
Kintinuous: Spatially Extended KinectFusion

Thomas Whelan, John McDonald

Department of Computer Science, National of Ireland Maynooth, Co. Kildare, Ireland.

Email: Thomas.J.Whelan@nuim.ie

Michael Kaess, Maurice Fallon, Hordur Johannsson, John J. Leonard

Computer Science and Artificial Intelligence Laboratory (CSAIL),

Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.

Abstract—In this paper we present an extension to the
KinectFusion algorithm that permits dense mesh-based mapping
of extended scale environments in real-time. This is achieved
through (i) altering the original algorithm such that the region
of space being mapped by the KinectFusion algorithm can vary
dynamically, (ii) extracting a dense point cloud from the regions
that leave the KinectFusion volume due to this variation, and, (iii)
incrementally adding the resulting points to a triangular mesh
representation of the environment. The system is implemented
as a set of hierarchical multi-threaded components which are
capable of operating in real-time. The architecture facilitates
the creation and integration of new modules with minimal
impact on the performance on the dense volume tracking and
surface reconstruction modules. We provide experimental results
demonstrating the system’s ability to map areas considerably
beyond the scale of the original KinectFusion algorithm including
a two story apartment and an extended sequence taken from a
car at night. In order to overcome failure of the iterative closest
point (ICP) based odometry in areas of low geometric features we
have evaluated the Fast Odometry from Vision (FOVIS) system
as an alternative. We provide a comparison between the two
approaches where we show a trade off between the reduced
drift of the visual odometry approach and the higher local
mesh quality of the ICP-based approach. Finally we present
ongoing work on incorporating full simultaneous localisation and
mapping (SLAM) pose-graph optimisation.

I. INTRODUCTION

In recent years visual SLAM has reached a significant level

of maturity with a number of robust real-time solutions being

reported in the literature [9]. Although these techniques permit

the construction of an accurate map of an environment, the fact

that they are feature-based means that they result in sparse

point cloud maps that cannot be used directly or have limited

utility in many robotic tasks (e.g. obstacle avoidance, path

planning, manipulation, etc.). This issue has motivated the

development of dense mapping approaches that aim to use

information from every pixel from the input video frames to

create 3D surface models of the environment [12, 15]. The

emergence of RGB-D cameras, and in particular the Microsoft

Kinect R©, has seen this work being taken a step further. New-

combe et al. introduced the KinectFusion algorithm [11] which

uses a volumetric representation of the scene, known as the

truncated signed distance function (TSDF), in conjunction with

fast iterative closest point (ICP) pose estimation to provide a

real-time fused dense model of the scene at an unprecedented

level of accuracy.

Fig. 1. Real-time 6DOF extended scale map reconstruction of a dataset
captured using a handheld Kinect traversing multiple rooms over two floors
of an apartment. (see Section V-B)

However this algorithm does suffer from a number of

limitations in part derived from the chosen underlying TSDF

voxel model. These limitations include an inflexible surface

model that cannot properly model deformations, the inability

to use the system in an unbounded extended area and tracking

failures in environments with poor 3D geometry.

In this paper we present ongoing research to extend the work

of Newcombe et al. to permit KinectFusion style mapping

in an unbounded environment in real-time. At any point in

time our system maintains a TSDF of the region of space that

is currently being mapped. The region of space represented

by this TSDF varies dynamically during processing. As new

regions of space enter the TSDF, previously mapped regions

are extracted into a more parsimonious triangular mesh repre-

sentation.

We present results that demonstrate the technique’s ability

to create highly detailed maps of extended scale environments.

We also present some early stage work which allows the

KinectFusion tracking and surface reconstruction algorithm to

function correctly in areas with few 3D features.



II. RELATED WORK

Other researchers have addressed the problem of spatially

extended mapping with RGB-D cameras however they have

taken more traditional approaches to localisation and scene

estimation and therefore have required post-processing of the

map to generate a representation suitable, for example, for

navigation [7]. Henry et al. [6] combine visual feature match-

ing with ICP-based pose estimation to build a pose-graph

which they optimise to create a globally consistent map. The

resulting point cloud map is post-processed to generate a surfel

model that significantly reduces the map storage requirements

whilst providing a visually smoother representation of the

environment. Endres et al. [3] developed a similar system for

computing globally consistent pose-graph maps from which

they derive an efficient volumetric model of the environment

that explicitly represents free space and unmapped areas.

Audras and Comport [2] present an approach by defining

a warping function that incorporates both depth and graylevel

information to map the appearance of the curent image to that

of a reference image. Pose estimation is then achieved through

a non-linear least squares cost between the warped image and

the original image. Real-time performance is achieved with

the resulting map being constructed by stitching individual

depth maps from the keyframes based on their computed pose.

However given that the map does not fuse information in a

manner similiar to the KinectFusion algorithm it does not

achieve the same level of fidelity and does not make any

attempt to derive a surface representation of the environment.

Recently Pirker et al. [13] presented the GPSlam algorithm

that combines sparse appearance-based simultaneous localisa-

tion and mapping with dense volumetric modelling of large

scale environments. Here they separate the processing into

either tracking or exploration based on a simple test of the

volume of previously mapped space in the current view. An

interesting aspect of the work is a framework for the detection

and correction of inconsistencies during updates and loop

closures. This approach may be complimentary to ours and

is something we are currently investigating.

During the writing of this paper we became aware of a

similar effort to ours that is currently underway by Francisco

Heredia and Raphael Favier [1]. The main differences between

their solution to date and the work reported here is that our

implementation is capable of full 6-DOF camera motion, ex-

traction of point clouds as they leave the KinectFusion volume,

incremental mesh construction of the extracted points, and

hence spatially extended mapping. Furthermore, we present

first results of an extended system that integrates place recog-

nition for loop closure detection, pose-graph optimisation

through iSAM, and depth map synthesis for reintegration of

the mesh into the KinectFusion volume.

III. APPROACH

In this section we describe the improvements we made to

the KinectFusion algorithm. We based our system on the open

source C++ implementation of the KinectFusion algorithm

released by the PCL project [14].

At the core of the KinectFusion algorithm is a truncated

signed distance function (TSDF), a volumetric representation

of the scene, where each location stores the distance to the

closest surface. A weight that is proportional to the uncertainty

of the surface measurement is also stored for each value in

the TSDF. To integrate the raw data from each new frame

into the TSDF, KinectFusion first computes a vertex map and

normal map pyramid. This pyramid is then used to compute the

pose of the camera using ICP in conjunction with a predicted

surface model derived from the current TSDF. Extraction of

a predicted surface from the TSDF is achieved by detecting

the zero crossings through a GPU based raycasting operation.

Given the output of the ICP procedure, new measurements

are integrated by first transforming them into the frame of

reference of the global TSDF. The TSDF is then updated via a

weighted running average using the weights mentioned above.

The weights themselves either accumulate over time resulting

is an averaging process over all measurements or are truncated

at some maximum value resulting in a moving average,

allowing reconstruction of scenes with dynamic object motion.

A. Continuous Representation

As described by Newcombe et al. [11], the surface currently

being reconstructed and tracked by the system is represented

by a TSDF. This voxel data structure is implemented as a

3D array stored in GPU memory with each cell containing

a distance value and a weight. All computation involving the

TSDF including tracking and integration is carried out on the

GPU. There are two main parameters used to configure the

TSDF, namely the size of the TSDF in voxels vs and the

dimension in meters d (assuming a cubic TSDF volume as we

do henceforth). These two values affect the size of the area

which can be reconstructed and the resolution of the resulting

reconstruction, which in turn affect tracking performance and

accuracy. The metric size of one voxel is simply calculated

as:

vm =
d

vs
(1)

The 6DOF pose of the camera within the TSDF at time i,

denoted by Ci, is represented by a 3 × 3 rotation matrix Ri

and a 3×1 translation vector ti. We set the origin of the TSDF

coordinate system to be positioned at the center of the TSDF

volume with the basis vectors to be aligned with the TSDF

axes. The initial pose of the camera is set to R0 = I, t0 =
(0, 0, 0)⊤.

Unlike the work of Newcombe et al. we do not restrict

the tracking and surface reconstruction to the region around

the point of initialisation of the TSDF, but rather permit

the area mapped by the TSDF to move over time. This is

implemented with a cyclical buffer type data structure which

allows us to continuously augment the reconstructed surface

in an incremental fashion as the camera translates and rotates

in the real world. The basic process of our system is:

1) Check how far the camera is from the origin.



2) If above a specified threshold, virtually translate the

TSDF so that the camera is once again centred.

a) Extract surface from region no longer in the TSDF

and add to pose-graph

b) Initialise new region entering the TSDF as un-

mapped

The main configurable component of this system is a

movement threshold b which denotes the distance in meters

in all directions from the current origin that the camera may

move before the TSDF recentres.

The system functions identically to the original KinectFu-

sion algorithm while the camera remains within the region

encompassed by the movement threshold b. Upon crossing

this boundary in any one of the three translation dimensions

x, y and z, the TSDF volume is virtually translated about the

camera pose (in discrete voxel units) to shift the camera to

within a distance of less than vm from the TSDF origin. The

new pose of the camera Ci+1 after a boundary crossing is

given as:

Ci+1 = (Ri+1, t
′
i+1) (2)

Where Ri+1 is obtained from the standard KinectFusion

algorithm and t′i+1 is calculated by firstly obtaining the

number of whole voxel units crossed u since the last boundary

crossing:

u =

⌊

ti+1

vm

⌋

(3)

Subtracting u from the unshifted ti+1 gives,

t′i+1 = ti+1 − vmu (4)

Finally, we compute the global position of the new TSDF,

gi+1 as:

gi+1 = gi + u (5)

where the position of the intial TSDF is given by g0 =
(0, 0, 0)⊤. Note in the case where the camera does not cross

any boundary between two frames the vector u is zero and as

such gi+1 = gi.

Following a boundary crossing, gi+1 can be used in con-

junction with t′i+1 to produce a new pose in our pose-graph

(detailed in Section III-C) while the u quantity is used to

extract out a “slice” of the TSDF surface which moves out of

one side of the cubic 3D voxel array before we calculate a

cyclical offset for future interactions with the array (detailed

next in Section III-B).

B. Implementation

In order to efficiently allow the TSDF voxel array to move

relative to the tracked surface and recentre itself around the

camera, as opposed to moving considerable regions of voxels

within the array, we simply treat the array as cyclical and hence

need only to update the base index offsets for each dimension

of the array.

There are two main parts of the KinectFusion algorithm

which require indexed access to the TSDF volume; 1) Volume

Integration and 2) Raycasting, both of which access individual

elements in the TSDF volume through direct array indexing.

Functionality with a continuously changing base index has

been achieved by modifying how this indexing is performed.

When looking up an element at index (x, y, z) in a cubic 3D

array stored in row major order with dimension vs the 1D

position a can be calculated as:

a = (x+ yvs + zv2s) (6)

At the latest time i the gi vector described in Section

III-A contains the number of voxels we have travelled in each

dimension. By use of the modulo operation the indices passed

into Equation 6 can be modified to function seamlessly with

a cycling base index provided by the value in gi:

x′ = (x + gix) mod vs (7)

y′ = (y + giy) mod vs (8)

z′ = (z + giz) mod vs (9)

a = (x′ + y′vs + z′v2s) (10)

Also mentioned in Section III-A is the extraction of the

surface that falls outside of the boundary of the TSDF when

it recentres. The u quantity calculated in Equation 3 is used in

conjunction with gi to index a 3D slice of the TSDF to extract

surface points from. Surface points are extracted by casting

rays orthogonally along each dimension of the TSDF slice

where zero crossings in the distance values are extracted as

vertices of the reconstructed surface. The 3D slice which was

just ray cast is then zeroed to allow new surface measurement

integration. The extracted vertices are downloaded from GPU

memory and added to the point cloud set Mi for the camera

pose at time i.

This orthogonal ray casting can result in duplicate points if

the TSDF voxel array is obliquely aligned to the reconstructed

surface. In order to remove these duplicate points we apply

a voxel grid filter. This filter overlays a voxel grid (in our

implementation with a leaf size of vm) on the extracted point

cloud and returns a new point cloud with a point for each

voxel that represents the centroid of all points that fell inside

that voxel.

C. Pose-Graph Representation

To represent the external mesh we employ a pose-graph rep-

resentation, Q, where each pose stores an associated surface

slice. Each time the camera pose moves across the movement

boundary and triggers a TSDF cycle, a new element is added

into Q. In reality we only add to the pose-graph on boundary

crossings that result in a minimum number of points extracted

from the TSDF surface as a pose without any associated

surface is useless. Figure 2 shows a simplified 2D example of

the movement of the camera and the TSDF virtual frame over

the course of five consecutive frames while Figure 3 shows the

final step with greater detail highlighting the t′ vector. At the

end of the example shown Q, would contain three elements



Fig. 2. In this figure the global position of the TSDF (denoted by gi) is
updated twice over the course of five frames. The continuous pose of the
camera Pi is shown for each of the five frames. The current TSDF virtual
window in global space is shown in teal, the current movement boundary is
shown in dark brown and the underlying voxel grid quantization is shown in
light dashed lines. This simplified example has b = 1 and vs = 6.

Fig. 3. The figure gives a more detailed look at the value represented by
the t′ quantity at the end of the example shown in Figure 2.

from times i = 0, 2 and 4. Each element n in Q is composed

of four components computed at the corresponding pose time

i such that:

Qn = (gi, t
′
i, Ri,Mi) (11)

D. Mesh Generation

The process described in the three previous sections results

in a system which continuously streams a dense point cloud

to main system memory as the camera moves through an

environment. Given the quality, density and incremental nature

of this point cloud, real-time streaming mesh computation is

feasible. By extracting with a slight overlap in each TSDF

volume slice (two voxels in our implemention) we can produce

a seamless and continuous mesh.

We note that there are other approaches to surface extraction

such as marching cubes, however in the current work we

have exploited the existing raycasting operation to minimise

the time to extract the data, delegating the mesh construction

procedure to the CPU.

As new poses and associated TSDF volume slices are

streamed from the GPU memory, they are immediately fed into

a greedy mesh triangulation algorithm described by Marton

et al. [10]. The result is a high polygon count surface rep-

resentation of the mapped environment. Additionally as this

is stored in system memory the size of the computed mesh

surface is bounded only by available memory, with sample

values detailed in Table I.

E. Visual Odometry

A critical shortcoming of the original KinectFusion sys-

tem is its inability to function in environments with a low

number of 3D geometric features. An obvious approach to

ameliorating this issue is to incorporate visual odometry (VO)

into the processing pipeline. As part of one of the more

experimental aspects of our system we have substituted the

KinectFusion ICP odometry estimate with the output of the

feature-based FOVIS visual odometry system [7]. Results from

this development are presented independently in Section VI

which demonstrate the potential advantage of combining both

approaches.

IV. SYSTEM ARCHITECTURE

In order to provide truly constant time mapping and locali-

sation, bounded only by memory capacity, we adopted a multi-

level threaded system architecture based on parallel processing

and thread wait and signal mechanisms in between each level.

This design allows the “front-end” TSDF tracking and surface

integration to run without having to wait for operations on the

outputted point cloud slices to complete.

Upon encountering a boundary crossing and subsequently

outputing a new pose-graph element, the top level TSDF

thread pushes back this new element to a vector of such

elements and signals the CloudSliceProcessor thread to begin

processing the new data. The CloudSliceProcessor determines

the transformation for the extracted point cloud of each slice

required for map rendering and stitching and also carries

out the voxel grid downsampling discussed in Section III-B.

Once this component is finished processing, it signals all other

ComponentThreads so they may begin processing of their own.

A scalable and easily extendable modular system of

threaded independent components is achieved by inheritance

and polymorphism. By means of inheritence and polymor-

phism in C++ we derive a base class for all bottom level

ComponentThreads, allowing easy creation and destruction of

such threads and sharing of commonly used data (e.g. the pose-

graph and mapped surface so far). As an example the mesh

generation functionality of our system discussed in Section

III-D is implemented as such a thread, along with many of

the work in progress extensions we discuss later in Section

VII. This scalable and easily extendable modular system of

threaded independent components provides a very cohesive

and maintainable interface for processing the output of the

main TSDF tracking and surface construction thread. The only



limitations are those imposed by processing power, such as

number of CPU cores and amount of main system memory.

Using this incremental system architecture in combination

with the techniques described in Section III we have been

able to densely map extended areas in real-time with no

performance impact as the size of the surface grows.

V. EXPERIMENTAL EVALUATION

As part of the ongoing development of the system we

have carried out a number of experiments evaluating both the

qualitative performance of the system and the computational

performance of each of the components. This section describes

the experimental setups we used.

A. Hardware

For all tests we ran our system on a standard desktop PC

running 32-bit Ubuntu 10.10 Linux with an Intel Core i7-

2600 3.4GHz CPU, 8GB DDR 1333MHz RAM and an nVidia

GeForce GTX 560 Ti 2GB GPU. The RGB-D camera used

was a standard unmodified Microsoft Kinect.

B. Datasets

All data was recorded on a laptop computer with a human

controlling the Kinect. The capture rate was 15FPS due to

the hardware limitations of the capture platform. We evalu-

ated three datasets in the context of continuous dense visual

SLAM and mesh generation as well as a fourth dataset which

evaluates the performance of FOVIS odometry in place of ICP

odometry. A value of vs = 512 and b = 14 was used for all

tests. The four datasets were as follows :

1) Walking within a research lab, (LAB).

2) Walking within and between two floors of an apartment,

(APT).

3) Driving within a suburban housing estate at night, with

the camera pointing out of a passenger window, (CAR).

4) Walking the length of a straight corridor (VO vs. ICP

evaluation dataset), (CORR).

VI. RESULTS

In this section we present both qualitative and computational

performance results for all four datasets.

A. Qualitative Performance

Qualitative results are provided in the associated video con-

tribution where we show the output of the system over the four

datasets mentioned in the previous section. It should be noted

that in the associated video the visualisation thread was run-

ning at a lower priority than the main TSDF update thread. For

this reason, at points where the surface has grown quite large

the system will appear to slow down. However, this slow down

is restricted to the visualisation thread only while tracking and

mapping is in fact running in real-time and not dropping any

frames. Our video contribution and point clouds are available

at http://www.cs.nuim.ie/research/vision/data/rgbd2012.

We have also provided figures of the final outputs of the

system on the APT, CAR, and LAB datasets in Figures

Fig. 4. Map reconstruction of indoor handheld research lab dataset.

1, 5, and 4, respectively. As can be seen from the results

in the video along with the data presented in Table I the

scale of the environments mapped is considerably larger than

what was previously possible with the standard KinectFusion

algorithm. Furthermore, the detail of the resulting maps and

their ability to model occlusions within the environment is

maintained (e.g. see inset on Figure 4). A reduction in model

smoothness is apparent in the FOVIS dataset, this is due to

the fact that the ICP odometry matches depth frames against

the dense volume accumulated from numerous past frames

whereas FOVIS odometry is purely based on frame to frame

correspondences.

B. Computational Performance

Given the asynchronous nature of the different components

of the system we evaluate the computational performance of

each level of the thread hierarchy discussed in Section IV

separately. In particular we are interested in the framerate of

the top level TSDF front-end tracking and surface mapping

thread, the speed of the intermediate CloudSliceProcessor

(CSP) thread and finally the performance of the bottom level

ComponentThreads, namely the Mesh Generation module.

We also evaluate the computational performance of FOVIS

visual odometry estimation versus the original ICP odometry

estimation.

In Table II we present execution time results for each

system component on all datasets. These measurements were

recorded with all visualisation modules disabled. The values

shown for the TSDF and CloudSliceProcessor components are

the maximum average execution times in milliseconds where

the average is computed over a thirty frame sliding window

throughout the experiments. The values listed in the Mesh

Generator row indicate the average and maximum number

of cloud slices in the mesh generation thread queue when

the data is played in real-time at capture rate (15FPS in all

cases), formatted in the order average/maximum/total amount

of cloud slices. The execution time of the TSDF update for

each dataset shows that although the data was only captured

at 15FPS the system is capable of executing at the full

http://www.cs.nuim.ie/research/vision/data/rgbd2012


Dataset LAB APT CAR CORR

TSDF Volume Size (m) 6 6 20 10

Pose-to-pose Odometry (m) 31.07 42.31 136.18 56.08

Bounding Cuboid (m) [x, y, z] [14.05, 4.99, 10.54] [11.22, 6.93, 6.23] [81.56, 22.77, 81.47] [5.25, 8.3, 58.67]

Bounding Cuboid Volume (m3) 739.7 483.8 151332 2558.77

Vertices (without overlap) [size (MB)] 1.2× 106 [18.34] 1.2× 106 [19.1] 8.8× 105 [13.57] 1.6× 106 [24.59]

Mesh Triangles (with overlap) [size (MB)] 2.3× 10
6 [88.21] 2.5× 10

6 [93.24] 1.5× 10
6 [62.97] 3.1× 10

6 [117.7]

TABLE I
SUMMARY OF PROCESSING AND MAP STATISTICS FOR EACH OF THE DATASETS DESCRIBED IN SECTION V-B.

Fig. 5. Map reconstruction of an outdoor dataset captured from a car. Inset: zoomed region showing detail level of the final map.

Dataset LAB APT CAR CORR

TSDF (ms) 33.94±3.54 33.83±4.85 36.79±4.49 41.25±7.03

CSP (ms) 3.53±3.4 3.52±3.38 2.62±2.39 4.7±3.87

Mesh Gen. 1.27/5/135 1.36/7/178 2.57/25/254 2.28/6/220

Odometry ICP ICP ICP FOVIS

TABLE II
COMPUTATIONAL PERFORMANCE RESULTS FOR LAB, APT, CAR AND

CORR DATASETS, SHOWING THE MAXIMUM AVERAGE COMPUTATION

TIMES FOR THE KINECTFUSION (TSDF), CLOUDSLICEPROCESSOR

(CSP), AND THE AVERAGE/MAX/TOTAL QUEUE SIZES FOR MESH

GENERATION.

30FPS frame rate of the Kinect sensor. Additionally it can

be seen that our extension to the original algorithm does not

affect the real-time performance of the system. The processing

done by the CloudSliceProcessor intermediate thread, while

asynchronous to the TSDF thread, does not make the pool of

ComponentThreads wait more than 2 - 4 ms for an outputted

slice from the TSDF tracking module. The performance of

this particular thread is affected by the number of points

extracted from the surface in a given slice of the TSDF volume.

With regards to mesh generation a queue length of 1 implies

that the mesh generator is keeping up with the output of

the CloudSliceProcessor and real-time mesh construction is

succeeding. On average our system keeps up in producing the

mesh surface and catches up when computationally feasible.

The large maximum queue length value is expected in the

CAR dataset due to the fast motion of the camera; many large

slices are outputted by the TSDF and CloudSliceProcessor in

such runs.

Analysing the performance of the FOVIS odometry replace-

ment we note that it has poorer computational performance

than the original CUDA implemented KinectFusion ICP

odometry estimator at 14.71±4.39ms versus 10.54±0.21ms

respectively. This is to be expected given that the FOVIS

implementation is CPU based. However it is still sufficient

to execute in real-time given the frame rate of the captured

data. This increase in execution time is reflected in the TSDF

value for the CORR dataset in Table II.

VII. CURRENT INVESTIGATIONS

In the long term the aim of this work is to incorporate a

full SLAM approach including loop closure detection, mesh

reintegration (i.e. into the TSDF), and global pose and mesh

optimisation. In this section we discuss ongoing work on

extensions to the system with regard to these and other issues.

A. Loop Closure Detection and Handling

In order to provide visual loop closure detection we have

integrated the DBoW place recognition system [5] in conjunc-

tion with SURF feature descriptors as a separate Component-

Thread. Based on the well established bag-of-words model,

when the system identifies a loop closure a pose constraint is

computed between the matched frames. As this pose constraint

is between two RGB images it is then propagated back to the

centre of the TSDF virtual frame in order to properly adjust

the associated poses. This is made possible by transforming

back by the t′ vector associated with the matched frames. We



Fig. 6. Shown is the cumulative generated mesh as viewed from the camera
estimate and a depth map synthesized from this render.

have also experimented with integrating our pose-graph with

iSAM [8] for smoothing and global pose-graph optimisation.

Given the dense structure that is produced by the TSDF front-

end we have observed that a mesh deformation of some kind

is required in conjunction with the iSAM optimisation which

adjusts poses.

B. Map Reintegration

Another aspect of the system we are currently investigating

is the reintegration of previously mapped surfaces to the front-

end TSDF as they are encountered, aiding in loop closure and

drift reduction. One of the approaches we are experimenting

with involves rendering the computed mesh surface at the

estimated position of the camera in the global frame from

the camera’s perspective. Subsequently we synthesize a depth

map from this mesh render (similar to the work of Fallon et

al. [4]) and either merge this with the current Kinect depth

map or interleave it with the live Kinect data and pass it in

independently. Figure 6 shows some preliminary results of this

work.

C. Mapping Improvements

One of the advantages of capturing such a dense and rich

model in real-time is the possibility of higher level processing

and reasoning such as object recognition and other semantic

processing. One of the first steps forward in this direction

we are currently exploring is the integration of texture in the

surface building process. In addition to this we are looking at

fitting surface models to the data, such as planes and curves

using sample consensus methods. The extraction of such

primitives from the data provides higher level representations

more suitable for semantic understanding and also reduces the

overall complexity of the data.

VIII. CONCLUSION

We have developed an algorithm which extends the Kinect-

Fusion framework to overcome one of the principal limitations

of the original system by Newcombe et al.; the inability to

work over extended areas. In addition to this, we have also

implemented a real-time triangular mesh generation module

for representing the extended scale map thereby maintaining

the ability to characterise topological and occlusion relation-

ships within the environment. We have also integrated the FO-

VIS visual odometry library into the processing pipeline and

evaluated its potential in increasing robustness and reducing

overall drift.

The system is organised as a set of hierarchical multi-

threaded components which are capable of operating in real-

time. The software framework we have developed facilitates

the easy creation and integration of new modules which then

also have a minimal performance impact on the main front-end

dense TSDF tracking and surface reconstruction module. In the

future we will extend the system to implement a full SLAM

approach including loop closure detection, mesh reintegration,

and global pose and mesh optimisation.

ACKNOWLEDGMENTS

Research presented in this paper was funded by a Strategic

Research Cluster grant (07/SRC/I1168) by Science Foundation

Ireland under the Irish National Development Plan and the

Embark Initiative of the Irish Research Council for Science,

Engineering and Technology.

REFERENCES

[1] KinectFusion extensions to large scale environments.

http://www.pointclouds.org/blog/srcs/fheredia/index.php,

May 11th 2012.

[2] C. Audras, A. I. Comport, M. Meilland, and P. Rives.

Real-time dense RGB-D localisation and mapping. In

Australian Conference on Robotics and Automation,

Monash University, Australia, December 2011.

[3] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers,

and W. Burgard. An evaluation of the RGB-D SLAM

system. In Proceedings of the IEEE Int. Conf. on

Robotics and Automation (ICRA), St. Paul, MA, USA,

May 2012.

[4] M. F. Fallon, H. Johannsson, and J. J. Leonard. Efficient

scene simulation for robust Monte Carlo localization

using an RGB-D camera. In Proceedings of the IEEE

International Conference on Robotics and Automation

(ICRA), St. Paul, MN, May 2012.

[5] D. Galvez-Lopez and J. D. Tardos. Real-time loop

detection with bags of binary words. In Intelligent Robots

and Systems (IROS), 2011 IEEE/RSJ International Con-

ference on, pages 51 –58, September 2011.

[6] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox.

RGB-D mapping: Using Kinect-style depth cameras for

dense 3D modeling of indoor environments. The Inter-

national Journal of Robotics Research, 2012.

[7] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Mat-

urana, D. Fox, and N. Roy. Visual odometry and mapping

for autonomous flight using an RGB-D camera. In

International Symposium on Robotics Research (ISRR),

Flagstaff, Arizona, USA, August 2011.

[8] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM:

Incremental smoothing and mapping. IEEE Transactions

on Robotics (TRO), 24(6):1365–1378, December 2008.

[9] G. Klein and D. Murray. Parallel tracking and mapping

for small AR workspaces. In Proceedings Sixth IEEE and

http://www.pointclouds.org/blog/srcs/fheredia/index.php


ACM International Symposium on Mixed and Augmented

Reality (ISMAR’07), Nara, Japan, November 2007.

[10] Z. C. Marton, R. B. Rusu, and M. Beetz. On fast surface

reconstruction methods for large and noisy datasets. In

Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), Kobe, Japan, May

2009.

[11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges,

and A. Fitzgibbon. KinectFusion: Real-time dense

surface mapping and tracking. In Proceedings of the

2011 10th IEEE International Symposium on Mixed

and Augmented Reality, ISMAR ’11, pages 127–136,

Washington, DC, USA, 2011. IEEE Computer Society.

[12] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.

DTAM: Dense tracking and mapping in real-time. In

Computer Vision (ICCV), 2011 IEEE International Con-

ference on, pages 2320 –2327, November 2011.

[13] K. Pirker, M. Rüther, G. Schweighofer, and H. Bischof.

GPSlam: Marrying sparse geometric and dense proba-

bilistic visual mapping. In Proceedings of the British

Machine Vision Conference, pages 115.1–115.12. BMVA

Press, 2011.

[14] R. B. Rusu and S. Cousins. 3D is here: Point cloud

library (PCL). In IEEE International Conference on

Robotics and Automation (ICRA), Shanghai, China, May

2011.

[15] J. Stuehmer, S. Gumhold, and D. Cremers. Real-time

dense geometry from a handheld camera. In Pattern

Recognition (Proceedings DAGM), pages 11–20, Darm-

stadt, Germany, September 2010.


	Introduction
	Related Work
	Approach
	Continuous Representation
	Implementation
	Pose-Graph Representation
	Mesh Generation
	Visual Odometry

	System Architecture
	Experimental Evaluation
	Hardware
	Datasets

	Results
	Qualitative Performance
	Computational Performance

	Current Investigations
	Loop Closure Detection and Handling
	Map Reintegration
	Mapping Improvements

	Conclusion

