AICS-200011™ Artificial IntelligenceandCognitiveScienceConference,
pp 110-119 Aug. 23-25,NUI Galway,lreland,2000.

LUDI: A Model for Geometric Analogies using Attribute Matching

A. Bohan, D. O'Donoghte,
Dept. Computer Science, NUI Maynoah, Co. Kildare, Ireland.

* Addressfor Corresponcence diarmuid.odonoghe@may.ie

Abstract

We review the work of Evans on graphical propationd andogies, identifying the objed mappngs
that underlie many such comparisons. The limitations of Evans ANALOGY model are investigated.
We then establish the role of attributes (colour, shape, patern etc) in such andogies and identify
two dstinct mappng dgorithms that are required by different classes of geometric andogy
problems. We identify the condtions under which the alternate algorithms are required to produce
a "best" answer. Finally, we describe a computationd model (LUDI) that automatically generates
the result for a large number of geometric andogies.

I ntroduction

The am of this projed is to automaticaly produce the result of a graphicd proportional analogy
(geometric analogy). These graphicd propational analogies are possbly more commonly
recognised as those that are used in human |1Q tests. Geometric analogies are included in 1Q tests as
they are ansidered to be problems in which a “high degree of intelligence for their solution” is
required (Evans, 1967. Any program adiieving adequate results on 1Q tests, may potentially pass
the Turing test. Asfar asthe Turing test is concerned, the program may be indistinguishable from
the human. This raises the question d that program having "red" intelli gence, a question that has
been the subjeda of huge discusson since Turing introduced it. However, Turing himself dismisses
the question ‘Can machines think?" by saying this question is "too meaningless to deserve
discusson’ (in Boden, 199), and we subscribe to this opinion.

Analogies play a central role in many cognitive processs, and so this is of great relevance
to the atificial intelligence community. Our investigation begins with the early work of T. G. Evans
and s ANALOGY model (1967). Thisis a program designed to solve those propational analogies
that are used in intelli gence tests. The program will either select one of the (supdied) candidate
answers as the crred answer, or al will be rejeded identifying a false analogy (in contrast our

LUDI model actually generates the answer).
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Gentner (1983) introduced the foundng reseach in the aea of analogy, and the central role
of analogicd mapping. She derived atheory, known as the Structure Mappng Theory that includes
the asertion that analogical mappings are based on predicate structure, rather than oljects as had
previously been thought. This revolutionary assertion, couded with her Systematicity Principle,
has formed the basis of most subsequent work in the area. In part, this projed is the modificaion a
update of Evans's work based on systematicity and the subsequent analogy framework.
Furthermore, we examine the role of attributes in geometric analogies, basing ou solutions grategy

uponthe mapping and transformation d attribute information.

Proportional Geometric Analogies

An andogy is a omparison between two damains, where one domain (the source) serves to
structure the @ntents of the second danain (the target). Such comparisons are used heavily in
leaning abou new concepts, where the source domain provides a structuring framework for the
target. For example, we may view light through the source domain of a wave, thereby highlighting
cetain properties. Alternatively, we may view light as a particle, thereby highlighting the quantum

nature of thisform of radiation.

A propationd andogy is of the form A:B::C:D, where A, B & C are given and D is
derived from applying the transformation derived from A to B, to C. We read such an analogy as A
isto B as C isto D. Typicdly, the source domain (A:B) identifies some tranglation(s), which must
then be gplied to C, yielding D. Hofstadter and Mitchell (1994 investigated propartional analogies
formed from letter strings; such as “aabb :: cc:?”. More mmplex and ambiguous problems
include "iijjkkiijjll :: xxyywz??'. A neura network approach to propational analogies has aso
been investigated (Jani and Levine, 2000).

Geometric andogies then, are graphical propartional analogies (seefigure 1), where each of
A, B and C identifies a geometric figure. (All Figures follow the same structure, with 3 boes
containing A, B and C, eat containing labelled oljects). ANALOGY (Evans, 1969 is a two part
algorithm that firstly decomposes graphic images drawn on a unit square into symbalic
representations. It then uses these descriptions to identify the required solution from the five

aternatives.

Our model accepts symbadlic descriptions of each damain - roughly correspondng to part 2
of ANALOGY. Thus, infigure 1, A is represented by the following assertions: (i nsi de(b, a),

circle(a), square(b)) while B is (above(a,b), circle(a), square(b)). C then



might be represented as (cont ai ned-in(2,1), triangle(l), circle (2)). We require
our model to generate the required result D, from this given information.

There ae anumber of trivial solutions to such problems that we do nd want LUDI to
generate. Firstly, the solution D might be an exad copy of B, so every problem could be solved by
creding adugicate of B - regardlessof A, C, or any transformations. Secondy, produce no answer
based onthelogic that A is nat identicd to C, and thus no transformation can apply. Third, D is an
exad copy of C because the A:B transformation might only apply to exad dugdicates of A. Such
answers would na generaly be acepted in an equivaent "human" IQ test, and we do nd want
LUDI to include such simplistic interpretations of geometric analogy problems. The required

solutionthenis: (above(1,2), triangle(1l), circle(2)).
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Figure 1. A simple geometric anadogy

Deriving the mrred solutionto the problem in Figure 1 (above) necesstates the identificaion d the
following inter-domain mapping: (i nsi de: cont ai ned-in, a:1, b:2).A variety of mapping
models have been developed to identify the predicate mapping between the source and target
domain, and hence the objed mapping. These models include SME (Fakenhainer, Forbus and
Gentner, 1989, ACME (Holyoak and Thagard, 1990, and IAM (Keane and Brayshaw, 1988§.
Because there is usually a very high degree of structural similarity between source and target in
geometric analogies, the mapping model used by LUDI is of little cmnsequence, bu an incremental

modd was chosen.

Evans ANALOGY program

Because the inpu to ANALOGY (Evans, 1967 is in the form of line drawings, the program is
divided into two parts. Part one decompaoses the input figures into subfigures, and various properties
and relations between these subfigures are computed. This generates domain descriptions that are
compaosed of dats, straight-line segments and arcs of circles. Relations between the identified
objeds are dso identified, resulting in expressonslike (1 NSI DE P2 P3) being generated.



ANALOGY identifies passble matchings between A and B, as it does not know which
objedsin A relate to which oljedsin B. One significant difference between ANALOGY and LUDI
is that ANALOGY does not reagnise the same objects between A and B, treating these &
completely different. In contrast, LUDI knows that A and B contain the same objeds - the same
labels being applied in A and B (seefigure 1).

This new information, which is a new description d the input figures, is then passed along
to part two. This new information is used to attempt to construct the best ‘rule’ that transforms
Figure A into Figure B, and Figure C into exadly one of the five candidate answers. One of the
five posgble answers can then be selected using this rule, identifying the @rred answer, or
aternatively they can all be deemed false. ANALOGY identifies an oljed mapping between A and
B using its matchab routine, stating that "the basis for this matching is the similarity information
given as inpu to pat 2" (Evans, 1967. In contrast, LUDI derives its matching based on the
structure of the predicate representation (Gentner, 1983.

Attributesin Geometric Analogies

Evansincludes few examples of geometric analogies that include dtributes, such as that depicted in
Figure 3 (Evans's Case 13). Properties of objects, such as the shaded property, are run through part
2 o ANALOGY only, ANALOGY wasn't designed to identify these properties. Little detail is
given on hav this is aciieved - but a single "shaded" attribute is the only one included in his
examples. In particular, Evans does nat explain hov to ded with multiple atributes, nor how
attribute mappings are identified and wsed. We shall addressthis topic in detail in the sedions on
Local and Global attribute matching.
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Figure 2: A Geometric Analogy involving atributes

LUDI: A Computational Mod€

We now emphasise the importance given to attributes in propational analogies. This however
contradicts Gentner’s Structure Mapping Theory, uponwhich the fourdation d analogy structure is
based. Although ou theory is essentialy based on Gentner's, this treatment of attributes
differentiates it from hers. According to Gentner (1983) “An analogy is a comparison in which

relationd predicates, but few or no ohed attributes, can ke mapped from base to target”. We
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oppcse this dismissl of attributes, and adually placegreat importance on attribute matching in the
derivation d geometric analogies. The dtributes of the objeds are obviously imperative, in order to

distinguish various feaures sich as ape, colour, pattern etc.

We now define two concepts central to the mnceptsin LUDI. A mappng is a source:target
pair of concepts that forms the basis of all analogicd comparisons (Gentner, 198). A
transformation identifies a dhange in information between A and B, whadly within the source
domain. This transformation will | ater be goplied to the target C, generating the solution D. There
are two types of transformation; relationd transformation identifies how relations change between
A and B. Figure 3 uses the relational transformation (i nsi de->bel ow). An attribute
transformation identifies an attribute dhange happening to an oljed between A and B, in figure 2

the attribute transformation (pl ai n- >st ri ped) is central to generating the required solution.

Firstly, we briefly describe how we identify the inter-domain mapping. This focuses on parts
A and C, as these ae the only complete sedions that can be placed in correspordence We foll ow
the IAM (Keane et a, 1989 model and identify root predicates, which identifies mapping that are
then elaborated. As mapping in such problems is a relatively straight forward task, we shall not
dwell onit here. However, we do pant out that our mappings are based on pedicate structure rather
than the objea simil arity technique used in ANALOGY.
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Figure 3: A geometric andogy requiringwith attribute matching

To suppat the matching of attributes, LUDI uses a shall ow attribute-type hierarchy. The atribute-
types suppated are; shape (square...), ori entati on (faceup...), col our (red, white...), and
pattern (striped, dain...). LUDI alows attribute-matching orly between attribute-values of the
same dtribute type. Thus, in Figure 2 above, the dtributesin B (gr ey(a) and st ri ped(b)) will be
applied to the equivalent objeds in the newly generated D. The atribute hierarchy suppats objeds

with multiple dtributes (squar e, bl ue, striped, face-down) etc.



L ocal Attribute Matching

The mgjority of geometric analogies can be handed by "locd" attribute matching (the only attribute
matching example in Evans (1967) is of this type). By this we mean that we identify the required
attribute transformation by examining pairs of correspondng objects in isolation, and the &tributes
of these objeds. In figure 4, olject a is transformed from grey to white, and this is identified
withou referenceto any other objects. This transformation rule is then applied to oljed 1, which is
the mapped oljed of a. The dtribute transformation for objed b is identified in a similar manner.
All examples in this ®dion rely on this locd attribute matching scheme. Indeed, in Figure 4 and
thereisno "genera" rule that can be gplied to all i nstances of the gr ey attribute - highlighting the

necesgty for thislocd matching scheme.

If there is an attribute transformation between A and B, then applying this transformation to
C requires that the mapped oljed in C has the same dtribute & A. In figure 4, olject a identifies
the rule grey(a)->white(a), which is then applied to the mapped olject 1. A similar

transformation rule can beidentified for object b - withou referenceto any other objects.

The null-transformation condtion must also be handled, by identifying that an olject has
the same dtributesin A and B. As aich, this null-transformation reed na be represented explicitly.
Applying this null-transformation to the objects in C leaves them unaltered. Thus, we do nd care if
null-transform attributes are the same between A and C or nat. In figure 4 the shape dtribute does
nat change between A and B, representing a null -transformation condtion. Thus, the shape dtribute
in C is dso left unchanged - yielding the required attribute information circle(1) and

circle(2).
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Figure4: A Simple Local attribute matching problem.

Figure 5 matches multiple atributes (col our, pattern...) between the source ad target.
However, the solution can be generated by examining sourcetarget objed pairs in isolation and

deding with the atribute transformations one-at-a-time (asuuming we have the sourceitarget

mapping).
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Figure5: A ComplexLocal attribute matching problem.
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Here, the mapping is (a: 1, b: 2, c: 3), and we @an dea with ojeds b and 2inisolation. B is
light-grey and ddted, becoming light-grey and striped. This transformation can be gplied to olject
2 with a similar outcome. Obvioudly, all other predicate and attribute transformations are gplied
generating the required solution. The important fador is that attribute transformations are identified

between isolated olject pairs.

Global Attribute Matching

In contrast to locd attribute matching, LUDI also solves geometric analogies relying on "global”
attribute matching. In figure 6, any attempt to generate asolution based onexamining isolated pairs
of objedsis doamed to falure, and (for this example) it isthe pat t er n attribute that generates this
ambiguity. Thisis adired result of bath patterns of a (in A and B) and the pattern of 1 in C being
different - thereis noreasonable basis for either altering, or not altering, the pat t er n of objed 1 in

the solution.

In fad, LUDI uses this dis-similarity of attribute values between A, B and C to help it
determine whether the global or the locd attribute matching algorithm shoud be enployed for a
particular attribute type. (LUDI's global attribute matching has only been tested on poblems where
asingle atribute type requires the global algorithm, while dl other attribute types rely on the locd
matching algorithm. Because LUDI treds each attribute type independently it could handle multiple

global attributes, bu this remains as future work).



Figure 6: A Globd attribute matching problem

Rather than isolating object pairs as before, LUDI isolates the "problematic’ attribute type
(pat t er n) in the source, thereby identifying a global series of attributes and their transformation
between A and B. We cdl this globd asit dedswith all source objeds smultaneously (rather than
pair-wise). This identifies the global attribute transformation (stri ped->pl ai n, spotted-
>striped...), and when applied to the target generates stri ped(1) and pl ai n(2) etc.
Ambiguows attribute transformations can occur between A and B, bu such problems have
ambiguous answers (if any). LUDI does not make an explicit ched for such nonanalogies. Of
course LUDI can aso dfferentiate between the problems (and perts thereof) that require the usual
locd attribute matching algorithm, and those that require the global attribute matching a gorithm.
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Figure 7: Ancther Globd Attribute Matching problem

Consider the result of applying alocal attribute matching algorithm to the example in Figure
7. The sourcedomain (A, B) identifies an attribute transformation (st r i ped->hased) for objed a.
But the analogy maps a to 1, but object 1 doesn’t contain enough attribute information to alow us
include the dtribute hashed. Thus, locd attribute matching would generate two plain olgectsin D.
But global attribute matching agorithm allows attribute transformations to be gplied that
originated from nonmapped oljeds. The fact that 1 (in A) and 2 (in C) have the same pattern
attributes is aufficient to allow the transformation rule to be gplied. So global attribute matching
correctly generates the target; above(1, 2), triangle(1l), t-shaped(2), hased(2).

This ability to handle a ompletely different category of analogy grealy increases the range
of problems of that can be handled by LUDI. Furthermore, LUDI identifies that attributes can be



dedt with by two very different strategies in geometric analogies, and this perhaps, is partly a
justification for Gentner's (partial) dismissal of attributes.

Conclusion

We examine the Evans (1967) ANALOGY model of geometric analogies, bu focus on problems
that place amuch greater emphasis on the atributes of objeds. ANALOGY does nat address the
general problem of identifying an attribute transformation. Furthermore, we require that LUDI
adually generates the solution, rather than selecting a solution from five candidate solutions. To
suppat such analogies we utilise a smple atribute-type hierarchy, identifying attribute
transformation is the source (A:B) only between attributes of the same type. Such transformations

are gplied to the target C, generating D.

Significantly, LUDI identifies two dfferent classes of attribute transformation, local and
global. The first can be solved by dealing with (sourcetarget) object pairs in turn, while the other
deds with attribute types across all source objeds. LUDI highlights the importance of attribute

matching in geometric analogies.
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