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Abstract

We describe the goplicaion d analogicd structure matching to the problem of classfying objedsin
structured cartographic data. The reasons for and the requirements of such a dassficaion arefirstly
outlined. The dtributes on which the structural matching will operate and the representation o this
datain Prolog are then described. A brief mentionis made of the extradion d these atributes from
the sample data Our domain-specific Cartographic Structure Matching Algorithm is then
introduced and explained. The fusion d our algorithm’s results with ather classficaion techniques
is mentioned, and some examples of the detedion o misclassfied pdygors are provided. We
finaly provide apreliminary evaluation d our classfication technique and suggest some future

developments.

I ntroduction

Britain's national mapping agency, Ordnance Survey, is in the process of re-engineqing its large-
scde cartographic data in to a topdogicdly structured format known as the Digital National
Frameworkd (DNF[I) [Ordnance Survey]. At present, this high-resolution map data cnsists of
spatially referenced pant and line features, and text labelli ng. Points model red world features that
cover a small area, such as post-boxes or telephane poles. Lines occasionaly represent linear
feaures auch as fences, bu they usualy denote the bourdaries between dscrete areas, such as
between a road and footpath. The @nversion d these data sets to DNF format requires that the
enclosed areas between lines be modell ed as paygonfedures. Cartographic data containing expli cit
palygors enables the intelli gent analysis of important features such as buildings, roads and fields.
Thisricher quality dataformat is easier to updite and greatly increases the usefulnessof map data.

Eadh geographic fegure within cartographic data must be dassfied as being a member of a
particular class known as a feature cde. Examples of feaure wmdes are “phore-box”, “wall of
building” and “garden”. Whil e the identification d palygors within line data can be aitomated with

littl e difficulty, the dassfication d the resulting paygorsisfar from trivial. Some aea features can



be dasdfied based onthe fedure ades of the lines that define them, bu many require laborious
manual clasgficaion. A sample DNF poygondata set, with urclassfied pdygonrs highlighted, can
be seen in figure 1. As Ordnance Survey’s large-scde map database antains millions of paygors,
feaure-coding by hand is a very expensive and time cnsuming task. Automated clasgfication
tedhniques are dearly required. Work is ongoing within ou department here & NUI Maynoah on
the gplicaion o computer vision techniques to the paygon classficaion poblem [Keyes,
Winstanley]. A fusion d the results of three separate shape recognition techniques is currently
being employed, and a high successrate in clasdfication hes been achieved. By integrating these
results with thase from other clasgficaion techniques, we hope to develop an even more robust

poygonfedure-coding todl.
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Figure 1. A Sample DNF data set. Unclasdgfied pdygors are shown in dark grey.

The use of analogy has been shown to be central to any systems that can learn and solve
novel problems. This paper describes our applicaion d analogicd reasoning to the paygon
clasgficaion poblem. Before we describe the cartographic domain and ou clasgficaion
algorithm, we briefly introduce the use of analogy for classfication. Classfying GIS data dosely



mimics the geometric analogies made famous by Evans ANALOGY program [Evans]. The prime
distinction is that attributes play a significant role in ou system, whereass ANALOGY largely
avoided such comparisons. Consider the following propattional analogy, of the form A istoB asC
is-to some unknown D. In figure 2, we can see that the Source domain consists of a "before and
after" pair of diagrams. The transformation described by this pair of diagrams depicts the
transformation d a plain T-shaped oljed, to a darkly shaded olject of the same shape. The target
domain consists of a single diagram that must undergo the same transformation [Bohan,

O'Donoghue].

Source Domain Target Domain
Figure 2. A Geometric Analogy Invalving Attributes

In terms of cartographic information, we seethe source domain as gedfyingthe constraints
under which the central (unclassfied) objed may be dasdfied (or coloured). Only if al source
domain oljeds are matched against the given target, and al the matching objects have the same
colour (i.e. classficaion) can the central objed be mloured (classfied). In catographic structure
matching, we use acombination o the topdogy and clasdficaion o adjacent paygors as the
attributes we base our mapping on. Our Cartographic Structure Matching Algorithm is smilar to
Keane & Brayshaw’s Incrementa Analogy Madiine [Keane], bu we must ded with some
commutative relationships and we require aretrieval phase to seled a suitable template structure to
suppat inference [O’Donoghue, Winstanley]. In the next sedion, we describe the relationships
between a palygon and its neighbaurs. We dso discussthe rules that govern ou pattern-matching

process

Polygonal Context
When considering adjacency between pdygors, there are two separate topdogical relationships to
be wmnsidered. We define these &:
1. Line Adjacency
Two pdygors are line-adjacent if they share abordering line.
2. Point Adjacency
Two pdygors are point-adjacent if they are not line-adjacent but they med at 1 or more points.

Examples of the two types of adjacency can be seenin figure 3.



Figure 3. The palygors onthe left are line-adjacent,
whil e the shaded pdygors ontheright are point-adjacent.

Each pdygon (and each pdnt and line) in DNF standard data is given a unique
identification number, cdled atoid (TOpograhicd IDentifier). Individual polygors are identified by
their toids during the matching process In attempting to structurally match the contexts of two
given pdygors A and B, a paygonline-adjacent to A may only be mapped to ore line-adjacent to
B. The same restriction hdds for point-adjacent neighbous. The matching of polygonrs is further
restricted by their feaure ades, so that a “building” polygon adjacent to A can only be matched to
apaygonadjacent to B if the latter also hes the “building” feaure cde. The @ntext of a paygon
X is a description d the toids and fedure mdes of the poygors adjacent to X and d the

adjacencies between thase palygorns. We now describe our representation o this data.

Modelling Context

When designing a framework for analogising we must firstly dedde what attributes of individual
objeds we wish to perform matching upon.lInitialy, we have diosen to model a paygon's context
in terms of the ajacencies between it and its neighbous and the aljacencies between those

neighbaurs. The mntext of agiven pdygon X is described with the foll owing information:

* Alist of pdygorsthat are line-adjacent to X, specified by their toids and feaure ades.

* Alistof paygonsthat are point-adjacent to X, spedfied by their toids and feature ades.

* A list of pairs of neighbouing (that is, line-adjacent or point-adjacent to X) polygonrs that are
line-adjacent to eat ather, specified by their toids.

* Alistof pairs of neighbouing polygons that are point-adjacent to each ather, specified by their

toids.

Prolog, with its built-in depth-first seach medanism has been chasen to implement structural
matching between pdygors. All context information listed above is recorded within a single
predicae. Whil e this introduces ome data redundancy, it has the advantage of reducing the anount
of seaching the Prolog interpreter has to do (In contrast, The Incrementa Analogy Madine



[Keane] represents an oljeds attributes as a hierarchicdly structured colledion o predicaes). We
also include the aurrent feature ade of the polygon being described within ou context predicate, as
this attribute is transferred from the source to target domain when we perform an inference In
addition, the lengths of the four lists that hold the context information are recorded within the
predicae. The structure matching algorithm uses these numbers to reduce its sarch space as two

palygors canna be analogowsif these lists are not the same length.

The predicate that records a given pdygonX’s context has the foll owing structure:

context(toid of X,
feature code of X,
| ength of 1% list,
l ength of 2™ Iist,
| ength of 3 Iist,
l ength of 4" Iist,
[toid & feature code pairs of |ine-adjacent pol ygons],
[toid & feature code pairs of point-adjacent polygons],
[pairs of toids of neighbours that are |ine-adjacent to each other],
[pairs of toids of neighbours that are point-adjacent to each other]).

In the next sedion, we describe how these antext predicates are derived from cartographic data.

Context Extraction from Cartographic Data

The mntext of individual paygors, as required for structural matching is derived from source data
using the tod ArcView GIS. ArcView is a program used for the visuali sation, editing and analysis
of spatialy referenced data, spedficdly cartographic data. ArcView’s built-in scripting language
Avenue is being used in the extradion d the required information. The sample data isin ESRI’s
Shaygfil e format, which represents polygors as alist of Cartesian co-ordinates. As this format does
not provide any explicit links between neighbauring pdygors, it is necessary to compare ech
polygon X with every other paygonin the data to identify those objeds that are aljacent to X. This
isacomplished using the spatial methods of Avenue's Polygonclass

Avenue's palygon intersection methods are used to identify the objeds line-adjacent and
point-adjacent to a particular polygon. The same technique is then used to identify the aljacency
relationships between these neighbouing paygors. This information is recorded as a cntext
predicae, as previously described, and saved to a Prolog source file. This file can then be loaded
into a Prolog sesgon and analysed by our structure matching algorithm. We now provide an

example of how our structure matching algorithm can classfy a paygonthrough inference



Walkthrough of Structure Matching Process

In figure 4 a graphical representation d the full contexts of two pdygors with toids 1 and 6 can be
seen. All padygors are @lour-coded with their current classficaion. Polygon 6 is currently
unclasgfied. Polygon 1is classfied (as a building), and will be used as a template in an attempt to

infer the feaure a@de of paygon 6.The ontext of paygon 1lis our source domain, while the

context of paygon 6is our target domain.

B Building A template polygon, 1, and the polygons
I Garden adjacent to it are shown on the left.

[ 1 Glasshouse A mssified bol & and th |

[ Unclassified n unclassified polygon, 6, and the polygons

adjacent to it are shown on the right.

Figure 4. An example of a template paygoncontext and an uelassfied pdygoncontext.

*  Wefirstly attempt to unquely map each pdygonthat is line-adjacent to 1to a poygonwith the
same feature mde that is line aljacent to 6. We succeed with the mapping [[2,10,[3,8]].

* Trying to generate asimilar mapping for point-adjacent neighbous, we develop the mapping
[[4,9],[5,7], which we ad to the mapping generated in the previous gep to get
[[2,101,[3,8,[4.9].[5,7]

*  Wenow try to map each pair of 1's neighbaurs that are line-adjacent to each ather to a pair of
6's neighbaurs that are line-adjacent to each cther, using the list of mappings we have
developed. We succeed with [2,4] > [109], [2,5] = [10,7], [34] = [8.,9, [3.5] = [8,7] and
[4.9 > [9.7].

* Repeding the dowve step for paint-adjacent neighbaur pairs, we succeed with [2,3] = [108].

* We have now generated a mapping from the source domain to the target domain that preserves
the structure of the source. We can infer that the feaure ade of the source “building”, is aso

the feaure ade of the target.

The Cartographic Structure Matching Algorithm is now described in detail .



The Structure Matching Engine

Our analogy algorithm takes as arguments two pdygontoids and searches for the mntext predicaes
that describe the topdogicd locdliti es of the paygors those toids reference If it can find a full
structural mapping between the two sets of neighbouing objeds, the two pdygors contexts are
analogous, and knavledge can be transferred from one domain to the other. The dgorithm fail s if
one of the paygorsisfoundto have aneighbou of unknown class as we naot allow inferencesto be

made on incompl ete data.

The Cartographic Structure Matching Algorithm

For any two given pdygors A and B whose @ntexts have been identified:

1. Ched that the lengths of the four lists that describe A’s context correspondwith the lengths
of the lists that describe B’ s context.

2. Crede an exclusive mapping from atoid in A’slist of line-adjacent neighbousto atoidin
B’slist of line-adjacent neighbous which has the same feature code. Add mapping to alist
of mappings. Repea until al toidsin the two lists have been mapped.

3. Crede an exclusive mapping from atoid in A’slist of point-adjacent neighbaursto atoid in
B’slist of point-adjacent neighbous which has the same feaure code. Add mapping to li st
of mappings produced by stage 2. Repeat urtil all toidsin the two lists have been mapped.

4, Using the list of mappings produced by stages 2 & 3, chedk that apair of toidsin A’slist of
li ne-adjacent neighbous mapsto a pair of toidsin B’slist of line-adjacent neighbaurs. If
not, bactradk and generate adifferent mapping list between A and B’s neighbous. Reped
until all pairsof toidsin the two lists of line-adjacent neighbou's can be mapped.

5. Using the list of mappings produced by stages 2 & 3, chedk that apair of toidsin A’slist of
point-adjacent neighbours mapsto a pair of toidsin B’slist of point-adjacent neighbous. If
not, bactrad and generate adifferent mapping list between A and B’s. Repeat urtil all
pairs of toidsin the two lists of point-adjacent neighbous can be mapped. At this paint, a
full structural mapping has been establi shed between the mntexts of A and B. This

establi shed analogy can now suppat inferencefrom one domain to the other.

As mentioned ealier, the first stage of the process prevents unrecessary seaching. It is
included for the sake of efficiency and is not necessary for the functioning of the dgorithm. Stage 2
tries to generate amapping from A’s line-adjacent neighbaurs to B’s line-adjacent; stage 3 dces
likewise for point-adjacent neighbous. The penultimate stage decks if these mappings can




translate A’s list of pairs of line-adjacent neighbous to B’s correspondng. Again, the final stage
does likewise for the lists of pairs of point-adjacent neighbous.

The mappings that are aeated in stages 2 and 3 are represented in Prolog as a list of two
toids. Thefirst toid is that of a poygonadjacent to A andthe secondis that of a polygonadjacent to
B. In searching for a structural match between two oljeds, it must be ensured that all mappings
from one objed’s attributes to the other objects attributes are of a 1-to-1 nature. Therefore, when
our algorithm creates a mapping between two toids, it removes baoth toids from the crrespondng

lists of neighbous.

In applying the established mappings in stages 4 and 5the commutative nature of line-
adjacency and pant-adjacency must be ansidered, as the ordering of pairs of adjacent neighbaours
isarbitrary. In chedking if [1,2] mapsto [3,4], we must ched if either 1 mapsto 3and 2mapsto 4
or if 1 mapsto 4and 2mapsto 3.1t shoud be noted that there may be more than ore full structural
mapping between two particular contexts. In the next sedion, we show some misclassficaion
detedion results that have been achieved.

Experimental Results

In the following 2 cases classficaion errors have been locaed in a particular data set through the

inspedion d polygors that are foundto have unusua contexts.

Pl

Figure 5.1, 5.2. Sample DNF data sets. Buildings are highlighted onthe left, roads ontheright.

Common sense tells us that one building canna be cntained within another building
withou any spacein between. A seach for such a cntext has reveded such a misclassfication, as
seaen in figure 5.1. In this case, it appeas that the largest highlighted pdygonin the view has been

erroneously clasdfied as a building. Similarly, we can say that each section o road must be



conreded to ancther stretch of road, hence aroad’s usefulness Any road pdygonthat is not line-
adjacent to another road pdygon must be ather misclassfied itself or be line-adjacent to ore or
more road pdygors that are in need of redassfication. In figure 5.2 we see such an unconreded

road pdygonthat has been identified through analogy.

Preliminary Evaluation

The Cartographic Structure Matching Algorithm has been used to generate a set of template
polygon contexts, which can suggest the most likely clasgfications for paygors that structuraly
match them. A large data set of high quality (well-classfied) poygons was used as a “training set”
for thistask. This consisted of an urban data set of over 46,000 pbygons and amainly rura data set
of over 6,000 pdygors. A very small number of these poygors were foundto be still unclassfied,
and the mntexts of any polygon adjacent to these were not considered. As the number of
neighbaurs a paygon fes increases, the number of possble topdogicd arrangements of these
neighbaurs (as described by the aljacencies between them) quickly grows. This causes a
correspondng steep increase in computational complexity when attempting structural matching on
these contexts. To avoid this, we abitrarily excluded pdygors with more than 10 neighbaurs from
the training set. Many of these mntexts would provide poa templates anyway, as their more

complex topdogies are, in general, more unigue.

Eadh time a ontext was found in the data set that was not isomorphic with an existing
template mntext, that context was recorded as a template itself. Asociated with each template is a
record of the number of paygors of each feaure ade that it structurally matched. For any given
paygon P (within the training data) whose mntext matches template T, the probability that P is of
classX can be calculated as:

# polygonsof classX matchingT

Probability Pis of classX = ;
# polygonsmatchingT

Obvioudly, the larger and more representative the training set that is used, the more confident we
can be @ou the results.



Number of Matches for a given Template Vs.
Highest Percentile Classification Indicated
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Figure 6. Chart showing statistical information on d templates generated fromtraining dda.

Figure 6 shows a scatter graph of all the templates derived from the training data, plotted as
the number of matches a particular template adieves against the percentage of thaose matches
attributable to the feaure code which provides the greatest number of matches for that template.
The X-axis measures the confidencein the recorded clasdfication probabiliti es. The geometricd
patterns evident along this axis are caused by the quantization inherent in the fradions being plotted
along the Y-axis. It can be seen from the graph that the more matches atemplate adieves, the more
likely it isto suggest an acaurate dasdfication. What this graph daes nat show isthe distribution o
the templates. There ae over 15,000templates plotted within the graph, bu 12,000 & them occur
only once within the data. These 12,000 pints are dl plotted at the same @-ordinate, (1, 10Q. It
seansthat agood popation d polygors can be preasely classfied based onarelatively small
number of frequently occurring templates. Most templates have had alow number of matches, so

that large training sets of datawill be required to evaluate their usefulness

Future Work
Our next task is to evaluate the usefulness of our structure matching technique & a dassficaion
tod. Thisinvalves using a set of templates derived from training data, as described in the previous
sedion, to classfy objeds within test data sets.

A logical extension d the aurrent fine-grained structure matching technique would be to
investigate amore generalised form of mapping. This might involve dlowing matches within a



cetain threshold. Madhine learning agorithms could be used to implement a more generic
clasgficaion system. This would allow additional information onthe context of an oljed to be
used: length of shared baders, area, and dstances between centres of poygors could be
considered. The neighbous’ neighbous etc. could also be examined. A learning algorithm would

dedde which attributes are more relevant.

Conclusion

We began by establishing the neal for an automated tod for classfying polygons in cartographic
data, and introduced the nation d using analogy to infer the required information. The Cartographic
Structure Mapping Algorithm has demonstrated the ability to suppat this transfer of knowledge
between damains within a geographical framework. Many polygors can be classfied based ona
small number of common templates, but much training datais required to fully evaluate our current
model. It is envisaged that broadening our representation d context and using machine learning to
generate arule-based expert system will produceimproved results. Of course, analogy alone canna
be expeded to solve the dasgfication poblem, rather, it will be a ¢assfier playing a part in a

robust dedsion making processthat models the human mind.
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