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ABSTRACT

In this paper we present two sets of empiricd data
evaluating the performance of a new Cleanup operator for
evolutionary approaches to the travelling salesman
problem (TSP). For raw data we have used standard road
mileage darts of the USA, Gred Britain and Ireland,
which enable us to generate a reference table with
appropriate dty to city distances. A wide variety of
standard genetic parameters (population size epochs,
mutation rate and seledion type) is explored, and results
dlow the mparison of performance both with and
without our cleanup operator. The deanup operator
improves the anvergence speead by reducing the number
of epochs required to identify a near-optimal tour; in each
instance asignificant reduction is convergence time was
ohserved.

Our empiricd observations show that assisting the
evolutionary operators through the use of cleanup gives
better performance on this evolutionary encoding. The
implicaion of these findings run contrary to the gparent
consensus towards a reduction in the number of genetic
operators required [1] by a genetic system for the TSP
[2,3]. In these works Fogel concluded that mutation alone
was sufficient for this encoding of the TSP problem,
regjeding the aosover operator because of its tendency to
introduce invalid tours into the population. We have
shown that by using the deanup ogerator in conjunction
with crossover we @an effed a more efficient seach than a
solely mutation-driven approadh.
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INTRODUCTION

Evolutionary agorithms are seach techniques based on
natural evolutionary systems, where the fittest individuals
survive longer than the rest and produce more offspring.
In a similar fashion, a population of solutions in an
evolutionary agorithm moves in the diredion of fitter
solutions. In the cae of the travelling salesman problem
this means that the shortest tours are given a greder
chance of being alowed to survive longer and produce
more tours thereby favouring shorter routes.

The Genetic Algorithm (GA) as originally proposed and
implemented by Holland [4] and aso by Goldberg [5]
consists of a string of bits representing individuals, which
are then evolved by the gplicaion of successive adions
of crossover, inversion and mutation.

It has been used to solve a wide range of different
problems from vision systems for image dassificaion to
gas pipeline flow control systems [5].

The travelling salesman problem is a well-known member
of the NP-Complete dass of problems [6]. Over the last
number of yeas it has returned to prominence with
reseach conducted on providing nea optimal solutions to
large TS problems by Fogel [7, 3] and Lawler [8].
Although these GA's have undergone some dterations, in
particular to the techniques of the crossover, selection [9]
and the mutation operators [7], they have been shown to
result in close to minimal distance TSP tour lengths.
These systems have relied on the use of fully conneaed
graphs as the method for deriving the distance between
cities, (nodes). They have dso relied on the use of some
form of weighting to negate invalid city tours, or through
the use of the implementation of a single genetic operator,
such as repeded large-scde mutation, this of course
maintains tour structure.

As has been noted by others who have dtempted to
provide solutions to the TSP using evolutionary means,
the usual genetic operators of crossover, reproduction and
mutation on binary strings are insufficient to solve the
TSP. As Mitchell [10] points out "some types of encoding
require specially defined crossover and mutation
operators for example the tree encoding used in the
genetic programming, or encoding for problems like the
Travelling Salesman Problem in which the task isto find a
correct ordering for a collection of objects. It is from here
that we began to explore the posshiliti es of developing
standard crossover and mutation operators that work well
with the encoding scheme that we have used.

We present a solution to red world travelling salesman
problems, that we have acomplished through the use of a
more restrictive method for cdculating distance between
cities and through the introduction of a new genetic
operator. This new operator Cleanup has been spedficdly
designed for use in red world evolutionary TSP systems.
Using roulette wheel seledion and a ambination of
standard/normalised fitness together with varying
mutation rates, crosover rates and dfferent numbers of
generations, it has been possble to significantly reduce
the length of TSP tours.
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RELATED RESEARCH

A number of differing seach techniques have been
applied to the travelling salesman problem, depth first
seach, hill climbing and neural networks [8, 11] all with
varying degrees of success

Fogel implemented a genetic solution that he cdled "An
evolutionary approach to the travelling salesman
problem". In this he propased that as an aternative to all
of the genetic operators which Holland [4] proposed in
1979 the emphasis should be on the behavioura
appropriatenessof the evolved tria solutions.

Tours were anstructed as grings of cities, and the initial
population was st at fifty. Evolution was driven by a
single mutation operation. This mutation operation was
loosely modelled on L. Fogel's "Evolutionary
Programming restricted to single state machines'[7]. A
small alteration of the eisting tour was aceomplished by
seleding a dty along the tour and then swapping this city
with another city that had also been randomly chosen. By
use of multiple mutation operations on the population
Fogel was led to believe that there was no dfference
between widespread mutation and the use of a aossver
operation. Fogel concluded that his approach, making wse
of mutation solely, creaded a random seach for new
offspring in the vicinity of the parents. This was in partial
contradiction to the hypothesis of Holland which stated
that "if successive populations are produced by mutation
alone, the result is a random sequence of structures drawn
from (all possible structures)"[4].

Fogel introduced population reduction to simulate the
scacity of resources as time proceals. This was
implemented by reducing the population size by 1 every
5000 dfspring evaluations, that is, equivaent to every
100generations.

Fogel concluded that simple mutation provided a better
end result, since if a dramatic difference in the link
between parent and offspring were permitted, the result
may well be worse than a random seach of al the ading
structures.

Fogel later implemented another genetic solution in which
he introduced a different approach to mutation and
enhanced his smulation of behavioural methods. The tour
was generated in the same manner as before. The
population was st at one hundred tours, double the
previous population. Each of the tours in the population
produced a new offspring through mutation. The best one
hundred individuals from each generation were seleded
for the next generation.

Here Fogel used a mutation strategy based on inversion.
Two pdnts are seleded at random along a tour and the
sub-string between the paints is reversed. To make the
evolutionary agorithm simulate natural systems even
more dosely Fogel designed a new technique of reducing
the length of the inversion string in the mutation
operation, linealy over time to some minimum as the
number of generations readed their maximum. This he
claimed smulated the deaease in behavioural difference
aqoss generations that is visible in retural systems, as
they beame better predictors of their environment.

The results found by Fogel were that for 30, 50 and 75
city tours his genetic dgorithm found solutions which
were better or at worst matched the previous best known
tour length. On atrial 1000city tour the result was found

to belessthan 5% to 7% worse than the previous best tour
length.

THE PROBLEM OF TOUR VALIDATION

It is important to note the distinction between
representational conventions of evolutionary algorithms
for the travelling salesman problem. In some gproades,
tours are diredly related to the dties in a distance dart
and in others they are mnstructed from a random graph.
Regardiess of the data, both approaches experience the
problem of invalid tours. A tour is invalid in the TSP
when a dty isvisited more than once

One solution has been the PMX partially matched
crossover system[12]. Thistechnique reduces the effed of
crosover by matching a sedion in ead individua and
then performing a limited crossover. This technique is
restrictive and results have only been published for 10 and
33 city tours. It isfor this reason that a new form of check
isrequired so as to manage the cdculation of solutions for
more significantly sizetours.

DATA

The evolutionary system used here makes use of red
world dstance data in the form of inter-city mileage
charts. The charts in these experiments were for the USA,
UK and Ireland. The ading for ead tour was constructed
asalist of cities represented by an integer value. The dty-
city routing distance was smply calculated by seleding
the two appropriate dties and then cross-referencing to
determine the distance, this then was used in the
cdculation of the raw fitness value for ead individual
tour. The use of this data source dso enables us to permit
travel between two cities in a particular diredion but not
in the reverse diredion, as in the drline industry and 1-
way dtreds. This differs ggnificantly from the type of
routing data normally used in Travelling Salesman
solutions such the graph data used by Fogel [2,3].

CROSSOVER & CLEANUP

Firstly, the genetic operators operate in the dassic genetic
method we can out line these as foll ows:

1. Generate the initial population P(0) at
random and set i = 0;

2. Reped until convergenceor time up.

= Evauatethe fitness of ead individua in
P(i);

= Sded parents from P(i) based on their
fitness.

=  Apply Crosover, followed by Cleanup
and then acording to mutation rate,
apply mutation.

Examining the aosover medchanism in detail, we an see
in Figure 1 parent strings (i) and (ii) with their randomly
seleded pivot points around which the aossover will be
applied. This produces the off spring depicted in (iii). This
new offspring of the two parent strings clealy is of the



corred length as that of its parent strings but does suffer
from the problem of replicaion of cities within the tour.
This occurs in the mgjority of tours generated from
crosover as implemented by our system and it is here
where the use of Cleanup is needed. Firstly cleanup pin
points the erors within the tour, that is those tours which
are in contravention of the TSP rules: tours must be of
equal length and cities can only be visited once
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Figure 1. Standard Crossver mechanism
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Figure 2. Cleanup operator operation

A chedk of the tour length is firstly completed and if the
tour is found to be of insufficient length the deanup
operator flags this and then continues to the next level of
chedks. The replicetion of cities within the tour is tested
for by reference to template tour, this template tour is
constructed at the very initialisation of the program and
importantly is an ordered tour of the numericdly
referenced cities.

This template, the new offspring and the geneticdly
repaired offspring are depicted in Figure 2. (i), (ii) and
(iii) respedively. By flagging those dties that have been
encountered in the offspring tour in a left to right manner,
cities that have been omitted in the new offspring can be
identified. Following this we eter the third phase of
cleanup, the reintroduction of those dties excluded in the
tour. The fourth and final phase of cleanup is a re-test of
the entire tour to finaly guarantee the wrredaness of the
final offspring population.

EXPERIMENT 1

Experiments were caried out using two models; one with
cleanup, and one without. The data used was a set of TS
problems, principally 30, 50, 75, 100 and 150city distance
charts. Throughout these experiments the mutation rate
was fixed at 3%, roulette-wheel seledion was used,
crosover occurred on ever generation, and the initial
population of the system was st at 100,

From figure 3, it is clea how the operation of the system
varies depending on the inclusion of the dean up operator.
This chart compares the number of epochs required to
generate tours of (nea) identicd length. Overall, Cleanup
out-performs the standard GA by up to a fador of four,

and the smallest improvement reduced the required
number of generation evaluations by just under quarter.
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Figure 4: Shortest tour comparison for 30-75 city
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Figure5: Shortest tour comparison for 100-150 city

More cnvincingly, the shortest tour produced by Cleanup
in every instance, out-performed that of the standard
evolutionary algorithm mechanism (see Figures 4 and 5).
Thus, not only does Cleanup converge faster on all given
comparisons, but produces better resultsin every instance.

EXPERIMENT 2

In a separate mparison with Fogel [3] the initia
population was st at 20. This is the only alteration with
the previous experiments. A smaller population promoted
afaster convergence on the shortest tour, while not unduly
affecting the distance of the shortest tour. This is in
agreement with findings of Mitchell [10] and Grefenstette
[13], both of whom have dso found that the use of small
population sizes can be alvantageous for seleded
optimisation problems.

We now compare the best results of our cleanup system
with the best results found by Fogel. We seethat the use
of a combined cleanup and crosover operator reduces the
number of offspring required for convergence. These
figures are for the 30, 50 and 75 city TSP: for more dired
comparison with Fogel [2, 3]. Figure 6 dsplays the
number of offspring generated, before @nvergence was



adhieved for both models. Again the deawup operator
drives the search towards convergence more dficiently.
Comparison is made using the Number of Offspring metric
favoured by Fogel rather than the goochs and generations
metrics.
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Figure 6: Fogel. Vs. Cleanup (GAGM)

All these experiments indicae that the deanup operator
has a very beneficial influence upon the operation of
evolutionary agorithms for the Travelling Salesman
Problem.

Perhaps the reasons for cleanup's success may lie in the
fad that "unfit" offspring undergo genetic repair before
being returned to the gene pod. Thus, our evolutionary
system combines evolutionary mechanisms with "genetic
engineging' to focus on useful solutions.

CONCLUSION

Evolutionary agorithms provide an efficient means of
discovering rea-optimal solutions to the travelling
salesman problem, although some validation of tours is
necessary. In this paper we have introduced cleanup, a
new genetic operator for the TSP, and evaluated its
performance on a variety of tour sizes. The resultsindicate
that the use of the deanup operator has a marked
influence on the number of generations necessary to
converge on a "shortest" tour. Furthermore, cleanup also
has a marked improvement on the final distance of the
shortest tour, in companion with standard GA solutions.
The deanup only validates and repairs tours and thus the
underlying genetic structure remains largely intad. We
deliberately chose to use milegge charts rather than
artificial graph tours, to simulate red world situations
such as 1-way streds, diversions, or invalid connedions.
When compared to previous work, our evolutionary
solution gves better tours faster, resulting in up to an 8%
reduction on the required number of offspring to be
evaluated.
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