and
SPEC JVM98 benchmark suites. Here we show the total number of bytecodes executed for
each of the applications, along with the number of unique bytecode instructions actually
used.

follows directly on from previous work [4, 5], which recorded the frequencies of individual
dynamic bytecodes. From a different perspective, we also interested in identifying, for
example, any non-occurring bigrams where P (b2|b1) is 0.

3 Results

This corpus of test programs consisted of two Java benchmarks suites, the Java Grande
Benchmark Suite [3] containing five benchmark-programs, and the SPEC JVM98 Bench-
mark Suite [9] which contains seven programs. Version 2.0 of the Java Grande benchmark
suite (Size A) was used, and the programs in this suite were compiled using SUN’s javac
compiler, Standard Edition (JDK build 1.3.0-C). The programs in the SPEC suite were
distributed as bytecode files, and were not recompiled.

The advantage of using these two benchmark suites is that the dynamic frequencies
of the individual bytecodes have already been analysed for these suites in [4] and [5, 6]
respectively. Further, both suites provide examples of long sequences of instructions -
ranging from 1.5× 109 bytecodes (jack, in the SPEC suite) to 1.5× 1010 bytecodes (euler,
in the Java Grande suite). A brief summary of these programs is given in Figure 1; more
information can be found in [3, 9].

The results in this section we compiled by running the Grande and SPEC benchmark
suites on an instrumented JVM. The Kaffe Virtual Machine, version 1.0.6, was used, with
JIT compilation switched off. Each executed bytecode was recorded and measured, so
that these results reflect not only bytecode from the benchmark programs themselves,
but also from the Kaffe class library. It should be noted that the Kaffe class library is
not 100% compliant with SUN’s JDK, and may, of course, differ from other Java class
libraries.

3.1 Frequently occurring bigrams

The table in Figure 2 shows the top ten most frequently occurring bigrams across all 12
benchmark programs. Note that these constitute a weighted average, to smooth differences
between the total bytecode counts for individual programs.



Rank Overall Rank
(R*) Bigram Frequency AVG STDEV

1 aload 0 getfield 9.21 % 3.8 8.9
2 invokevirtual aload 0 2.35 % 40.7 62.0
3 iload aaload 1.91 % 199.3 254.8
4 aload 1 getfield 1.40 % 152.6 156.5
5 getfield iload 1.40 % 68.9 68.4
6 dload dload 1.38 % 114.7 340.0
7 getfield aload 0 1.29 % 37.8 44.9
8 putfield aload 0 1.13 % 32.4 27.7
9 aaload iload 1.06 % 67.1 161.1
10 getfield aload 1 0.95 % 154.8 163.1

Figure 2: Top ten most frequently used bytecode bigrams, over all 12 benchmark pro-
grams. The overall frequency and rank reflects a weighted average of the 12 individual
program traces.

We can see that the most common bigram in the combined results is made up of
the bytecodes aload 0 and getfield. The bytecode aload 0, is a load reference from
the local variable at index 0, which would hold the this-pointer in an instance method.
The aload 0 instruction occurs in three more of the top ten instructions. The getfield

instruction occurs in four more of the top ten bigrams.
The bigram at rank seven is made up of the same bytecodes as the top ranked bigram

- but in a different order. This is interesting as it has been previously discovered in [4]
that the these two bytecodes were in the top four most frequently executed bytecodes for
four out of the five Java Grande benchmark programs. In analysis of the SPEC JVM98
benchmark suite [6], these two bytecodes had the highest frequency on average. From
the bigram results it can be seen that these bytecode are most often executed together in
sequence.

The combined rank hides much variation that occurs within the data for each in-
dividual benchmark program. We compare the ranking of each bigram rather than its
occurrence frequencies, as this avoided the tendency of a large program to overwhelm
the statistics generated by shorter programs. The top ranked bigrams (aload 0 and
getfield) were also the top ranked bigram in eight of the ten benchmark programs. On
the other two programs this bigram was ranked 3rd and 32nd, and the standard deviation
of the rank value was under 9. Figure 3 shows the rankings of the overall top 10 bigrams
in each of the individual benchmark programs. We note that moldyn, a translation of a
Fortran program, is the only program not to show a high frequency of occurrence of the
aload 0 getfield bigram. The methods in this program are mainly static, and hence do
not have a this pointer at position 0.

3.2 Bigram coverage

In a previous studies of bytecode usage, it was found that, taken together, the Grande
suite actually only uses 169 of the possible bytecodes, whereas the SPEC suite uses only
186 of the bytecodes - or 85% and 93% of the 199 possible bytecodes, respectively. The
number of unique instructions used for each program in both of the suites is given in
Figure 1.



R* monte search moldyn raytr euler
R F % R F % R F % R F % R F %

1 1 12.14 1 6.84 32 0.10 1 13.07 3 8.05
2 8 1.87 71 0.39 91 0.00 15 1.83 215 0.01
3 312 0.00 137 0.18 5 4.24 31 0.90 1 14.63
4 124 0.02 432 0.00 226 0.00 2 9.94 65 0.18
5 72 0.38 5 1.60 132 0.00 30 0.90 4 6.33
6 3 2.33 0 0.00 1 14.00 133 0.01 52 0.25
7 10 1.55 111 0.21 43 0.03 13 1.93 12 1.67
8 19 1.38 60 0.45 44 0.03 12 2.00 8 1.96
9 0 0.00 0 0.00 0 0.00 0 0.00 2 10.15
10 140 0.01 442 0.00 248 0.00 3 7.24 64 0.19

R* jack jess mtrt javac db cmprs mpeg
R F % R F % R F % R F % R F % R F % R F %

1 1 12.10 1 8.43 1 13.40 1 10.94 1 10.35 1 9.43 1 5.68
2 5 1.78 2 4.49 2 11.90 2 2.92 34 0.69 11 1.65 32 0.63
3 855 0.00 78 0.33 3 0.06 196 0.12 426 0.00 342 0.00 6 2.51
4 82 0.22 6 1.60 418 0.00 129 0.20 3 4.12 303 0.00 41 0.56
5 188 0.10 59 0.39 187 0.06 94 0.29 5 3.42 47 0.59 4 2.76
6 0 0.00 1187 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
7 4 2.43 95 0.28 123 0.11 3 1.94 11 2.31 9 2.16 19 0.87
8 2 2.78 31 0.67 9 1.60 5 1.58 87 0.16 59 0.51 53 0.40
9 0 0.00 502 0.00 296 0.03 0 0.00 0 0.00 0 0.00 5 2.59
10 90 0.19 35 0.61 62 0.26 33 0.48 9 2.43 273 0.00 459 0.01

Figure 3: The top-ten bigrams for each benchmark program. Here we show the rank, R,
and frequency, F %, of each of the overall top 10 bigrams, for each program in the suite.
These results are sorted based on the first column, R*,the overall bigram rank.

When we extend this analysis to bigrams, we find that the coverage is much lower.
Figure 4 compares the number of unique bigrams used in each benchmark program, against
the maximum possible number of bigrams. The maximum possible number of bigrams
for a program is the square of the number of unique bytecode instructions used, as given
in Figure 1.

Figure 5 illustrates another key finding of our study. That is, that the frequency
of usage of bigrams obeys the power law. A very small number of bigrams occur very
frequently, while most bigrams occur with a small degree of frequency. These results are
most startling when we remember that our previous results indicate that only a small
percentage of possible bigrams occur in the first place. A similar distribution is observed
when the benchmark programs are considered individually.

The first part of the most common bigram is aload 0. As previously stated, the most
common successor is the getfield instruction, which accounts for 9.6% of all identified
bigrams. The second most common bigram starting with the aload 0 instruction is
aload 1 accounting for 0.69% of identified bigrams. Interestingly, the distribution of the
successors of aload 0 also follows the power law.

4 Conclusion

We have examined bytecode usage within the JVM for the Java Grande and SPEC bench-
mark suites. We recorded and analysed the bytecode bigram usage - that is pairs of
bytecodes executed in sequence.

Our results illustrate that there are a very small number of bytecode pairs that are
used with very high frequency, most noticeably the bigram aload 0 followed by getfield.
An interesting result was that the frequency of bigram usage obeyed the power law, with
logarithmically decreasing frequency across the less frequent bigrams. This indicates that



C
ov

er
ag

e 
%

0

4

8

12

16

20

24

28

32

36

cm
pr

s

db eu
l

ja
ck

�

ja
va

c

�

je
ss

� m
ol

m
on

m
pe

g

m
tr

t

ra
y

se
a

Figure 4: Observed Coverage of Possible Bigrams. Here we show the number of unique
bigrams used as a percentage of the square of the number of unique bytecodes used for
each program.

Figure 5: Bigram usage Frequencies. This graph plots the overall usage frequencies for
the observed bigrams, and shows them conforming to a power distribution.



optimising should focus on these most frequently used bytecode bigrams.
We note that the most common bigram, aload 0 followed by getfield, accounted

for nearly 10% of the bigrams executed in most programs. Many standard JVMs will
apply extensive optimisations to the bytecode including, at least, register allocation to
eliminate many of the load and store operations. However, JVMs which directly interpret
the code, such as those operating in restricted environments, could save up to 10% in
the instruction fetch/decode cycle if aload 0 and getfield were combined into a single
instruction.

We believe that a study of the dynamic behaviour patterns of bytecode programs is
an important foundation for the future design of intermediate representations. The work
presented above is an initial study; in future work we hope to measure the impact of
optimisations based on this data.

References

[1] L.A. Adamic. Zipf, Power-laws, and Pareto - a ranking tutorial.
http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html Internet Ecologies
Area, Xerox Palo Alto Research Center, Palo Alto, CA 94304

[2] D.N. Antonioli and M. Pilz. Analysis of the Java Class File Format. Technical Report
ifi-98.04, Dept. of Computer Science, University of Zurich, 1998.

[3] M. Bull, L. Smith, M. Westhead, D. Henty and R. Davey. Benchmarking Java Grande
Applications. In Proc. Conference on the Practical Applications of Java, Manchester, UK,
April 2000.

[4] C. Daly, J. Horgan, J. Power, J. Waldron. Platform Independent Dynamic Java Virtual
Machine Analysis: the Java Grande Forum Benchmark Suite. Joint ACM Java Grande -
ISCOPE 2001 Conference, Stanford University, USA, June 2-4, 2001.

[5] D. Gregg, J. Power, J. Waldron. Benchmarking the Java Virtual Architecture - The SPEC
JVM98 Benchmark Suite. Chapter 1 of Java Microarchitectures, Editors N. Vijaykrishnan
and M. Wolczko, Kluwer Academic, 2002.

[6] C. Herder and J.J. Dujmovic. Frequency Analysis and Timing of Java Bytecodes. Technical
Report SFSU-CS-TR-00.02, Computer Science Dept, San Francisco State University, USA,
2000.

[7] D. Jurafsky and J. Martin. Speech and Language Processing: An Introduction to Natural
Language Processing. In Speech Recognition and Computational Linguistics, Prentice-Hall,
2000.

[8] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison Wesley, 1996.

[9] Standard Performance Evaluation Corporation. . The SPEC JVM98 Benchmark Suite,
http://www.spec.org/, August 1998.

[10] T.J. Wilkinson. KAFFE, A Virtual Machine to run Java code. http://www.kaffe.org/,
2000.




